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Abstract

Background: Literature-based discovery (LBD) is characterized by uncovering hidden associations in non-interacting scientific
literature. Prior approaches to LBD include use of: 1) domain expertise and structured background knowledge to manually filter
and explore the literature, 2) distributional statistics and graph-theoretic measures to rank interesting connections, and 3) heuristics
to help eliminate spurious connections. However, manual approaches to LBD are not scalable and purely distributional approaches
may not be sufficient to obtain insights into the meaning of poorly understood associations. While several graph-based approaches
have the potential to elucidate associations, their effectiveness has not been fully demonstrated. A considerable degree of a priori
knowledge, heuristics, and manual filtering is still required.

Objectives: In this paper we implement and evaluate a context-driven, automatic subgraph creation method that captures
multifaceted complex associations between biomedical concepts to facilitate LBD. Given a pair of concepts, our method automat-
ically generates a ranked list of subgraphs, which provide informative and potentially unknown associations between such concepts.

Methods: To generate subgraphs, the set of all MEDLINE articles that contain either of the two specified concepts (A, C) are
first collected. Then binary relationships or assertions, which are automatically extracted from the MEDLINE articles, called
semantic predications, are used to create a labeled directed predications graph. In this predications graph, a path is represented as
a sequence of semantic predications. The hierarchical agglomerative clustering (HAC) algorithm is then applied to cluster paths
that are bounded by the two concepts (A, C). HAC relies on implicit semantics captured through Medical Subject Heading (MeSH)
descriptors, and explicit semantics from the MeSH hierarchy, for clustering. Paths that exceed a threshold of semantic relatedness
are clustered into subgraphs based on their shared context. Finally, the automatically generated clusters are provided as a ranked
list of subgraphs.

Results: The subgraphs generated using this approach facilitated the rediscovery of 8 out of 9 existing scientific discoveries. In
particular, they directly (or indirectly) led to the recovery of several intermediates (or B-concepts) between A- and C-terms, while
also providing insights into the meaning of the associations. Such meaning is derived from predicates between the concepts, as
well as the provenance of the semantic predications in MEDLINE. Additionally, by generating subgraphs on different thematic
dimensions (such as Cellular Activity, Pharmaceutical Treatment and Tissue Function), the approach may enable a broader
understanding of the nature of complex associations between concepts. Finally, in a statistical evaluation to determine the
interestingness of the subgraphs, it was observed that an arbitrary association is mentioned in only approximately 4 articles in
MEDLINE on average.

Conclusion: These results suggest that leveraging the implicit and explicit semantics provided by manually assigned MeSH descrip-
tors is an effective representation for capturing the underlying context of complex associations, along multiple thematic dimensions
in LBD situations.

Keywords: Literature-based discovery (LBD), Graph mining, Path clustering, Hierarchical agglomerative clustering, Semantic
Similarity, Semantic relatedness, Medical Subject Headings (MeSH)

1. Introduction

Literature-based discovery (LBD) refers to the process of un-
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covering hidden connections that are implicit in scientific litera-
ture. Numerous hypotheses have been generated from scientific
literature, using the LBD paradigm, which influenced innova-
tions in diagnosis, treatment, preventions, and overall public
health. The notion of LBD was proposed by Don R. Swan-
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son (1924–2012) in 1986, through the well-known Raynaud
Syndrome–Dietary Fish Oils Hypothesis (RS-DFO) [1]. By
reading the titles of more than 4000 MEDLINE articles, Swan-
son serendipitously discovered that Dietary Fish Oils (DFO)
lower Blood Viscosity, reduce Platelet Aggregation and inhibit
Vascular Reactivity (specifically Vasoconstriction). Concomi-
tantly, he observed that a reduction in both Blood Viscosity and
Platelet Aggregation, as well as the inhibition of Vasoconstric-
tion, appeared to prevent Raynaud Disease; a circulatory disor-
der that causes periods of severely restricted blood flow to the
fingers and toes [2]. Swanson therefore postulated that “dietary
fish oil might ameliorate or prevent Raynaud’s syndrome.” This
hypothesis was clinically confirmed by DiGiacomo et al. [3] in
1989.

Swanson’s discovery is interesting because explicit associa-
tions between DFO and these intermediate concepts (i.e., Blood
Viscosity, Platelet Aggregation and Vasoconstriction) had long
existed in the literature [4, 5, 6, 7, 8]. Likewise, explicit asso-
ciations between the intermediates and RS had been well doc-
umented [9, 2]. The serendipity in Swanson’s Hypothesis lies
in the fact that no explicit associations linking DFO and RS di-
rectly had been previously articulated in a single document.

To develop this hypothesis, Swanson performed a Dialog R©

Scisearch using Raynaud and Fish Oil terms, on titles and
abstracts of MEDLINE and Embase (Excepta Medica) cita-
tions, in November 1985. There were approximately 1000 ar-
ticles in the Raynaud set and 3000 in the Fish Oil set. He
found that only four articles among a reduced set of 489 arti-
cles (after filtering), contained cross-references spanning both
sets. Among these four articles, only two articles [10, 11]
discussed relevant aspects of RS with DFO; although not in
the context of Swanson’s discovery. Swanson speculated that
this phenomenon of logically related but noninteracting liter-
atures alludes to the existence of undiscovered public knowl-
edge [1]. Logically related information fragments may exist
in the literature, but may have never been connected, or fully
elucidated. He subsequently exploited his awareness of the
existence of such undiscovered associations and investigated
several other scenarios (three with Smalheiser [12, 13, 14])
that later led to new scientific discoveries [15, 16]. Swanson
grounded his observations in a paradigm now commonly known
as the ABC model [1] for LBD, which is an integral part of
LBD research, facilitating the generation of several hypotheses
[1, 15, 16, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25].

In current biomedical research, while finding unknown inter-
mediates is an important task, domain scientists are often in-
terested in developing a deeper understanding of causal rela-
tionships and mechanisms of interaction among concepts. For
example, consider the complex scenario depicted in Figure 1,
in which Dietary Fish Oils produce several Prostaglandins,
including Prostaglandin I3 (PGI3) and Epoprostenol (PGI2,
the synthetic form of Prostacyclin). The latter of these
Prostaglandins (Epoprostenol) was known to treat Raynaud
Syndrome. It was also known to disrupt Platelet Aggregation.
Since Platelet Aggregation is deemed a cause of Raynaud Syn-
drome, one can reasonably conclude that a plausible mecha-
nism by which Dietary Fish Oils treat Raynaud Syndrome is

through the production of Prostaglandins, which actively dis-
rupt Platelet Aggregation.

Aside from detecting such causal associations, it is known
that complex associations may exist between concepts, in many
different ways. For example, Figure 2 shows that Dietary Fish
Oils and Raynaud Syndrome are associated in at least the fol-
lowing three ways: 1) in terms of Cellular Activity involv-
ing Blood platelets/Prostaglandins, as shown in Figure 2a, 2)
through Pharmaceuticals that contain calcium channel block-
ers, such as Nifedipine and Verapamil, as shown in Figure 2b,
and 3) through Lipids/Fatty Acids from Efamol and Evening
primrose oil, as shown in Figure 2c.

Figure 1: Complex association between Dietary Fish Oils and
Raynaud Syndrome

In this paper, we build on our previous approach [26], in
which we rediscovered and decomposed the Raynaud Syndrome
– Dietary Fish Oils discovery. In our previous work, we manu-
ally created the multi-faceted subgraphs, by grouping together
paths of semantic predications. Recall that a semantic predica-
tion is a binary relation between two concepts, expressed in the
form (subject, predicate, object). Here, we present a method
that uses rich representations to automatically create such sub-
graphs, by leveraging implicit and explicit semantics provided
by MeSH descriptors1. To create the subgraphs, we first specify
the context of a semantic predication and then use it to infer the
context of a path. Paths are then clustered into coherent sub-
graphs on multiple thematic dimensions, based on their shared
context.

The approach requires only three items from the user as in-
put: 1) a list of concept labels for source (A) and target (C),
2) the maximum path length k of paths to be generated (default
k = 2, for ABC associations), and 3) a cut-off date dt for articles
to be included from the scientific literature. If no cut-off date
is provided then all MEDLINE articles are used. The output
of the approach is a ranked list of subgraphs S – i.e., create a
function F : q→ S , where q = {A,C, dt, k}.

To facilitate understanding the meaning of associations
present in the subgraphs, the predicates of the semantic predica-
tions and their provenance in MEDLINE are provided (see Sec-
tion 4). Relationships that are not explicit in the subgraphs, but

1MeSH is a controlled vocabulary (or thesaurus) of biomedical terms, orga-
nized in a hierarchical structure – https://www.nlm.nih.gov/mesh/
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Figure 2: Thematic dimensions of association for Raynaud Syndrome and Dietary Fish Oil

are inferred, can be explored by composing MEDLINE queries
(as we will show). The collective use of predicates, provenance
and MEDLINE queries for knowledge exploration constitute
the notion of discovery browsing, introduced by Wilkowski et
al. [27] and extended by Cairelli et al. [28]. Discovery brows-
ing is enabled when a system guides the user through their ex-
ploration of the literature in a process of cooperative reciprocity.
The “user iteratively focuses system output, thus controlling
the large number of relationships often generated in literature-
based discovery systems.”

To assess the efficacy of our approach, two forms of evalu-
ation were conducted: 1) an evidence-based evaluation and 2)
a statistical evaluation. The evidence-based evaluation showed
that the generated subgraphs could facilitate the rediscovery of
8 out of 9 existing discoveries [1, 15, 16, 12, 13, 14, 29, 30]
(not recovered [28]). The statistical evaluation showed that an
arbitrary association occurs only in approximately 4 articles in
MEDLINE on average. This evaluation determines the in-
terestingness of the subgraphs in general, as a way to assess
whether a domain scientist might be interested in an arbitrary
subgraph in the first place (see in Section 4.2). These results
suggest that the subgraphs created using our approach provide
an effective way of finding and elucidating poorly understood
associations and may be of interest to domain scientists. In this
paper we make the following specific contributions:

1. We develop a novel context-driven subgraph creation
method for closed LBD (both A and C are known), capable
of finding complex associations. Our approach is distinct
from previous approaches, which are mainly based on sta-
tistical frequency, graph metrics, and specificity.

2. We implement an unsupervised clustering algorithm to au-
tomatically create complex subgraphs using implicit and
explicit semantics, without the need for complex heuris-
tics for filtering.

3. We illustrate the role of discovery browsing, through the
use of predicates and provenance to supplement the sub-
graphs with insights from the scientific literature.

4. We show the effectiveness of this approach in facilitating
the rediscovery of 8 out of 9 existing scientific discoveries.

The rest of this paper is organized as follows: Related Work
is covered in Section 2. The approach to automatic subgraph
creation is discussed in Section 3. Experimental Results are
presented in Section 4 and a thorough discussion on limitations
and future work are presented in Section 5. Conclusions are
presented in Section 6.

2. Related Work

Leveraging rich representations of textual content from sci-
entific literature could be effective for finding and elucidating
complex associations. Rich representations exploit implicit,
formal (or explicit) and powerful semantics [31] to capture con-
text, which may be important in providing deeper insights into
the nature of associations. Gordon and Dumais made this cru-
cial observation in [32] after successfully applying the popular
technique of Latent Semantic Indexing (LSI) for LBD. The au-
thors reported that LSI was only slightly more effective than
traditional frequency-based metrics, such as token frequency,
record frequency, and term frequency-inverse global frequency
(tf-igf) [33] for finding intermediates. While LSI was suc-
cessful for knowledge rediscovery, the authors speculated that
richer representations of textual content are needed to capture
“evidence suggestive of ‘causal’ relationships in the literature
(which may be revealed independently of their statistical promi-
nence).” Moreover, they stressed the need for “semantic and
category knowledge to improve the step of identifying [interme-
diate and] terminal concepts.”

Many techniques for finding hidden connections (or associ-
ations) between biomedical concepts from scientific literature
however, utilize frequency-based and graph-theoretic metrics.
Few methods have been developed to ‘seamlessly’ find and elu-
cidate complex associations, by going beyond reliance on im-
plicit semantics. Instead, the conventional wisdom has been
that discoveries are likely to arise from logical connections be-
tween source (A) concepts, intermediates (B) and targets (C)
that frequently or rarely (co)occur in the literature, or are
highly or rarely connected in a knowledge base.

The earliest frequency-based approaches utilized ‘frequency
of occurrence’ mainly through measures of term (and concept)
frequency [34, 17]. Other measures such as relative frequency,
token frequency, term frequency-inverse global frequency (tf-
igf) [33], and term frequency-inverse document frequency (tf-
idf) [35, 36] were also used to rank intermediates. Subsequent
approaches utilized ‘frequency of co-occurrence’ using tech-
niques such as LSI [32], association rules [37, 38, 39, 20], and
probability distributions [20, 40, 41, 29]. Torvik et al. [40, 42]
even used an ensemble approach to find intermediates that com-
bined statistical and temporal features.

While distributional approaches have been successful for
some LBD situations, the underlying frequencies only provide
an indirect way of capturing the meaning of associations among
concepts. For instance, consider the association in which Di-
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etary Fish Oils (A) inhibit Platelet Aggregation (B) and the ag-
gregation of blood platelets causes Raynaud Disease (C). While
Dietary Fish Oils, Platelet Aggregation, and Raynaud Disease
may frequently co-occur in the literature, their precise associ-
ation is not explicitly captured by their co-occurrence. A sec-
ond issue is that the underlying frequency distribution may not
be adequate for capturing related concepts, which may be im-
portant in elucidating causal relationships and mechanisms of
interaction.

To address these problems, several relations-based tech-
niques [19, 22, 43] have been developed, which use the explicit
relationships (or predicates) between concepts. Such predicates
are typically obtained from structured background knowledge
or known a priori by domain experts. For example, Hristovski
et al. in [22], developed a relations-based approach that used
ordered alternating sequences of predicates and classes (or se-
mantic types) called discovery patterns. These patterns are
specified a priori using insights from background knowledge.
Using discovery patterns, Hristovski argues that if a Disease
causes a change in a Substance/Body Function and a Drug in-
hibits this change, then the Drug MAYBE TREATS the Disease.
The CAUSES-INHIBITS sequence is used to uncover potentially
new Drug treatments for the Disease.

While intuitive, the relations-based approach is mainly ap-
plicable in scenarios where both predicates and semantic types
are known, or can be easily obtained. This is not always triv-
ial, as illustrated in the scenario from Figure 1. Additionally,
it can be argued that hierarchical relations from the schema of
a domain specific knowledge base, such as the Unified Medi-
cal Language System (UMLS) can also be used to create such
complex subgraphs, using measures like specificity. However,
the semantic types for Prostaglandins and Platelet Aggrega-
tion are Eicosanoids and Cell Function, respectively. These
semantic types share no common ancestors in their lineage in
the UMLS Semantic Network (https://uts.nlm.nih.gov/
semanticnetwork.html). And while associative relations
can be used instead, a proven and repeatable schema-driven
approach that captures this level of complexity has not been
forthcoming.

Contemporary approaches to LBD focus on creating sub-
graphs, which comprise of binary relations among concepts,
called semantic predications. These predications are extracted
directly from assertions in scientific literature, using SemRep
[44]. Wilkowski et al. [27] developed a graph-theoretic ap-
proach based on semantic predications that iteratively (and
manually) uses a greedy strategy to create the ‘best’ subgraph,
by weighting edges using degree centrality. This approach was
used to elucidate the association among Norepinephrine, De-
pression, and Sleep.

Wilkowski’s approach is similar to the approach by Ramakr-
ishnan et al. [45], in which a greedy strategy is applied, using
an ensemble of features, to generate complex associations. Ra-
makrishnan’s approach is fully automatic and uses class and
property specificity, instance-level rarity, and refraction to find
hidden connections. However, this approach was used on a
synthetically generated dataset, instead of a real dataset con-
sisting of semantic predications. Ramakrishnan notes that this

approach was used, in exploratory research, to recover the con-
nections from the Raynaud Syndrome – Dietary Fish Oils dis-
covery. However its broader applicability for LBD in general
has not been fully demonstrated. Reliance on hierarchical rela-
tionships in the UMLS Semantic Network is subject to incon-
sistencies since the UMLS is a terminology and not a formal
ontology. Also, by design, the trees in the UMLS Semantic
Network are fairly disjoint, as for Prostaglandins and Platelet
Aggregation.

Goodwin et al. [46] developed a hybrid approach that uses
spreading activation for LBD, deriving weights from relative
frequencies (of concepts and semantic predications) and de-
gree centrality. This approach was used to successfully recover
the intermediate Cortisol in the Testosterone – Sleep discovery
[30], and also to elucidate the Norepinephrine, Depression, and
Sleep scenario from [27]. However, Goodwin generates a list of
intermediates instead of a graph. It is therefore unclear how the
spreading activation algorithm might be adapted to capture the
context of complex associations. In [47] van der Eijk et al. clus-
tered only MeSH descriptors (not semantic predications) into
subgraphs, based on frequency of co-occurrence and Hebbian
Learning. This approach provided new insights into the associ-
ation between Deafness and Macular Dystrophy, and between
Insulin and Ferritin. In recent work, Spangler et al. [48] also
used distributional statistics (tf-idf) to weight edges in a kinase
network, using graph diffusion applied to a Laplacian Matrix.
The approach creates an n-ary similarity tree in which 7 new
p53 kinases were discovered, which could revolutionize Cancer
treatments. The approach for clustering of cliques developed
by Zhang et al. [49, 50] may be used to capture subgraphs on
multiple thematic dimensions. However, the approach is based
on degree centrality and is therefore more likely to create sub-
graphs that only consist of highly connected concepts from the
literature.

In spite of the successes of and frequency-, relations-, and
graph- based approaches to LBD, more effective methods for
capturing the context of associations are desired. Gordon and
Dumais suggested a possible independence between frequency
and causality for LBD in [32]. We believe that complex as-
sociations that elucidate the relationships among concepts de-
pend both on implicit and explicit context. Further, we believe
that capturing such context may be the important in segregat-
ing complex associations along multiple thematic dimensions.
In this paper, we explore the idea that hidden connections,
and their related concepts, which help elucidate underlying
complex associations, are more dependent on context than
frequency, connectivity or specificity. In the next section, the
approach for automatic subgraph creation based on this premise
is presented.

3. Approach

To automatically create complex subgraphs our approach re-
lies on three datasets. The first dataset is MEDLINE, which is a
repository of more than 23 million bibliographic citations main-
tained by the National Library of Medicine (NLM). The second
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is SemMedDB [51], a database of more than 65 million se-
mantic predications extracted from MEDLINE. Semantic pred-
ications are extracted using a tool called SemRep2, developed
at NLM. The third is the Biomedical Knowledge Repository
(BKR), a knowledge base consisting of statements from the
UMLS Metathesaurus together with semantic predications ex-
tracted using SemRep. These datasets are used for automatic
subgraph creation in five steps: 1) Query Specification, 2) Can-
didate Graph Generation, 3) Path Context Representation, 4)
Path Clustering, and 5) Subgraph Ranking. Each step is dis-
cussed in the following subsections, and also outlined in Algo-
rithm 1:

Algorithm 1 autoSubGen(Set A, Set C, Integer k, Date dt)

1: D := getPMIDs(A, dt) ∪ getPMIDs(C, dt)
2: S := empty, G := empty, R := empty
3: for all pmids d ∈ D do
4: t(d) := getPreds(d)
5: G.add(t(d))
6: end for
7: for all concept pairs (a, c) ∈ A ×C do
8: p := getPaths(a, c, k, G)
9: R.add(p)

10: end for
11: S = rankClusters(getClusters(R))

3.1. Query Specification
The system (called Obvio3, see Appendix A) first requires

a query, denoted q, which can be specified initially by provid-
ing the labels of two concepts of interest (A, C). These terms
are manually mapped to concept unique identifiers (or CUIs),
using the UMLS Semantic Navigator4. For example, the A-
term Dietary Fish Oil, maps to the UMLS concept C0016157,
whose label is also Fish Oils. Initial A- and C-terms are also
manually augmented with other closely related concepts. For
example, the concepts Fish oil – dietary (C0016157) and Eicos-
apentaenoic Acid (C0000545) are closely related to Fish Oils
(C0016157) and are therefore added to the query. Next, the cut-
off date dt for the literature to be included may be optionally
provided. If no cut-off date is given the system uses the en-
tire MEDLINE database. The maximum path length k, of paths
to be generated between A and C may then also be optionally
provided. If none is given, the system defaults to a maximum
path length of k = 2. An example query for Raynaud Syndrome
– Dietary Fish Oils is as follows: q = ({Fish Oils, Fish oil –
dietary, Eicosapentaenoic Acid}, {Raynaud Phenomenon, Ray-
naud Disease}, 11/01/1985, 3). In plain English, ‘get me all
subgraphs between dietary fish oils and raynaud syndrome, us-
ing scientific literature published before November 1985, and
consisting of paths up to length 3.’

