Bits, Bytes, and Integers

CS 485: Systems Programming
Fall 2015

Instructor:
James Griffioen

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/public/instructors.html)
Overview: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
Binary Representations

3.3V
2.8V
0.5V
0.0V

0 1 0
Bits, Bytes, and Octets

Preliminaries: Number Bases
- *Decimal* – base 10, the normal way to write numbers
- *Binary* – base 2, numbers consists of 1’s and 0’s
- *Hexadecimal*
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b
 - Each hexadecimal letter corresponds to 4 (binary) bits.

Byte = 8 bits (usually)
- Byte is the term commonly used in the context of machines
- An 8 bit byte has values of
 - Binary 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 0₀₁₆ to FF₁₆ (see below)

Octets = 8 bits (always)
- Octet is the term commonly used in the context of networks

How many bytes does it take to store the number:
- 1001100011101₂
- 131D₁₆
- 4893₁₀

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Aside: How big is a Mega?

- 10^6?
 - 1,000,000

- 2^{20}?
 - 1,048,576

Networks are based on clock rates in Hz, therefore a Megabit of bandwidth is 10^6 bits of data.

Computer memory is based on powers of 2, therefore a Megabyte of memory is 2^{20} bytes of memory.

Kilo, Giga, and Tera are similar.
Byte-Oriented Memory Organization

- Programs refer to (Virtual) Addresses
 - Memory is conceptually a (very large) array of bytes
 - Each running program gets a part of the memory
 - Programs can access their own memory region, but usually cannot write to (and thus “clobber”) other program’s memory
 - Virtual memory is implemented with a hierarchy of different memory types – usually a two-level hierarchy of memory + disk

- Compiler + Operating System control the allocation of memory
 - Decide where different parts of a program go in the program’s memory space. (compiler)
 - Determine where different programs should be stored in memory. (OS)
Machine Words

Each machine has a “word size”

- Nominal size of integer-valued data
 - Typically determines address size.
- Standard machines use 32 bit = (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space $\approx 1.8 \times 10^{19}$ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?

- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable \(x \) has 4-byte representation 0x01234567
 - Address given by &\(x \) is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0x100</td>
<td>0x101</td>
<td>0x102</td>
<td>0x103</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0x100</td>
<td>0x101</td>
<td>0x102</td>
<td>0x103</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Representing Integers

```c
int A = 15213;
long int C = 15213;
```

```c
int B = -15213;
```

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3B 6D

Two’s complement representation (Covered later)
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - How do you know when you are at the end?
 - String are null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue
Strings vs. Buffers

- Strings and Buffers can easily be confused
- They look alike in a C program
 - Example string definition: `char example_string[200]`
 - Example buffer definition: `char example_buffer[200]`

- A String
 - Is typically used to store “printable” phrases or sentences.
 - Uses a null character (‘\0’) to indicate the end of a string (implying that ‘\0’ cannot occur within a string).

- A Buffer
 - Is a term that is not explicitly defined by C, but is often used in the context of networking and operating system code.
 - Is an array of bytes used to store any binary values, not just printable ones.
 - Does not end with a null character (‘\0’) because the null character might be stored in one of the bytes of the buffer.
 - Requires an additional variable to hold the “current length” of the buffer (i.e., to tell how many bytes of the buffer currently have data values in them.)
Overview: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

<table>
<thead>
<tr>
<th>And</th>
<th>Or</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&B = 1 when both A=1 and B=1</td>
<td>A</td>
</tr>
<tr>
<td>A & B</td>
<td>A</td>
</tr>
<tr>
<td>0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not</th>
<th>Exclusive-Or (Xor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~A = 1 when A=0</td>
<td>A^B = 1 when either A=1 or B=1, but not both</td>
</tr>
<tr>
<td>~</td>
<td>A ^ B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

A&~B | ~A&B

= A^B
General Boolean Algebras

- **Operate on Bit Vectors**
 - Operations applied bitwise

 \[
 \begin{array}{cccc}
 01101001 & 01101001 & 01101001 \\
 \& 01010101 & \text{\underline{01010101}} & ^{\text{\underline{01010101}}} & \sim 01010101 \\
 01000001 & 01111101 & 00111100 & 10101010
 \end{array}
 \]

- **All of the Properties of Boolean Algebra Apply**
Representing & Manipulating Sets

- **Representation**
 - Width \(w \) bit vector represents subsets of \(\{0, \ldots, w-1\} \)
 - \(a_j = 1 \) if \(j \in A \)

 - 01101001 \(\{0, 3, 5, 6\} \)
 - 76543210

 - 01010101 \(\{0, 2, 4, 6\} \)
 - 76543210

- **Operations**
 - & Intersection 01000001 \(\{0, 6\} \)
 - | Union 01111101 \(\{0, 2, 3, 4, 5, 6\} \)
 - ^ Symmetric difference 00111100 \(\{2, 3, 4, 5\} \)
 - ~ Complement 10101010 \(\{1, 3, 5, 7\} \)
Bit-Level Operations in C

- **Operations &, |, ~, ^ Available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (Char data type)**
 - \(~0x41 \rightarrow 0xBE\)
 - \(~01000001_2 \rightarrow 10111110_2\)
 - \(~0x00 \rightarrow 0xFF\)
 - \(~00000000_2 \rightarrow 11111111_2\)
 - \(0x69 \& 0x55 \rightarrow 0x41\)
 - \(01101001_2 \& 01010101_2 \rightarrow 01000001_2\)
 - \(0x69 \mid 0x55 \rightarrow 0x7D\)
 - \(01101001_2 \mid 01010101_2 \rightarrow 01111101_2\)
Contrast: Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 ➔ 0x00
 - !0x00 ➔ 0x01
 - !!0x41 ➔ 0x01
 - 0x69 && 0x55 ➔ 0x01
 - 0x69 || 0x55 ➔ 0x01
 - p && *p (avoids null pointer access)
Shift Operations

- **Left Shift: \(x \ll y \)**
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift: \(x \gg y \)**
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

- **Undefined Behavior**
 - Shift amount < 0 or ≥ word size
Overview: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

- \(x = 15213: \ 00111011 \ 01101101 \)
- \(y = -15213: \ 11000100 \ 10010011 \)

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>2048</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>4096</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>8192</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum

- \(15213 \)
- \(-15213 \)
Numeric Ranges

- **Unsigned Values**
 - $UMin = 0$
 - 000...0
 - $UMax = 2^w - 1$
 - 111...1

- **Two's Complement Values**
 - $TMin = -2^{w-1}$
 - 100...0
 - $TMax = 2^{w-1} - 1$
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|Tmin| = Tmax + 1$
 - Asymmetric range
 - $U_{Max} = 2 \times Tmax + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>χ</th>
<th>$B2U(\chi)$</th>
<th>$B2T(\chi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(\chi) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(\chi) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer