
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 1

Using Common Table Expressions to Build
a Scalable Boolean Query Generator

for Clinical Data Warehouses
Daniel R. Harris, Darren W. Henderson, Ramakanth Kavuluru, Arnold J. Stromberg, and Todd R. Johnson

Abstract—We present a custom, Boolean query generator
utilizing common-table expressions (CTEs) that is capable of
scaling with big datasets. The generator maps user-defined
Boolean queries, such as those interactively created in clinical-
research and general-purpose healthcare tools, into SQL. We
demonstrate the effectiveness of this generator by integrating our
work into the Informatics for Integrating Biology and the Bedside
(i2b2) query tool and show that it is capable of scaling. Our
custom generator replaces and outperforms the default query
generator found within the Clinical Research Chart (CRC) cell
of i2b2. In our experiments, sixteen different types of i2b2 queries
were identified by varying four constraints: date, frequency,
exclusion criteria, and whether selected concepts occurred in
the same encounter. We generated non-trivial, random Boolean
queries based on these 16 types; the corresponding SQL queries
produced by both generators were compared by execution times.
The CTE-based solution significantly outperformed the default
query generator and provided a much more consistent response
time across all query types (M=2.03, SD=6.64 vs. M=75.82,
SD=238.88 seconds). Without costly hardware upgrades, we
provide a scalable solution based on CTEs with very promising
empirical results centered on performance gains. The evaluation
methodology used for this provides a means of profiling clinical
data warehouse performance.

Index Terms—Biomedical computing, data warehouses,
biomedical informatics, health information management, data
systems, large-scale systems

I. INTRODUCTION

CLINICAL data warehouses (CDWs) are a necessary
component to any healthcare institution for operational

and research purposes [1]. Informatics for Integrating Biology
and the Bedside (i2b2) is an initiative sponsored by the NIH
Roadmap National Centers for Biomedical Computing [2].
One of the initiative’s main products is the i2b2 Web Client –
a query tool capable of supplying aggregate counts and basic
analyses of patient populations from CDWs. i2b2 has been

Manuscript received May 6, 2013. This work was supported by HRSA grant
D1BRH20410, the National Center for Research Resources, UL1RR033173,
and the National Center for Advancing Translational Sciences, UL1TR000117.
The content is solely the responsibility of the authors and does not necessarily
represent the official views of the NIH or HRSA.

D. R. Harris is with the Department of Computer Science and the Center
for Clinical and Translation Science at the University of Kentucky, Lexington,
KY, USA.

D. W. Henderson is with the Center for Clinical and Translation Science
at the University of Kentucky, Lexington, KY, USA.

A. J. Stromberg is with the Department of Statistics, College of Arts and
Sciences, University of Kentucky, Lexington, KY, USA.

R. Kavuluru and T. R. Johnson are with the Division of Biomedical
Informatics, Department of Biostatistics, College of Public Health, University
of Kentucky, Lexington, KY, USA.

shown to be effective in estimating cohort sizes [2]–[4] and
serves as a potential cost-effective back-end for performing
genome-wide association studies [3], [5]. It is reported to be
used by over half of all sites awarded a Clinical and Trans-
lational Science Award (CTSA), over 60 academic medical
centers, and 10 international medical centers [3].

In the age of Google, users expect instantaneous query
results. This client-side consumer assumption is often difficult
to satisfy for informatics software due to open challenges with
big data and the complexity of queries upon clinical data
warehouses. For instance, i2b2’s performance is reasonable
with our single hospital clinical data set containing approxi-
mately 540,000 patients across 4 million encounters. However,
significant performance degradation was experienced with our
larger state-wide Medicaid data set containing approximately
1.8 million patients across 160 million encounters. The poorest
performing queries were those requiring concepts to occur
in the same encounter, especially when additional constraints
such as exclusion criteria or occurrences (frequency) were
used.