2SemRep – http://semrep.nlm.nih.gov/
3Obvio video demo - http://bit.ly/obviodemo, Obvio Project page -

http://wiki.knoesis.org/index.php/Obvio
4Semantic Navigator – http://mor2.nlm.nih.gov:8000/perl/auth/semnav.pl

3.2. Candidate Graph Generation

Given a query q = (A,C, dt, k), the Query Processor (Fig-
ure 3, top center) then retrieves the set of MEDLINE docu-
ments D that contain any of the terms (i.e., labels) in the A-
and C- sets (Algorithm 1, line 1). These documents form the
corpus from which semantic predications will subsequently be
obtained. To obtain the predications, the set of PubMed identi-
fiers (or PMIDs) for each article in D is processed by the Predi-
cations Graph Builder (Figure 3, middle center), which creates
a labeled directed predications graph, denoted G. To achieve
this, the graph builder collects the semantic predications for
each document in D that are also present in SemMedDB5 (Al-
gorithm 1, line 4). The graph builder then creates a predica-
tions graph (Algorithm 1, line 5) in which nodes are UMLS
concepts and edges are UMLS predicates. This graph is de-
livered as input to the Subgraph Generator (Figure 3, bottom
center), which first uses the Path Generator to extract all paths
between (A, C) up to length k, using the Depth First Search
(DFS) algorithm (Algorithm 1, line 8). DFS is selected because
both A and C are known. However, the choice of Breadth First
Search (BFS) may be equally effective for graph traversal, but
has not been explored, since performance is not the primary fo-
cus at this point. Using DFS, the path generator effectively uses
the predications graph to produce paths (or ρ-path associations
from [52]), except that edges are oriented in either direction,
as we previously noted in [26]. This restricted set of paths is
called the reachability relation R [53] (or candidate graph) be-
tween A and C at length k, and date range dt. This candidate
graph represents a more likely set from which discoveries will
arise.

Figure 3: System Architecture

3.3. Path Context Representation

The candidate graph is provided as input to the Path Cluster-
ing Module (Figure 3, bottom center), which requires a defini-
tion for the context of a path p to cluster related paths into sub-
graphs. To specify path context, denoted C(p), we first specify

5SemMedDB – http://skr3.nlm.nih.gov/SemMedDB/
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the context of a semantic predication t, denoted c(t). The con-
text of each predication in the path is then aggregated to obtain
overall path context.

To define the context of a semantic predication, we make two
assumptions, based on observations about MEDLINE articles.
The first observation is that MeSH descriptors are manually as-
signed to MEDLINE articles (titles and abstract only) by MeSH
indexers, based on human interpretation of the meaning of the
entire article. These descriptors provide a concept-level seman-
tic summary of the full text. Similarly, semantic predications
also provide a semantic summary of the meaning of the con-
tent. However, semantic predications provide a relational se-
mantic summary, by linking concepts using explicit predicates.

We therefore assume that the MeSH descriptors and the se-
mantic predications of an article capture its implicit context.
This context is shared across the two abstractions of the mean-
ing of the content. A semantic predication may therefore be
represented in terms of the MeSH descriptors assigned to the
article in which the predication occurs. This is the basis for our
interchangeability assumption for subgraph creation, which
states that the concept-level semantic summary and relational
semantic summary of a MEDLINE article, are interchangeable.
More specifically, given a semantic predication t and a MED-
LINE article d such that t is extracted from d, the context of
the semantic predication c(t) = M(d), where M(d) is the set
of MeSH descriptors assigned to d. Likewise, the context of a
MeSH descriptor m, denoted c(m), is the set of semantic pred-
ications T (d), assigned to the article d in which m occurs (i.e.,
c(m) = T (d)

If this assumption holds, then we can make a second assump-
tion, which is that the implicit context of a semantic predica-
tion t across the entire corpus can be represented as a vector of
MeSH descriptors aggregated from each document containing
t (based on distributional semantics). This is the basis for our
context distribution assumption for subgraph creation, which
states that the implicit context of a semantic predication can be
expressed as the distribution of all MeSH descriptors associ-
ated with all articles in which the predication occurs.

Since our fundamental premise for subgraph creation is that
relatedness among concepts is independent of statistical fre-
quency (as noted by Gordon and Dumais [32]), graph metrics
or specificity, our vector representation is downgraded to the
Boolean-valued set representation (i.e., the equivalent of a bi-
nary vector), in which a MeSH descriptor is either present or
absent in the distribution. The context of a path

C(p) =
⋃
t∈p

c(t) (1)

is therefore the aggregation of its predication context sets.

3.4. Path Clustering

The Path Clustering Module uses the context set C(p) for
each path p in the candidate graph R to cluster related paths pi

and p j, based on their shared context. To compute this shared
context between paths, the system initially computes the inter-
section s′′(pi, p j) = C(pi)∩C(p j) of their shared MeSH descrip-

tors. However, to account for inexact matches between MeSH
descriptors across the two sets, this intersection is enhanced us-
ing the MeSH hierarchy, which provides explicit (or formal) se-
mantics. Specifically, we use the Cartesian product of the two
context sets C(pi) × C(p j) to determine which pairs of MeSH
descriptors adequately indicate relatedness between the paths.
Pairs of descriptors (mi,m j), whose similarity is above some
threshold of MeSH semantic similarity are retained, while those
below are discarded. The key idea is to maximize the weights
of the in-context descriptors and minimize the weights of the
out-of-context descriptors.

To compute semantic similarity between MeSH descriptors
the measure of dice similarity is used. Dice similarity computes
the proportion of common ancestors between descriptors in the
MeSH hierarchy (MH). For two MeSH terms mi and m j the dice
similarity is computed as

dice(mi,m j) = 2 ×
|ancestors(mi)MH ∩ ancestors(m j)MH |

|ancestors(mi)MH | + |ancestors(m j)MH |
,

(2)
where ancestors(mi)MH is the set of all ancestors of mi in
MeSH. The maximum similarity between two descriptors com-
puted using dice similarity is 1. This maximum value occurs
when the descriptors are equal. (i.e., mi = m j). The range of
similarity values is [0, 1].

In this computation, pairs of descriptors, whose dice simi-
larity exceed the threshold of semantic similarity (manually as-
signed as τsim = 0.75) are normalized to a value of 1. This
normalized dice similarity

diceN(mi,m j) =

1 if dice(mi,m j) > τsim

0 otherwise
(3)

is therefore computed conditionally. The initial overall seman-
tic relatedness

sr′′(pi, p j) =
∑

(a,b)∈C(pi)×C(p j)

diceN(a, b) (4)

between pi and p j is the sum of the normalized pairwise dice
similarity scores that exceed the threshold of semantic simi-
larity, across the Cartesian Product of the context sets C(pi) ×
C(p j).

A consequence of this semantics-enhanced shared context
metric, is that a broad range of relatedness scores may exist.
Paths that are very similar, which have many exact (and inex-
act) MeSH descriptors in common will have very scores, while
others may have low scores. To dampen the major differences
in similarity scores of different path pairs, we apply a log reduc-
tion on the normalized dice similarity scores. This is achieved
by first computing the relatedness score between a given MeSH
descriptor a in context set C(pi) against the entire set of de-
scriptors in the context set C(p j). This computation yields the
similarity score

sim′(a,C(p j)) =
∑

b∈C(p j)

diceN(a, b). (5)
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The log reduction

sr′′L (pi, p j) =
∑

a∈C(pi)

log
(
1 + sim′(a,C(p j))

)
(6)

is then applied to sim′(a,C(p j)), and the overall semantic re-
latedness between the two paths is the aggregate of the log-
reduced scores for each descriptor in C(pi) and the entire set in
C(p j). This metric sr′′L (pi, p j), is our basis for finding and elu-
cidating complex associations among concepts, along multiple
thematic dimensions, based on implicit and explicit semantics,
alluded to by Gordon and Dumais in [32].

In the next step the hierarchical agglomerative clustering
(HAC) algorithm is used to create subgraphs by clustering re-
lated paths (Algorithm 1, line 11, getClusters(R)). In the bucket
population step, the algorithm initializes |R| buckets, one for
each path in the candidate graph. For a given path, the re-
latedness score is computed for each of the remaining |R| − 1
paths. If two paths are sufficiently related, they must be placed
in the same cluster. To achieve this, a method to automatically
determine the threshold for path relatedness denoted τrel, is
required.

To obtain the threshold for path relatedness the distribution
of path relatedness scores between all pairs of paths in the can-
didate graph was pre-computed (i.e., (|R| × |R − 1|)/2 scores).
Figure 4 shows the distribution of relatedness scores for three
experiments in the initial stages of our research. Each distribu-
tion approximates to a Gaussian (or normal) distribution.

Table 1: Threshold Comparisons

Scenario Path Relatedness Scores Max
2 Std. Dev Manual 3 Std. Dev.

Raynaud-Fish Oil 2.68 3.0 3.04 3.38
Testosterone-Sleep 3.35 3.5 3.83 6.22
DEHP-Sepsis 3.94 4.0 4.53 4.84

In statistics, the first standard deviation (−σ,+σ) from the
mean of a Gaussian distribution corresponds to the point of in-
flection. This point likely indicates a shift in a trend or phe-
nomenon. When the manually determined thresholds for path
relatedness for the same three experiments were compared to
the σ, 2σ, and 3σ of the Gaussian distribution, it was observed
that the manual thresholds were consistently between the 2σ
and 3σ, as shown in Table 1. The second deviation from the
mean of the Gaussian distribution (τrel = 2σ) was therefore
selected as the path relatedness threshold for clustering. Dur-
ing clustering, all pairs of paths with relatedness scores above
this automatically determined threshold were added to the same
cluster.

