Network Services

Network protocols need to provide more complex services than just best-effort packet delivery. Examples include:

- Connections/Connectionless
- Reliable Delivery
- Ordered Delivery
- Request/Reply Communication
- QoS
- ... etc ...

The following briefly outlines common techniques used to implement some of these services.
Reliable Delivery

- **Question:** What does Reliable Delivery mean?
- **Answer:** it depends.

Reliable delivery **minimally** means:
1. no data values change
2. no data is missing
3. no data is added/duplicated

Minimal requirements called **Error Control**

Three other related services:
1. **Ordered Delivery**
2. **Flow Control**
3. **Congestion Control**

we will define each of these services and describe common techniques to implement them
Data Corruption

• Goal: make sure the data does not change during transmission
• Techniques:
Packet Loss

• Packet is dropped/lost before reaching the receiver
• Probably the most widespread/common networking problem
• Why are packets lost?

• Packet Loss is a really tough problem. Why?
Recovering From Packet Loss

- **Question:** How do you recover from packet loss (assuming you can detect it)?

- **Answer:** Send the packet again, and again, and again, ... until it gets there.

- Basic Error Control Algorithm uses:
 - Positive acknowledgements
 - Timeouts
 - Retransmissions

- Protocol works as follows:
 - normal (errorless) mode:
 - packet loss mode:
Recovering From Packet Loss: (continued)

- Sender interpreted ACK as packet loss
- But what really went wrong?

- Which errors do we recover from correctly?
Duplicate Packets

- Because we don’t know if the packet was lost or just delayed, the destination may receive **Duplicate Packets**
- Solution (basic idea): discard duplicates before handing them to the application.
- This is not good enough. Why?

- How do you know it is a duplicate?
Flow Control

- **Data overrun** can occur when a sender transmits data faster than receiver can process incoming data.

- Protocols use **flow control** mechanisms through which the receiver controls the rate of transmission.

- Two common flow control approaches:
Stop-N-Go

• Sender only sends one packet at a time.
• Receiver sends small control packet when it is ready for next packet
• Sender waits for control packet before sending next packet
• Can be very inefficient. Why?
Sliding Window

- Allows sender to transmit multiple packets before receiving an acknowledgment.
- Number of packets that can be sent is defined by the protocol and called the window.
- As acknowledgments arrive from the receiver, the window is moved along the data packets; hence the term “sliding window.”
Sliding Window Example

- data packets buffered from right to left
- window limits how many unacknowledged packets you can send
Figure 1: Window moves from right to left
Stop-N-Go vs. SWP

- stop-n-go wastes bandwidth
- SWP needs to buffer and manage the window
Figure 2: Timeline: (left) STOP-N-GO (right) SWP
Sliding Window Details

- Goal: send multiple unack’ed packets to make better use of the pipe than Stop-N-Go protocols.

- SubGoal: Don’t send so fast that you overrun the receiver

- Sender:
 - sender sends up to a window full of data, then blocks and waits for acknowledgements
 - sender receives cumulative acks, which advances the window
 - advancing win means more pkts can be sent
 - each packet has its own timeout and is retransmitted if not cumulatively ACK’d in time.
Sliding Window Details: (continued)

- **Receiver:**
 - only accept packets in the window
 - if the packet that arrives is not the next frame expected (NFE), do not ACK it
 - when NFE arrives, calculate the highest consecutive packet received, send a cumulative ACK for it, reset NFE to the following packet, and advance window
Window Sizes

• Who defines the window size?

• What should the window size be?

• Do the window sizes need to be the same?
Congestion Control

- Network congestion arises in network systems that include multiple links.
- If input to some link exceeds maximum bandwidth, packets will queue up at connection to that link.

![Network Diagram]

Figure 3: Network Congestion possible at 3 and 4.
Congestion Control: (continued)

- Eventually, packets will be discarded and packets will be retransmitted.
- Ultimately, network will experience congestion collapse.
- Problem related to, but not identical to, data overrun.