The Picture So Far

- We have seen how to transmit frames/packets between stations over a single channel
 - Point-to-point or shared medium (LAN)
 - Framing, error control, MAC functions
- Problem: single channels don't scale
 - Can't build an 802 network to cover all of Kentucky, much less the whole country
 - Why not? Speed of light limitations
 - Even as channel capacity grows without limit, \((\text{frame xmit time} \to 0)\)
 - As network covers longer distance, fraction of capacity wasted waiting for protocol information to propagate approaches 1
 - Polls or equivalent (token-passing)
 - Collisions
 - Note: power requirements, increase in offered load due to more stations are not the primary reasons!
The Solution

• Add **Store-and-forward nodes** to connect networks
 - Some stations are **connected to multiple channels**
 - They **receive** packets and **relay** them to other channels
 - Relay nodes are called **Intermediate systems (ISs)**
Store-and-Forward Networks

- The **forwarding challenge**:
 - Each IS needs to make a decision for each packet:
 - Which channel to relay it to?
 - In general, there may be several choices of outgoing channel
 - Requirements: (i) packet arrives at its destination; (ii) packet doesn't go too far "out of the way"

- The **Fundamental principle of forwarding**:
 - Each packet **must contain information** the IS can use to make this decision
 - (Exception: random-walk routing: just forward the packet on any link.
 In a finite network, it arrives with probability 1.)
 - IS may also store **state information** to use in making the decision
Terminology: Switching vs. Forwarding

- These terms are sometimes used as synonyms
- **Switching** refers to the operation of connecting channels together to make a single channel
 - Circuit switching: relaying *signals*
 - Requires that all channels in network look (more or less) the same at the symbol level
 - Telephone network was originally circuit-switched
 - End-to-end delay is more-or-less fixed and predictable
 - Packet switching: relaying frames or packets
 - Allows different lower layers to be concatenated together
 - Introduces queueing delay
- **Forwarding** refers to relaying packets from one channel to another
 (Note: no such thing as "circuit forwarding")
Parts of the Problem

• Three separable aspects:
 1. Determining what paths lead to each destination ("Path discovery")
 2. Choosing a path to each destination ("Path selection")
 3. Ensuring that each packet follows the chosen path ("Forwarding")

• How to identify destinations?
 Different channels may use different addressing schemes

• Different approaches assign responsibility for these aspects to different parties
More Terminology

• So what is **Routing**?

• Refers to the **path discovery** and **path selection** parts of the problem (as opposed to forwarding)

• Typically, "routing" refers to the way the Internet Protocol solves the problem:
 - Global address space, **tied to topology**
 - IS's **exchange information** that enables them to determine the best path to each destination

 (More on this later)