In the next phase of HAC (bucket merging), buckets that con-
tain multiple paths were merged if their inter-cluster similarity
exceeded the threshold for path relatedness. That is, for each
pair of paths (pi, p j) across a pair of buckets Ba and Bb, the

inter-cluster similarity

siminter(Ba, Bb) =

∑
(pi,p j)∈Ba×Bb

sr′′L (pi, p j)

|Ba| · |Bb|
, (7)

was computed as the sum of the semantic relatedness scores,
normalized by the sizes of the two buckets. The clustering al-
gorithm terminated when the number of clusters between suc-
cessive iterations remained unchanged.

3.5. Subgraph Ranking

The generated subgraphs were then ranked (Algorithm 1, line
11, rankClusters(S ′)) – where S ′ is the unranked list of sub-
graphs from getClusters(R). Subgraphs containing more than
one path are ranked in descending order, based on their intra-
cluster similarity, which measures the compactness of the clus-
ter. To compute this measure

simintra(B) =
2 ·

∑
pi,p j∈B, pi,p j

sr′′L (pi, p j)

|B| · (|B| − 1)
, (8)

the aggregate of the relatedness score for each pair of paths
(pi , p j) in a given cluster B is obtained and then normalized.

Singleton clusters consisting of only one path are ranked in
ascending order using the measure of association rarity. Given
a path pi, we define an association A(pi) as the set of unique
concepts in the path. Association rarity is therefore the number
of MEDLINE articles f (A(pi)) that contain only the concepts
in the path. For singleton buckets, bucket rarity

r(B) =

∑
pi∈B f (A(pi))

|B|
(9)

is the same as association rarity, since B = {pi} and |B| = 1.
The ranked list of clusters is rendered to the user for inspec-
tion in the Discovery Browsing Interface (Figure 3, middle
left). This interface is shown in Appendix A and also available
online (live tool – http://knoesis-hpco.cs.wright.edu/

obvio/, video demo – http://bit.ly/obviodemo). Con-
cepts are color-coded based on semantic groups obtained from
the BKR, while predicates are color-coded based on a locally
developed coding scheme, since none exists for predicates in
the BKR.

Using this approach, 8 out of 9 existing scientific discoveries
were recovered. These well-known discoveries are: 1) Raynaud
- Fish Oil (1986) [1], 2) Magnesium - Migraine (1988) [15],
3) Somatomedin C - Arginine (1990) [16], 4) Indomethacin -
Alzheimer’s Disease (1996) [12], 5) Estrogen - Alzheimer’s Dis-
ease (1996) [13] 6) Calcium-Independent Phospholipase A2 -
Schizophrenia (1998) [14], 7) Chlorpromazine - Cardiac Hy-
pertrophy (2004) [29], 8) Testosterone - Sleep (2012) [30] and
9) Diethylhexyl (DEHP) - Sepsis (2013) [28]. In the next sec-
tion the application of this approach for the rediscoveries is dis-
cussed.
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Figure 4: Gaussian Distribution of Path Relatedness scores for three rediscovery scenarios

4. Experimental Results

Given the absence of a gold standard dataset in LBD re-
search, knowledge rediscovery is considered a de facto standard
for evaluating LBD systems. To assess the effectiveness of our
context-driven subgraph method, both an evidence-based evalu-
ation and a statistical evaluation were conducted. The evidence-
based evaluation qualitatively determines the extent to which
our approach is capable of rediscovering the known knowledge,
while the statistical evaluation is intended to measure the like-
lihood that a domain expert might be motivated to explore an
arbitrary subgraph generated by the system. The latter achieves
this by measuring the ‘interestingness’ of a subgraph, by quan-
tifying the rarity of its associations in MEDLINE. Associations
that have never been mentioned in any MEDLINE article are
considered rare and most interesting. These are called zero-
rarity associations (ZR). The obvious caveat is that rare associ-
ations are not necessarily all interesting. The next section dis-
cusses the evidence-based evaluation.

4.1. Evidence-Based Evaluation

The first aspect of the evidence-based evaluation reports on
the number of intermediates from a discovery that could be
retrieved by our system. The second aspect substantiates the
meaning of each association using evidence from the literature.
Such evidence can be derived first using the predicates of the
semantic predications in the subgraph. When this is insufficient
or contradictory, evidence can be obtained using the provenance
of the predications in MEDLINE. Additionally, queries can be
composed and executed in PubMed6 to explore inferred asso-
ciations, not explicitly stated in the subgraphs, as commonly
practiced.

For each rediscovery scenario, no concept filters were speci-
fied to exclude concepts based on semantic types or groups. A

6PubMed – http://www.ncbi.nlm.nih.gov/pubmed

generic predicate filter, called the STRICT filter was applied uni-
formly by the system (not the user), across some experiments,
to exclude less informative UMLS predicates, such as ASSOCI-
ATED WITH, INTERACTS WITH, and AFFECTS. This limited degree
of manual filtering is the extent of a priori knowledge required
for subgraph generation in the system.

Due to space limitations, only three experiments are dis-
cussed in detail: 1) Raynaud - Fish Oil, 2) Magnesium - Mi-
graine and 3) Somatomedin C - Arginine. The six remaining
experiments are discussed briefly in Section 4.1.4. Further de-
tails on each experiment are available in [54] and in the follow-
ing online supplementary materials: 1) the Obvio wiki page
- (http://wiki.knoesis.org/index.php/Obvio, section
on Automatic Subgraph Creation), 2) a video demo - http:
//bit.ly/obviodemo and 3) a beta-version of the Obvio
web application - http://knoesis-hpco.cs.wright.edu/
obvio/. Also note that in the following tables, the letter Y (for
yes) is used to indicate that the status S of an intermediate as
‘found directly in a subgraph’ at position P in the list of sub-
graphs. The symbol Y∗ indicates that an intermediate was found
through discovery browsing. The next section discusses the ap-
plication of our approach to the Raynaud - Fish Oil discovery.

4.1.1. Raynaud Syndrome – Dietary Fish Oils
In November 1985, American Information Scientist Don R.

Swanson (1924 – 2012) explored the research question of the
role of Dietary Fish Oils (from salmon, mackerel, albacore,
etc.) in Raynaud Syndrome. Through the methods described
in [1], Swanson discovered that “dietary fish oil might ame-
liorate or prevent Raynaud’s syndrome.” This is because Di-
etary Fish Oils: 1) inhibit Platelet Aggregation, 2) increase the
flow of blood (by reducing Blood Viscosity), and 3) also have
a regulatory effect on the smooth muscle (thereby preventing
Vasoconstriction and stimulating Vasodilation). Each of these
concepts is causally implicated in Raynaud.

We seeded our algorithm with three concepts as sources: 1)
Fish Oils (C0016157), 2) Fish oil - dietary (C0556145), and 3)
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Eicosapentaenoic Acid (C0000545), and two concepts as tar-
gets: 1) Raynaud Disease (C0034734) and 2) Raynaud Phe-
nomenon (C0034735). The corpus consisted of the relevant 61
full text articles discussed by Swanson [1] in the pre-November
1985 period. There were only 4 articles from the Dietary Fish
Oil set, which were in the Raynaud set. The path length was
set to 3 and no predicate filter was specified. These choices are
consistent with the choices in our earlier experiments in [26],
in which we rediscovered and decomposed this hypothesis by
manually constructing the subgraphs, using domain expertise
as context.

Figure 5: Subgraph1 (k = 3, 3σ) on Eicosapentaenoic Acid,
Platelet Aggregation and Raynaud Syndrome

The algorithm terminated in less than 5 minutes (on a 64-
bit Linux Virtual Machine, 8 Intel 2.4GHz processors, 32GB
RAM, and 1.5TB hard drive), producing 4 subgraphs (and 134
singletons) at 2σ and one subgraph (and 164 singletons) at 3σ.
There were 1035 unique concepts and 4143 unique predications
in the predications graph and the candidate graph contained
171 paths of length 3. Figure 5 shows that at 3σ, subgraph1
(the only subgraph produced) directly contains the intermedi-
ate Platelet Aggregation, which many rediscovery approaches
consider sufficient to constitute a rediscovery. However, to bet-
ter substantiate the association, we utilize the predicates in the
subgraph, together with the provenance of the predications in
MEDLINE, along with traditional PubMed search, to provide
evidence.

The predication which states that [Eicosapentaenoic Acid
CONVERTS TO Prostaglandins] was extracted from the fol-
lowing corroborating sentence, in the full text of the follow-
ing article [PMID6827988] by Harris et al. The authors state
that the “recent discovery that the prostaglandins derived from
eicosapentaenoic acid have biological effects different than
those derived from arachidonic acid (C20:4w6) has generated
further interest in fish oils.” Two of the other 61 articles
[PMID6321621, PMID6314583] contained this predication.
Harris also refers to the 1979 article [PMID218223] by Needle-
man et al., which suggests further that [Eicosapentaenoic Acid
CONVERTS TO Prostaglandin (PGI3)] in its metabolic path-
way. And the full text of 1985 article [PMID2997286] by von
Schaky et al. confirms that Eicosapentaenoic Acid produces
Prostaglandin (PGI3) and Epoprostenol (Prostacyclin (PGI2)).
von Schaky notes that “dietary EPA is transformed in vivo in
humans into prostaglandins I3, which is as active . . . as the va-

sodilatory and antiaggregatory prostaglandin I2.”
The subgraph also contains the predication which states

that [Eicosapentaenoic Acid DISRUPTS Platelet Aggregation].
This predication was extracted from the full text of the article
[PMID6320840] by Saynor et al., who refers to the “Mecha-
nisms underlying the inhibition of platelet aggregation by eicos-
apentaenoic acid and its metabolites.” The predication [Al-
prostadil DISRUPTS Platelet Aggregation] was extracted from
the full text of the article [PMID6302714] by Dyerberg et al.,
who pointed out that another author7 “was the first to show that
[Prostaglandin E1] PGE1 inhibited platelet aggregation.” The
previously mentioned article by von Schaky also alludes to this
point.