Some institutions have been able to achieve reasonable
performance on large datasets with significant investments
in hardware upgrades. Because not every medical center can
afford extensive and elaborate hardware environments and be-
cause the growth of biomedical data is outpacing Moore’s law
for the growth of computational power [6], elegant software
solutions that are capable of scaling are needed. The goal
of this work is to provide a scalable query generator that
greatly decreases the end-user’s wait time for obtaining ag-
gregate counts. In addition, our experimental design provides
a methodology for profiling and comparing the performance
of clinical data warehouse query tools.

II. BACKGROUND

Clinical data warehouses naturally expand as time elapses.
An increased emphasis on adopting electronic heath records
and other clinical information systems has lead to the expan-
sion of CDWs in both volume and breadth [1]. Additionally,
the inclusion of genomic data is increasingly important for
translational science [5], which suggests that the scale of the
modern CDW will continue to increase. In addition to scale,
the use of the data is evolving; the Shared Health Research
Information Network (SHRINE) is a federated query tool that
was motivated by the CTSA to produce a tool to enable
collaboration across multiple sites [7]. SHRINE is an i2b2-
based solution where queries are distributed to multiple i2b2



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 2

warehouses within the SHRINE and result sets are aggregated
for the end-user. The expansion of data in terms of raw size and
scope of usage is further evidence that scalability is pivotal to
the success of the individual informatics software solutions
and consequently to the much larger goals of clinical and
translational science.

Other query tools exist for performing clinical re-
search, including BTRIS [8], DEDUCE [9], FURTHeR [10],
STRIDE [11], and VISAGE [12]. Note that these are tools
created with specific goals in mind, while i2b2 is essentially an
extendable platform for open-source development. Regardless
of the specific design, a tool must somehow allow the user
to construct a query that pinpoints the data being requested.
Boolean queries are important in clinical data warehousing
because they provide the natural mapping for inclusion and
exclusion criteria when selecting sets of patients, cohorts, and
encounters. Additionally, this selection stage is critical for
clinical research [1], [4].

Each of the listed tools has an interface that allows the
user to actively construct a query, either visually or with the
help of pull-down menus; the tool must somehow translate
this construction into valid SQL so that the CDW can be
interactively explored. We call this translation component
the query generator, which plays a crucial role by allowing
non-technical users to build queries without writing complex
statements in a language such as SQL. Our query generator
works by receiving an XML message from the tool and
translates it into a SQL query that can be run against the
CDW. FURTHeR uses i2b2 as a front-end and could use our
query generator, since its queries are composed in an identical
interface. The other tools would need to package their query
requests in a similar XML message in order to receive a query
from our generator.

The most commonly published enhancements or extensions
of i2b2 have been in the form of project forks and plug-
ins that provide novel functionality [13]–[15] or in-depth
examinations of i2b2’s use cases [4], [16], [17]. In this
paper, we present our research in developing a scalable query
generator and present our results on associated performance
gains when it is used as an alternative to the internal generator
of i2b2. We note that there exists related work [18] directed
toward enhancing performance of i2b2, which focuses on pre-
computing aggregate values and obtaining inexact counts via
simulation. This related work could also be layered on top of
our solution, which, in contrast, focuses on improvements in
query generation.

i2b2 consists of a web client and desktop client that
increasingly share similar functionality. In both clients, the
user interface consists of a series of panels (also called
groups). Users select concepts from an ontology and drag
them into the panels to form basic Boolean queries; concepts
within a panel represent a logical OR, while concepts across
panels represent a logical AND (see details in the METHODS
section). Additionally, panels can be negated and constrained
by time, frequency, and whether the concepts occurred in the
same encounter — that is, a single billable visit to a provider
or inpatient stay at a hospital. The basic internal structure
of i2b2 is that of a modular hive, where each hive cell is

Fig. 1. The general framework of a CTE containing N common tables that
join N select statements. In each common table, a select statement determines
the result set and previous common tables can be referenced in subsequent
ones. The last SELECT statement dictates what the final result set will be.

designed to provide a certain function [19]. Our contribution
concerns the Clinical Research Chart (CRC) cell, which acts
as the core data repository handler. When the user submits
a query, the CRC cell converts the panels that the user has
composed through the interface into an SQL statement that is
executed against the local data repository. Our work replaces
the query generation logic found within the CRC cell, so that
more elegant SQL statements are produced and are followed
by performance gains.

