CS 405G: Introduction to Database Systems

Functional Dependency
Today’s Topic

- Functional Dependency.
- Normalization
- Decomposition
- BCNF
Motivation

- How do we tell if a design is bad, e.g., $WorkOn(EID, Ename, PID, Pname, Hours)$?
- This design has *redundancy*, because the name of an employee is recorded multiple times, once for each project the employee is taking.

<table>
<thead>
<tr>
<th>EID</th>
<th>PID</th>
<th>Ename</th>
<th>Pname</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>10</td>
<td>John Smith</td>
<td>B2B platform</td>
<td>10</td>
</tr>
<tr>
<td>1123</td>
<td>9</td>
<td>Ben Liu</td>
<td>CRM</td>
<td>40</td>
</tr>
<tr>
<td>1234</td>
<td>9</td>
<td>John Smith</td>
<td>CRM</td>
<td>30</td>
</tr>
<tr>
<td>1023</td>
<td>10</td>
<td>Susan Sidhuk</td>
<td>B2B platform</td>
<td>40</td>
</tr>
</tbody>
</table>

Update anomaly
Insert anomaly: Bar not taking classes
Delete anomaly: Bart drops all classes
Why redundancy is bad?

- Waste disk space.
- What if we want to perform update operations to the relation
 - INSERT a new project that no employee has been assigned to it yet.
 - UPDATE the name of “John Smith” to “John L. Smith”
 - DELETE the last employee who works for a certain project

<table>
<thead>
<tr>
<th>EID</th>
<th>PID</th>
<th>Ename</th>
<th>Pname</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>10</td>
<td>John Smith</td>
<td>B2B platform</td>
<td>10</td>
</tr>
<tr>
<td>1123</td>
<td>9</td>
<td>Ben Liu</td>
<td>CRM</td>
<td>40</td>
</tr>
<tr>
<td>1234</td>
<td>9</td>
<td>John Smith</td>
<td>CRM</td>
<td>30</td>
</tr>
<tr>
<td>1023</td>
<td>10</td>
<td>Susan Sidhuk</td>
<td>B2B platform</td>
<td>40</td>
</tr>
</tbody>
</table>
Functional Dependency

- FDs are **constraints** that are derived from the *meaning* and *interrelationships* of the data attributes.

- Functional dependencies (FDs) are used to specify *formal measures* of the "goodness" of relational designs.

- FDs and keys are used to define **normal forms** for relations.
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.
- $t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

Must be “b”
Could be anything, e.g. d
FD examples

Address (street_address, city, state, zip)

- street_address, city, state -> zip
- zip -> city, state
- zip, state -> zip?
 - This is a trivial FD
 - Trivial FD: LHS ⊇ RHS
- zip -> state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS ∩ RHS = ?
Functional Dependencies

- An FD is a property of the attributes in the schema R
- The constraint must hold on every relation instance r(R)
- If K is a key of R, then K functionally determines all attributes in R (since we never have two distinct tuples with t1[K]=t2[K])
Keys redefined using FD’s

Let $\text{attr}(R)$ be the set of all attributes of R, a set of attributes K is a (candidate) key for a relation R if

- $K \rightarrow \text{attr}(R) - K$, and
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal (full functional dependent)
- $\text{Address (street_address, city, state, zip)}$
 - \{street_address, city, state, zip\} Super key
 - \{street_address, city, zip\} Super key
 - \{street_address, zip\} Key
 - \{zip\} Non-key
Reasoning with FD’s

Given a relation R and a set of FD’s F

- Does another FD follow from F?
 - Are some of the FD’s in F redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?
Attribute closure

- Given R, a set of FD’s F that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to F is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in F and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added
A more complex example

WorkOn(EID, Ename, email, PID, Pname, Hours)

- EID -> Ename, email
- email -> EID
- PID -> Pname
- EID, PID -> Hours

(Not a good design, and we will see why later)
Example of computing closure

- F includes:
 - $EID \rightarrow Ename, email$
 - $email \rightarrow EID$
 - $PID \rightarrow Pname$
 - $EID, PID \rightarrow Hours$
- $\{ PID, email \} = ?$
- closure $= \{ PID, email \}$
- $email \rightarrow EID$
 - Add EID; closure is now $\{ PID, email, EID \}$
- $EID \rightarrow Ename, email$
 - Add $Ename, email$; closure is now $\{ PID, email, EID, Ename \}$
- $PID \rightarrow Pname$
 - Add $Pname$; close is now $\{ PID, Pname, email, EID, Ename \}$
- $EID, PID \rightarrow hours$
 - Add $hours$; closure is now all the attributes in $WorksOn$
Using attribute closure

Given a relation R and set of FD’s \mathbf{F}

- Does another FD $X \rightarrow Y$ follow from \mathbf{F}?
 - Compute X^+ with respect to \mathbf{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from \mathbf{F}

- Is K a super key of R?
 - Compute K^+ with respect to \mathbf{F}
 - If K^+ contains all the attributes of R, K is a super key

- Is a super key K' a key of R?
 - Test where $K' = K - \{ a \mid a \in K \}$ is a superkey of R for all possible a
Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
Using rules of FD’s

Given a relation R and set of FD’s F

- Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof

- Example:
 - F includes:
 - $EID \rightarrow Ename, email; email \rightarrow EID; EID, PID \rightarrow Hours,$
 - $Pid \rightarrow Pname$
 - $PID, email \rightarrow hours$?
 - $email \rightarrow EID$ (given in F)
 - $PID, email \rightarrow PID, EID$ (augmentation)
 - $PID, EID \rightarrow hours$ (given in F)
 - $PID, email \rightarrow hours$ (transitivity)
Example of redundancy

- **WorkOn** (EID, $Ename$, $email$, PID, $hour$)
- We say $X \rightarrow Y$ is a **partial dependency** if there exist a $X' \subseteq X$ such that $X' \rightarrow Y$
 - e.g. EID, $email$-\rightarrow $Ename$, $email$
- Otherwise, $X \rightarrow Y$ is a **full dependency**
 - e.g. EID, PID-\rightarrow $hours$

<table>
<thead>
<tr>
<th>EID</th>
<th>PID</th>
<th>Ename</th>
<th>email</th>
<th>Pname</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>10</td>
<td>John Smith</td>
<td>jsmith@ac.com</td>
<td>B2B platform</td>
<td>10</td>
</tr>
<tr>
<td>1123</td>
<td>9</td>
<td>Ben Liu</td>
<td>blni@ac.com</td>
<td>CRM</td>
<td>40</td>
</tr>
<tr>
<td>1234</td>
<td>9</td>
<td>John Smith</td>
<td>jsmith@ac.com</td>
<td>CRM</td>
<td>30</td>
</tr>
<tr>
<td>1023</td>
<td>10</td>
<td>Susan Sidhuk</td>
<td>ssidhuk@ac.com</td>
<td>B2B platform</td>
<td>40</td>
</tr>
</tbody>
</table>

Why is that