Conversely, the predication [Epoprostenol TREATS Ray-
naud’s Phenomenon] was correctly extracted from two articles;
by Dowd et al. [PMID7037038], who discusses “Treatment of
Raynaud’s phenomenon by intravenous infusion of prostacyclin
(PGI2)” and by Belch et al. [PMID3883365], who discusses
“Increased prostacyclin metabolites and decreased red cell de-
formability in patients with systemic sclerosis and Raynauds
syndrome.” Since both Alprostadil (PGE1) and Epoprostenol
(PGI2) are synthetic forms of Prostaglandins, it is plausible
that both Alprostadil and Epoprostenol actually treat Raynaud’s
Syndrome by disrupting Platelet Aggregation. Indeed, the
1982 article [PMID6890719] by Pardy et al., obtained through
a date-restricted MEDLINE query8, confirms that Alprostadil
(PGE1) treats Raynaud Phenomenon, instead of the weaker IN-
TERACTS WITH relationship, present in the subgraph. The
role of Platelet Aggregation in causing Raynaud, which is in-
ferred and not explicit in the subgraph, is easily confirmed us-
ing another MEDLINE query (Platelet Aggregation AND Ray-
naud AND 1865:1985/11[DP]), which yields the 1985 article
[PMID3985417] by Soro et al.

This subgraph together with discovery browsing suggest
a richer relationship among Eicosapentaenoic Acid, Platelet
Aggregation, and Raynaud Syndrome than would be pro-
vided by their co-occurrence. Rather, it appears that one
mechanism by which [Eicosapentaenoic Acid TREATS Ray-
naud Syndrome] is by stimulating a series of Prostaglandins
(namely, Prostaglandin I3 (PGI3), Prostaglandin E1(PGE1),
and Prostacyclin (PGI2)), which actually disrupt Platelet Ag-
gregation. This observation was first articulated by Swanson in
[1].

An important observation is that the subgraph contains con-
tradicting semantic predications. For example, the two predica-
tions [Eicosapentaenoic Acid CONVERTS TO Prostaglandins]
and [Eicosapentaenoic Acid INHIBITS Prostaglandins] are op-
posing. The full text of the article [PMID6827988] by Harris et
al., from which the predication [Eicosapentaenoic Acid CON-
VERTS TO Prostaglandins] was extracted supports its claim.
However, the full text of the lone article [PMID6301111] by

7Kloeze, J. Prostaglandins, Proceedings of the 2nd Nobel Symposium, pp.
241-252 (BERTSTR(iM, S. and SAMUELSON, B., eds.) Almqvist and Wik-
sell, Stockholm, 1967.

8Query: Alprostadil AND Raynaud AND 1865:1985/11[DP]. Confirmed in
search result #12
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Moncada from which the predication [Eicosapentaenoic Acid
INHIBITS Prostaglandins] was extracted states that “It is clear,
therefore, that both prostaglandin dependent and independent
pathways of platelet aggregation are inhibited by EPA in vitro.”
This is an incorrect extraction from SemRep. The author is
noting that [Eicosapentaenoic Acid INHIBITS Platelet Aggre-
gation], not Prostaglandins as the predication suggests. It is
important to note that resolution of such discrepancies is part
of the discovery browsing process, which requires adjudication
by domain experts. We provide the infrastructure for achieving
this through provenance.

The second intermediate Blood Viscosity, was found in the
list of zero-rarity singletons (result #15 in Table 2). The ac-
tual singleton, which states that [Eicosapentaenoic Acid DIS-
RUPTS Blood Viscosity], [Ketanserin DISRUPTS Blood Viscos-
ity], [Ketanserin TREATS Raynaud Disease], suggests a causal
relationship between Blood Viscosity and Raynaud Syndrome.
This inferred relation that [Blood Viscosity CAUSES Raynaud
Syndrome] is confirmed in the 1984 article [PMID6707529] by
Larcan et. al through a MEDLINE search. The statement [Ke-
tanserin DISRUPTS Blood Viscosity] is verified in the following
articles [PMID401574], [PMID6303363] and [PMID2412054].
Likewise, the predication [Ketanserin TREATS Raynaud Dis-
ease] can be verified in the article [PMID6432198] by Roald et
al. and also [PMID6209510] by Bounameaux et al.

Table 2 shows the number of intermediates rediscovered for
this experiment compared with 4 other approaches. The inter-
mediate Vascular Reactivity (in reference to Vasoconstriction)
was not found explicitly by our approach (although can be in-
ferred from the article [PMID2997286] by von Schacky et al.).
This result is not completely unexpected, since it is known from
our reports in [26] that SemRep interprets “Vascular” and “Re-
activity” as separate concepts. Hristovski in [22] was also sub-
ject to the same limitation.

Srinivasan [36] found all three intermediates in the top 2 of
the top 30. However, note that Srinivasan’s approach relies on
a priori knowledge of the semantic types of the intermediates
for filtering and is manually intensive. Additionally, that ap-
proach does not create complex subgraphs, nor does it provide
evidence for the meaning of associations using predicates. Hris-
tovski et al. [22] and Weeber et al. [34] also require consider-
able domain expertise, particularly for specification of a priori
relations (i.e., semantic types and discovery patterns). Gordon
and Lindsay [35] find intermediates but make no attempt to elu-
cidate the meaning of the associations.

To illustrate that our subgraphs capture different thematic di-
mensions of association between two concepts, consider the
four subgraphs using τrel = 2σ as the threshold for cluster-
ing. Subgraph1 in Figure 6a is similar to subgraph1 (at 3σ) ex-
cept that it includes the three additional intermediates, TIMP1,
TIMP1 protein, human, and Thromboembolism. This is nat-
urally due to a lower threshold for path relatedness. By in-
spection, this subgraph elucidates the association between Di-
etary Fish Oils and Raynaud Syndrome through Blood Platelet-
s/Prostaglandins, similar to the previous subgraph.

Subgraph2 (shown in Figure 7) associates Dietary Fish Oils
and Raynaud Syndrome from the perspective of Pharmaceu-

Figure 6: Subgraph1 (k = 3, 2σ) on Dietary Fish Oils - Ray-
naud Syndrome (Blood Platelets/Prostaglandins)

Figure 7: Subgraph2 (k = 3, 2σ) on Dietary Fish Oils - Ray-
naud Syndrome (Pharmaceuticals)

ticals, including Nifedipine, Pentifylline, Thyrocalcitonin, and
Trinitrin detailed especially in the article [PMID6352267] by
Kahan et al., from which the predication [Nifedipine TREATS
Raynaud Phenomenon] was extracted.

Figure 8: Subgraph3 (k = 3, 2σ) on Dietary Fish Oils - Ray-
naud Syndrome (Lipids/Fatty Acids)

Subgraph3 in Figure 8 discusses the role of various
Fatty Acids, which associate TIMP1, Epoprostenol, Efamol
and Evening Primrose (see [PMID4082084, PMID6318123,
PMID6321621]).

Subgraph4 in Figure 9, which focuses more on Cellular Ac-
tivity at the level of Blood Platelets involving Thromboem-
bolism, is subsumed by subgraph1. Currently, subgraph sub-
sumption has not been addressed in this work and remains a
system limitation, discussed in Section 5. In the next section,
the Migraine - Migraine experiment is discussed.

4.1.2. Magnesium – Migraine
In August 1987, Swanson explored the research question of

the role of Magnesium in Migraine Disorder. Through the
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Table 2: Comparison of rediscoveries with other approaches for Raynaud Syndrome - Dietary Fish Oils

Scenario Intermediate(s)
Cameron Srinivasan [36] Weeber [34] Gordon [33] Hristovski [22]

S P S P S P S P S P

Raynaud Syndrome - Dietary

Fish Oils

Blood Viscosity Y* ZR-15 Y 2 Y – Y 5 Y 8
Platelet Aggregation Y 1 Y 1 Y – Y 6 Y 17
Vascular Reactivity – – Y 1 Y – Y 19 – –

Figure 9: Subgraph4 (k = 3, 2σ) on Eicosapentaenoic Acid,
Platelet Aggregation and Raynaud Syndrome (Blood Platelets)

methods described in [15] he discovered 11 neglected connec-
tions between Magnesium and Migraine. He found that Mag-
nesium deficiency might exacerbate Migraine due to compli-
cations involving Stress (Type A personality), Spreading Corti-
cal Depression, Epilepsy, Platelet Aggregation, Serotonin, Sub-
stance P, Inflammation, Vasoconstriction, Prostaglandin forma-
tion, and Hypoxia. Also, as a natural calcium channel blocker,
Magnesium may prevent Migraine attacks.

We seeded our algorithm with Magnesium (C0024467) as the
source and Migraine Disorders (C0149931) as the target. The
path length was set to 2 and no predicate filter was used, to
be more consistent with the discovery. The corpus consisted of
more than 47,000 articles from the pre-August 1987 period (i.e.,
41,507 abstracts on Magnesium and 6,171 on Migraine, 7 over-
lapping). There were 14697 unique concepts, 73,960 predica-
tions in the predications graph and 256 distinct paths of length
2 in the candidate graph. The algorithm terminated in less than
one hour, producing 25 subgraphs (and 151 singletons) at 2σ
and 6 subgraphs (and 231 singletons) at 3σ.

Figure 10: Subgraph1 (k = 2, 2σ) Magnesium - Migraine

With regards to Serotonin, it was known from the 1973 ar-
ticle [PMID4725298] by Vosgeru (one of the 7 overlapping)
that Magnesium Glutamate was used to treat Migraine. Fig-
ure 10 shows that the intermediate Serotonin was found in
subgraph1 at 2σ. The lone article [PMID3629724] by Pert-
seva et al. from which the predication [Magnesium INTER-

ACTS WITH Serotonin] was extracted, is inconclusive. Ac-
cording to Swanson, [Magnesium INHIBITS Serotonin]. The
article [PMID3512233] by Houston et al. from which the pred-
ication [Serotonin CAUSES Migraine] was extracted (among
three others), suggested that elevated levels of Serotonin can
induce Vasoconstriction, which causes Migraine. Houston ex-
plicitly states that “much evidence has implicated serotonin (5-
hydroxytryptamine) in the pathogenesis of migraine.” The arti-
cle further notes that Serotonin is released from Platelet Aggre-
gation and might reach sufficient levels to exacerbate Migraine,
as noted by Swanson. The 1987 article [PMID2440758] by
Briel et al. (through a MEDLINE search) confirms that Mag-
nesium inhibits Platelet Aggregation. It follows that elevated
Magnesium levels may inhibit both Serotonin and Platelet Ag-
gregation, and so treat Migraine.

Figure 11: Subgraph4 (k = 2, 2σ) Magnesium - Migraine

Figure 11 shows subgraph4, which contains the intermediate
Prostaglandins between Magnesium and Migraine. The lone
article [PMID3871957] by Friedlander et al. from which the
predication [Prostaglandins INTERACTS WITH Magnesium]
was extracted, suggested that a decrease in prostaglandin syn-
thesis is accompanied by lower levels of magnesium (and cal-
cium). This conclusion is based on the title: “Decreased cal-
cium and magnesium urinary excretion during prostaglandin
synthesis inhibition in the rat” as noted by Swanson. The 1986
article [PMID3016750] by Nigam et al. confirms that [Mag-
nesium STIMULATES Prostaglandins] as suggested by Swan-
son. The article [PMID89390] by Hakkarainen et al. from
which the predication [Prostaglandins ASSOCIATED WITH
Migraine Disorders] was extracted (among only three others)
states that “Tolfenamic acid (a potent inhibitor of prostaglandin
biosynthesis) was effective in treating acute migraine attacks.”
The specific role of Prostaglandins in Migraine was unclear
however, even after discovery browsing. Swanson suggested
that [Prostaglandins INHIBITS Migraine].
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Table 3: Comparison of rediscoveries with other approaches for Magnesium - Migraine

Scenario Intermediate(s)
Cameron Srinivasan [36] Weeber [34] Blake [? ] Gordon [33]

S P S P S P S P S P

Magnesium - Migraine

Calcium Channel Blockers Y 22 Y 3 Y – Y 10 Y 1
Epilepsy Y* 9 – – Y – Y 8 Y 3
Hypoxia – – Y 5 – – Y 6 Y 77
Inflammation Y* ZR-3 Y 2 Y – Y 170 Y 82
Platelet Activity Y* 1 Y 2 Y – Y 2 Y 8
Prostaglandins Y 4 Y 1 Y – Y 42 Y 27
Type A Personality – – Y 1 Y – Y 23 – –

Serotonin Y 1 Y 1 Y – Y 5 Y 1
Cortical Depression – – Y 6 – – Y 45 – –

Substance P – – Y 18 Y – Y 38 Y 23
Vascular mechanisms Y 9 Y 1 Y – Y 46 Y 16

Figure 12: Subgraph9 (k = 2, 2σ) Magnesium - Migraine

Figure 12 shows that the intermediate Vascular Disease
was found explicitly in subgraph9. The title of the article
[PMID4260015] by Wustenberg et al. from which the predica-
tion [Magnesium ASSOCIATED WITH Vascular Disease] was
extracted, suggests a role for magnesium in vascular reactivity.
The title of the article reads in part, “. . . Findings in magne-
sium metabolism in vascular diseases.” Similar to the predi-
cation with Serotonin, it is unclear from this title that [Mag-
nesium INHIBITS Vasoconstriction] as noted by Swanson. On
the other hand, the article [PMID1153064] by Domzal, from
which the predication [Migraine Disorders ISA Vascular Dis-
eases] was extracted (among three others), suggests that mi-
graine is also a vascular disorder, although primarily a cere-
bral disorder. The lone article [PMID3945397] by Coppeto et
al. from which the predication [Migraine Disorders AFFECTS
Vascular Diseases] was extracted provides more compelling
evidence by linking migraine and vascular retinopathy as sug-
gested by Swanson. Coppeto reported that “two migraineurs
suffered sudden, persisting loss of vision from retinal vascular
occlusion.” This effect is consistent with the observation by
Houston et al. from the article [PMID3512233] on Serotonin
from subgraph1. Salati et al. in [PMID6225285], from which
the predication [Migraine Disorders ISA Vascular Diseases]
was extracted, noted a dependency among Migraine, Vascular
diseases, Epilepsy, and Autoscopy (outer-body hallucination).

The two calcium channel blockers, Nifedipine and Verapamil
were the only intermediates in subgraph22 (not shown). All

three articles [PMID2425960, PMID3673084, PMID6539877]
confirmed that these calcium channel blockers treat Migraine as
suggested by Swanson. The article [PMID537283] by Khoda et
al. from which the predication [Verapamil INTERACTS WITH
Magnesium] was extracted suggested that Magnesium inhibits
Verapamil as noted by Swanson.

The intermediate Hydrocephalus (accumulation of fluid in
the brain), which leads to Brain Edema (referred to as Inflam-
mation by Swanson), was found among the zero-rarity asso-
ciations (see Table 3). The remaining intermediates Hypoxia,
Spreading Cortical Depression, Stress (Type A Personality),
and Substance P were not found among the subgraphs.

Interestingly, only subgraph22 on the calcium channel block-
ers was a complex subgraph in which existing knowledge was
recovered. While several intermediates related to Vascular Re-
activity, such as Vasospasm, Vascular Function, Vasoconstric-
tion, and Vascular Disease exists, their shared context did not
meet our threshold for path relatedness and hence they were not
grouped into the same cluster. The shortcomings of SemRep in
extracting Vascular Reactivity may also have been a limiting
factor. Still, altogether 10 out of the 25 subgraphs contained
complex associations.

Figure 13: Subgraph7 (k = 2, 2σ) Magnesium - Migraine

Subgraph7 (shown in Figure 13) for example, links Theo-
phylline and Caffeine, with Magnesium and Migraine, which
have different semantic types, but belong to the general group
of Stimulants. Subgraph6 (not shown) associates Epinephrine
and Glucose from the perspective of Metabolism. Table 3 shows
that ultimately, 7 out of the 11 associations found by Swanson
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could be found using our approach.

4.1.3. Somatomedin C – Arginine
In April 1989, Swanson explored the research question of

the role of the dietary amino acid Arginine and the protein So-
matomedin C (also called Insulin-Like Growth Factor 1 (IGF1))
in Growth. Through the methods discussed in [16], Swanson
discovered 4 implicit connections between Somatomedin C and
Arginine. He found that Arginine intake could: 1) stimulate
Growth and protein synthesis, 2) promote Wound Healing and
cell regeneration, 3) facilitate nutritional repletion and over-
come Malnutrition, and 4) improve Body Mass (and Weight),
especially in the elderly and debilitated.

We seeded our algorithm with Somatomedins (C0037657)
and Insulin-Like Growth Factor I (C0021665) as the sources,
and Arginine (C0003765) as the target. The corpus consisted
of more than 11,000 articles (819 on Somatomedins and 10,698
on Arginine (with 53 overlapping), in the pre-April 1989 period.
The path length was set to 2, and the STRICT predicate filter was
used to eliminate non-informative predicates. There were 5195
concepts and 17,058 predications in the predications graph and
239 distinct paths in the candidate graph. The algorithm termi-
nated in less than one hour producing 10 subgraphs (and 153
singletons) at 2σ and 7 subgraphs (and 205 singletons) at 3σ.

Figure 14: Subgraph5 (k = 2, 3σ) Somatomedin C – Arginine

Figure 14 shows the intermediate Growth Hormone in sub-
graph5 at 3σ. The sequence of predications [Arginine STIM-
ULATES Growth Hormone] and [Growth Hormone STIMU-
LATES Somatomedins] is entirely correct and requires no fur-
ther proof (in terms of rediscovery). Still, for verification, we
confirmed in the article [PMID6394628] by Chew et al. that
dietary Arginine stimulates the release of Growth Hormones.
These Growth Hormones then stimulate the production of So-
matomedin C (IGF1), which leads to cell growth and increased
body size and muscle (i.e., protein synthesis), as noted in article
[PMID7194347] by Clemmons et al. The same association is
captured in subgraph6 at 2σ (not shown).

In subgraph5, several articles from which the seemingly spu-
rious predication [Arginine TREATS Child] was extracted, upon
investigation, were shown to actually discuss Glucagon and In-
sulin. This includes the article [PMID7204541] by Blethen et
al. whose title is “Plasma somatomedins in children with hy-
perinsulinism.” Likewise, the article [PMID6205015] by Bi-

noux et al. from which the predication [Arginine TREATS Rat-
tus norvegicus] was extracted, discusses observations regarding
Insulin-like Growth Factor 1 in the serum of rats. The article
[PMID7007553] by Ashby et al. from which the same predi-
cation was extracted, discusses the effects of Progesterone and
Insulin in rats, resulting from Glucose and Arginine stimula-
tion. Based on these observations, it is reasonable to conclude
that this subgraph captures the shared context of role of Insulin
with Somatomedin C and Arginine.

Subgraph7 at 3σ (not shown) contains the concept Growth
as an intermediate instead of Growth Hormone (similar to sub-
graph2 at 2σ, also not shown). The sequence of predica-
tions [IGF1 CAUSES Growth] and [Growth PRODUCES So-
matomedins] is interesting because the article [PMID3748655]
by van Buul-Offers et al. from which the predication [IGF1
CAUSES Growth] was extracted states that IGF1 “increases
body length and weight, as well as the growth of several organs
of Snell dwarf mice,” which is consistent with Swanson’s report.
The association between Malnutrition and Somatomedin pro-
duction was found in the article [PMID7023246] by McCum-
bee et al., from which the predication [Growth PRODUCES So-
matomedins], was extracted. No obvious association to Wound
Healing was found using our methods. Table 4 shows that 3 out
of 4 intermediates could be found using our approach.

Table 4: Comparison of rediscoveries with other approaches for
Somatomedin C - Arginine

Scenario Intermediate(s)
Cameron Srinivasan [36]

S P S P

Somatomedin C - Arginine

Growth Hormone Y 5 Y 1
Body Weight Y* 7 Y 4
Malnutrition Y* 7 – –

Wound healing – – Y 4

4.1.4. Remaining Experiments
This section briefly presents the results for the remaining 6

rediscoveries attempted.
Scenario 4: For the Indomethacin - Alzheimer’s Disease dis-

covery [12] by Smalheiser and Swanson in 1995, there were 15
subgraphs at 2σ. Srinivasan found all 8 intermediates, while
we only recovered 6 out of 8 intermediates from subgraphs 2,
3, 4, and 14 (shown in Table 5).

Scenario 5: For Estrogen - Alzheimer’s Disease [13] by
Smalheiser and Swanson in 1995, we found 3 out of 8 interme-
diates from 3 subgraphs at 2σ, as shown in Table 6. Srinivasan
did not attempt this experiment.

Scenario 6: For Calcium-Independent PLA2 - Schizophre-
nia [14] by Smalheiser and Swanson in 1997, our algorithm
produced 10 subgraphs at 2σ, all of which were singletons.
Here, our results are comparable to Srinivasan’s, except that
we are able to retrieve the article [PMID7782894] by Kuo et al.
deemed crucial to the discovery, through discovery browsing
from singleton2. The seemingly innocuous singleton in sub-
graph2 (not shown), which states that [Phospholipase A2 IN-
HIBITS Proteins] [Proteins CAUSES Schizophrenia] leads to
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Table 5: Comparison of rediscoveries with other approaches for
Indomethacin - Alzheimer’s Disease

Scenario Intermediate(s)
Cameron Srinivasan [36]

S P S P

Indomethacin -

Alzheimer’s

Disease

Acetylcholine Y 4 Y 2
Lipid peroxidation Y* 2 Y 4
M2-muscarinic – – Y 3

Membrane Fluidity – – Y 10

Lymphocytes Y* 14 Y 4
Thyrotropin Y ZR-20 Y 9
T-lymphocytes (T-Cells) Y* 3 Y 5

Table 6: Comparison of rediscoveries with other approaches for
Estrogen - Alzheimer’s Disease

Scenario Intermediate(s)
Cameron

S P

Estrogen - Alzheimer’s Disease

Antioxidant activity Y* 4

Alipoprotein E (ApoE) Y* 3

Calbindin D28k Y 4

Cathepsin D – –

Cytochrome C oxidase – –

Glutamate – –

Receptor Polymorphism – –

Superoxide Dismutase – –

the article [PMID7739414 ] by Berry, from which the predica-
tion [Proteins CAUSES Schizophrenia] was extracted. The ar-
ticle shows that the specific protein discussed was the selenium
transport protein Selenoprotein P, as noted by Smalheiser. The
article by Kuo is #4 in the search results of a MEDLINE search
for Phospholipase A2 AND Selenium AND 1865:1997[DP].

Scenario 7: For Chlorpromazine - Cardiac Hypertrophy
[29] by Wren et al. in 2002, there were 14 subgraphs
at 2σ. The intermediate Isoproterenol was found in sub-
graph12 (as shown in Table 8). The article [PMID6165961]
by Rossi et al. from which the predication [Chlorpromazine
INHIBITS Isoproterenol] was extracted, together with the arti-
cle [PMID203365] by Tsang et al. from which the predication
[Isoproterenol CAUSES Cardiomegaly] was extracted, substan-
tiated these predications. Subgraph5 contained the predica-
tion [Chlorpromazine INHIBITS Calcineurin] extracted from
the article [PMID9001710] by Gong et al. and the predication
[Calcineurin CAUSES Cardiac Hypertrophy] extracted from
several articles, including [PMID9568714, PMID10679475,
PMID11248077, PMID11773940, PMID10189350].

Scenario 8: For Testosterone - Sleep [30] by Miller and
Rindflesch in 2011, which articulates that “testosterone en-
hances sleep quality by inhibiting cortisol,” we found 11 sub-
graphs at 2σ and 10 subgraphs at 3σ. Cortisol (or Hydrocor-
tisone) was found in subgraph7 at 3σ and also in subgraph11
at 2σ. The article [PMID8548511] by Kern et al. confirmed
that [Hydrocortisone DISRUPTS Sleep], while the crucial arti-
cle [PMID15841103] by Rubinow et al., noted by Miller, con-
firms that [Testosterone INHIBITS Hydrocortisone].

Table 7: Comparison of rediscoveries with other approaches for
Calcium-Independent PLA2 - Schizophrenia

Scenario Intermediate(s)
Cameron Srinivasan [36]

S P S P

Calcium-Independent PLA2 -

Schizophrenia

Oxidative stress Y* 3 Y 3
Selenium Y* 3 – –

Vitamin E Y* 3 – –

Table 8: Comparison of rediscoveries with other approaches for
Chlorpromazine - Cardiac Hypertrophy

Scenario Intermediate(s)
Cameron

S P
Chlorpromazine - Cardiac

Hypertrophy

Calcineurin Y 5
Isoproterenol Y 12

Scenario 9: For Diethylhexyl Phthalate (DEHP) - Sep-
sis [28] by Cairelli and Rindflesch in 2013, which articu-
lates one possible mechanism for the obesity paradox [55],
we did not find the intermediate PParGamma altogether. In
our retrospective analysis, we found that the novel interme-
diate PParGamma was present in the predications graph, but
not in the candidate graph. This is because no direct links be-
tween PParGamma and Sepsis existed in the candidate graph
- consisting of paths of length 3 between DEHP and Sepsis.
In the predications graph the predication, which states that
[DEPH STIMULATES PParGamma] was present (extracted
from [PMID22953781, PMID16326050]). We also noticed
predications between PParGamma and Liver, Genes, STAT5A
gene, etc. However, none of these concepts were linked directly
to Sepsis. These observations suggest that the path length spec-
ified is perhaps too short. It also suggests that additional con-
cepts, related to Sepsis (as terminals) may be necessary.

In summary, several approaches succeed in providing au-
tomation for finding intermediates. These approaches leverage
keyword-based, concept-based relations-based, graph-based
and hybrid techniques. Many also provide predicates between
concepts, while more recent approaches are able to substantiate
intermediates with provenance in MEDLINE. The main inno-
vation of our approach is that we are able to retrieve and sub-
stantiate existing discoveries, on different thematic dimensions,
using implicit and explicit semantics as suggested by Gordon
and Dumais [32], not frequency, graph metrics or specificity. To
the best of our knowledge, an approach that has rediscovered as
many intermediates, with such degree of automation and sub-
stantiation has never been developed. In the next section the
statistical evaluation is presented.

Table 9: Comparison of rediscoveries with other approachesfor
Testosterone - Sleep

Scenario Intermediate(s)
Cameron Goodwin [46]

S P S P
Testosterone - Sleep Cortisol/Hydrocortisone Y 10 Y 4
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4.2. Statistical Evaluation
In the previous section, we showed that our context-driven,

automatic subgraph creation method facilitated the rediscovery
of 8 existing discoveries with their substantiation in MEDLINE.
While these are encouraging results, one might argue that our
experiments were biased since we knew the intermediates to
be found in the first place. Hence, it was easy to find them in
the subgraphs. A more important question is how interesting
are subgraphs in general, such that an arbitrary domain ex-
pert might be motivated to explore them altogether? To address
this question, we conducted a statistical evaluation, which uses
association rarity to compute interestingness. If the interest-
ingness score of the subgraphs across an entire experiment is
low, then the rediscoveries were fortuitous and the associations
that led to the rediscoveries were serendipitous, rather than sys-
tematic. While this not a complete loss, it is still less than ideal.

To perform this evaluation, for each path in each subgraph
across the 8 rediscoveries (excluding singletons), a PubMed
query was executed using the eUtils Web Service9. This was
used to determine the number of documents that contain the as-
sociation in MEDLINE, with the date restriction enforced. For
example, for the path [Arginine STIMULATES Growth Hor-
mone], [Growth Hormone STIMULATES Somatomedins], the
query “Arginine AND Growth Hormone AND Somatomedins
AND 1865:1989/04[DP]” was composed, where Arginine,
Growth Hormone, and Somatomedins represent an association.
The rarity

r(E) =

∑
pi∈E f (A(pi))

|E|
(10)

of a set of associations across all subgraphs in an experiment
E, is computed as the average of the association rarity, where
f (A(pi)) is the frequency of a unique association A(pi) from
path pi in MEDLINE. The interestingness

I(E) =
1

r(E) + 1
(11)

of an experiment E is computed as the normalized reciprocal of
its rarity.

Table 10 shows the rarity and interestingness scores for each
of the eight successful rediscoveries. For the Raynaud Syn-
drome – Dietary Fish Oils experiment, there were 10 unique
intermediates/associations among the 4 subgraphs at 2σ; each
of which had a zero-rarity in MEDLINE. This is not surpris-
ing, since Swanson noted in [1] that only four articles from the
Raynaud literature overlapped with the Fish Oil literature by
1986. The rarity of these subgraphs is therefore 0.00, and the
interestingness is 1 (meaning absolutely interesting).

For Magnesium – Migraine there were 48 unique interme-
diates/associations, across a total of 27 documents (Table 10,
row 3). The most commonly known intermediates were Hyper-
tensive Disease (3), Individual (3), and Vascular Diseases (4)
respectively. The overall rarity of the subgraphs in the experi-
ment is therefore 27/48 = 0.56 and the interestingness is 0.64
(i.e., somewhat interesting).

9eUtils Help - http://www.ncbi.nlm.nih.gov/books/NBK25500/

For Somatomedin C – Arginine there were 18 unique inter-
mediates/associations across a total of 306 documents (Table
10, row 4). The most commonly known intermediates were
Child (16), Somatropin (63), and Growth Hormone (63). There
were only two zero-rarity associations, which were from the in-
termediates Mus (0) and Falls (0). Clearly these are not interest-
ing. Not surprisingly, the overall rarity score of these subgraphs
is 306/18 = 17 and their interestingness is low (0.06). These
high association frequencies suggest that perhaps the field is
more well-studied. It also partially supports the observation by
Gordon and Dumais [32] that while frequency of intermediates
may be sufficient for finding novel intermediates in some cases,
it may be insufficient to capture the related concepts that eluci-
date complex associations.

For Indomethacin – Alzheimers there were 21 unique associ-
ations across a total of 9 documents (Table 10, row 5). Hydro-
gen Peroxide (2), Interleukin-1 (2) and Free Radicals (3) were
the most commonly known intermediates. The overall rarity
score is 9/21 = 0.43 and the interestingness is 0.70 (i.e., quite
interesting).

For Estrogen – Alzheimers there were 42 unique associations
across a total of 36 documents (Table 10, row 6), among which
36 were zero-rarity associations. Metabolism (6), Dementia
(10), and Senile dementia (10) were the most commonly known
intermediates. The rarity score is 36/42 = 0.86 and the interest-
ingness is 0.54.

For Calcium-Independent PLA2 – Schizophrenia there were
10 unique intermediates/associations (singletons described in
Section 4.1.6), each of which was zero-rarity. Hence, the rarity
of this subgraph is 0.00 and the interestingness was high (1.0).

For Chlorpromazine – Cardiac Hypertrophy there were 21
unique intermediates/associations across a total of 2 documents
(Table 10, row 8) and 19 at zero-rarity. The most commonly
known were Catecholamines (1) and Hypertensive disease (1).
The rarity is therefore 2/21 = 0.10 and the interestingness is
high (0.91).

For Testosterone – Sleep, there were 61 unique intermedi-
ates/associations across a total of 654 documents (Table 10, row
9) and 20 at zero-rarity. The most commonly known were Pro-
teins (63), Symptoms (91), and Hormones (207). The overall
rarity score is therefore 654/61 = 10.72 and the interestingness
is low (0.09). This is not surprising, since these two domains
(Testosterone and Sleep) are fairly well studied.

Across all 8 rediscoveries, the average rarity score is there-
fore 3.71 and the average interestingness is 0.62. This suggests
that an association chosen at random from the rediscoveries
is likely to be known to only approximately 4 documents in
MEDLINE. Such a low rarity score suggests that the subgraphs
themselves might be quite interesting to a domain expert. This
is however not surprising, since most of the discoveries, at the
time when made would have been inherently interesting situ-
ations and possibly not well studied in the literature. Testos-
terone – Sleep (2011) and Somatomedin C – Arginine (1990)
are exceptional.
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Table 10: Rarity and Interestingness score of the subgraphs in the rediscoveries

Experiment # Unique Associations MEDLINE Frequency r(E) I(E)
Raynaud Syndrome - Dietary Fish Oils 10 0 0.00 1.00
Magnesium - Migraine 48 27 0.56 0.64
Somatomedin C - Arginine 18 306 17.00 0.06
Indomethacin - Alzheimer’s Disease 21 9 0.43 0.70
Estrogen - Alzheimer’s Disease 42 36 0.86 0.54
Calcium Independent PLA2 - Schizophrenia 10 0 0.00 1.00
Chlorpromazine - Cardiac Hypertrophy 21 2 0.10 0.91
Testosterone - Sleep 61 654 10.72 0.09

Average 29 129 3.71 0.62

5. Discussion

This paper showed that the use of implicit and explicit se-
mantics to find and elucidate associations among concepts
along multiple thematic dimensions can be effective for LBD.
Another important contribution is that domain scientists can in-
fer relationships not explicitly stated in the subgraphs, based
on meaningfully connected semantic predications. Our overall
approach however, has several limitations. The first limitation
is the assumption that the context of a semantic predication,
expressed in terms of the distribution of MeSH descriptors is
reliable for generating meaningful subgraphs. Not all MeSH
descriptors assigned to an article are relevant to all its semantic
predications, and hence the predication context vectors could
be noisy. Ideally, direct mappings between semantic predica-
tions and MeSH descriptors could help resolve this discrepancy.
Since, such mappings are unavailable our specification of con-
text is subject to limitations of distributional semantics.

The second limitation is the degree of domain expertise still
required for discovery browsing. Although impractical to elim-
inate, one improvement could be providing additional back-
ground knowledge to supplement the subgraphs where appro-
priate. In this way, assertional knowledge from the litera-
ture would be complemented with definitional knowledge from
structured knowledge sources (though deep integration). Met-
rics for determining interesting neighboring concepts in back-
ground knowledge need to be developed for concepts in the sub-
graph to overcome this limitation.

Another limitation is the inability to systematically detect
contradicting semantic predications. While the provenance of
predications in MEDLINE allows domain experts to adjudicate,
a method for resolving conflicting predications would be ben-
eficial. We believe that temporal analysis of semantic predi-
cations could enable conflict resolution. However, since many
unresolved paradoxes inherent in science itself are reported in
the literature, it is unclear whether one might reliably detect
and resolve such contradictions automatically, using temporal,
statistical and/or semantic approaches.

The reliability of the statistical evaluation is also another lim-
itation of our approach. Rare associations are generally inter-
esting but not always. While alternative methods for conduct-
ing statistical evaluation for LBD have been discussed [56], it
is cumbersome to coordinate cut-off dates for each predication

across the rediscoveries. The suggested techniques are there-
fore impractical to implement. We use association rarity to in-
dicate interestingness, similar to existing research [45, 36].

A number of technical limitations exist in our approach. The
first technical limitation is the manual selection of a threshold
for MeSH semantic similarity based on dice similarity. While
dice is advantageous because it is easy to implement, other
similarity metrics and more principled ways of computing the
threshold should be explored. Likewise, the threshold for path
relatedness, which is based on the second (and third) standard
deviation from the mean of the Gaussian distribution, could be
unreliable. Our results show that the data distributions only ap-
proximate to Gaussian. The p-values from the χ2 test of the
three Gaussian distributions in Figure 4 are indeed more than
the 0.05 value normally considered reliable. To overcome this
limitation, we anticipate that path relatedness could be recom-
puted relative to the minimum relatedness score. Torvik et al.
[40] and Smalheiser et al. [42] implemented an approach based
loosely on this idea, which normalized the distribution, using a
mixture of Gaussian models.

Across some experiments, we utilized predicate filters
to eliminate non-informative relationships (such as ASSOCI-
ATED WITH, INTERACTS WITH, AFFECTS, etc). This is a compro-
mise to achieve scalability. Ideally, the system should not re-
quire any predicate filters. In fact, the omission of some pred-
icates may be responsible for low recall in some of our experi-
ments. Still, given that most experiments terminated in less than
one hour, higher recall may not be too costly for performance.
With the emergence of big data infrastructure, the performance
limitations of our clustering may be resolved using alternative
platforms, such as Apache Spark.

The choice of HAC could be considered another limitation.
HAC was selected because it is an unsupervised, deterministic
clustering algorithm, for which the number of clusters does not
have to be known or specified a priori. The time complexity of
HAC is O(N2 log N) in the best case. While approaches, such
as those by Ramakrishnan et al. [45] and van der Eijk et al. [47]
may be applicable for subgraph creation, it is unclear how they
might be adapted to generate complex subgraphs along multiple
thematic dimensions.

These and other limitations suggest the next steps in this re-
search. In future, labels for subgraphs should be provided. This
is a crucial task, since our approach is predicated on the idea
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that each subgraph captures a different thematic dimension of
association between two concepts. Additionally, a comparative
study using full text, against titles and abstracts, could be use-
ful. Since, full text is only available on a limited scale, this is
not a straightforward task.

6. Conclusion

Leveraging rich representations of textual content from
scientific literature based on implicit and explicit context
can provide effective means for literature-based discovery,
as illustrated in this paper. These rich representations facil-
itated the rediscovery of 8 out of 9 well-known discoveries
and their substantiation. Our approach is therefore an ad-
vancement of LBD research since it illustrates that notions
of context and shared context can be important for making
discoveries from scientific literature, which do not rely on
statistical frequency, graph metrics or specificity. A beta-
version of the Obvio web application, which showcases
the rediscoveries, is available online for optional view-
ing (http://knoesis-hpco.cs.wright.edu/obvio/),
along with various other resources (wiki page -
http://wiki.knoesis.org/index.php/Obvio, video
demo - http://bit.ly/obviodemo), which help put the
contributions of this research into perspective. Further details
about each experiment are also given in [54].
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Appendix A. The Obvio Web Application

This Appendix describes the Obvio web application (shown
in Figure A.15) developed to showcase the rediscoveries.
The system consists of 11 components, which can be used to
explore subgraphs generated for closed discovery scenarios,
using the following steps.

Step 1: The user must first select a start term (A) using
component 1. For example, the concept Chlorpromazine can
be selected as an A-term.

Step 2: The user must then select the target term (C)
using component 2. For example, the concept Cardiac Hyper-
trophy has been selected as the target term, for the given source.

Step 3: The user must then select the ‘Search’ button to
submit the search request. Obvio retrieves the metadata for the
search terms, which are then displayed in the ‘metadata panel’
immediately below search terms (component 3).

Step 4: The identifiers of the preprocessed subgraphs are
shown in the ‘subgraph panel’ in component 4.

Step 5: The user must then select the identifier of a subgraph
from the subgraph panel. The corresponding subgraph will be
displayed in the ‘viewer’ (component 5).

Step 6: Interesting semantic predications may then be
explored by clicking on the edge between concepts of interest
in the viewer.

Step 7: The number of MEDLINE articles that contain the
visualized semantic predications is shown the ‘Result Metadata
Panel’ (component 6). The identifier for the MEDLINE article
is also shown (currently shown, 2000 Feb 18). The title of the
article is shown in component 7, while the date of publication
is shown in component 8. The selected semantic predication
is shown in component 9 (currently shown, Calcineurin-
CAUSES-Cardiac Hypertrophy). The set of MEDLINE articles
that contain the predication are also available for inspection in
component 10. More importantly, the sentence from which the
semantic predication was extracted will be highlighted.

Step 8: The user may also utilize the functionality from
the ‘Filtering panel’ in component 11, to view different
perspectives in the subgraphs based on semantic types and
groups. Note that the original subgraph can be restored by
clicking an arbitrary point in the viewer. Also, when any node
in the subgraph has been selected, only the inlinks and outlinks
connected to the selected node are displayed.
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Figure A.15: Screenshot of the Obvio Web Application
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