The default query generator that is packaged with i2b2
generates queries that use a procedural, multiple transaction
approach. The panels assembled by the user are converted into
multiple SQL statements. This approach takes patient records
that match the concepts in the first panel and inserts them
into a temporary table. The process continues and the records
that also match the second panel’s concepts are updated in the
temporary table. This process continues for all panels where
the subsequent set of patients in the temporary table to be
updated is never larger than the previous and the resulting
temporary table will hold only those patient records that match
the query the user constructed. The major issue is that this
technique is heavily dependent on hard disk access- and write-
speeds coupled with the large amounts of temporary storage on
the database required for storing and logging these temporary
result sets.

III. METHODS

As an alternative to the procedural approach, we developed a
query generator that produces a single relational query using
Common Table Expressions (CTEs), which were first intro-
duced in Microsoft SQL Server 2005 [20] and later integrated
into Oracle and other database management systems. Fig. 1
shows the general framework for a CTE.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 3

CTEs are temporary, named result sets that reside in mem-
ory as complex derived views of the underlying data and can
be referenced multiple times within a single SQL statement
(including self-reference); additionally, they can be chained
together to create a more complex final query. Due to the
derived nature of CTEs, there is no need to write these
temporary result sets to disk, thus reducing I/O requirements
to complete each transaction.

Suppose we have multiple tables that contain different
complementary pieces of information about a patient such as
their personal information, physician visits, and prescriptions.
Often, researchers need to correlate information in these
different tables to select a set of patient records that satisfy
certain criteria. This correlation is generally accomplished
using database table joins performed on fields common across
all tables. A straightforward approach to join multiple tables is
to form a sequence of joins, where the result of a join between
two tables is used in turn to perform a join with the next table.
As such, the result set of a join can also be treated as a table
consisting of fields from multiple tables that are selected in
the join. Instead of storing these intermediate results as explicit
temporary tables, CTEs enable us to use named result sets or
common tables that provide the same functionality.

A. Transformation of i2b2 queries to CTE-based queries
A high-level overview of the translation process can be

found in Fig. 2 and Fig. 3 represents an example of the inner-
most workings. To make things less abstract, we use an ex-
ample to demonstrate how queries from the i2b2 interface are
transformed into the corresponding CTE-based SQL queries.
As mentioned earlier, the i2b2 interface provides panels to
formulate Boolean queries on patient records involving certain
concepts. In our approach, each panel in the i2b2 user-interface
is mapped to a common table where the joins between CTEs
facilitate logical ANDs and the inner-expression within each
CTE facilitates logical ORs and NOTs by using nested left-
joins. Left-join predicates capture additional constraints such
as dates, frequency, concept modifiers, and can be used to
support additional query features such as lab value constraints,
provider details, and text searches.

Fig. 4 shows a query that has 3 panels, where the first panel
is a logical OR upon two different diabetes-related concepts
and the second panel simply selects the hypertension concept.
The last panel is slightly more complicated; it is the logical
OR between those patients who had a visit at an age of less
than 9 years, or between 10-17 years, or older than 65 years
today. This panel is also negated, so only those patients who
are outside of those age ranges will be selected. We show
the corresponding CTE-based SQL query below the panel
diagram. To conserve space, sub-queries for concept children
in the ontology have been replaced by placeholders. We use
a special table of inter-concept hierarchical relationships to
help manage our ontology so that child concepts can be
returned quickly. In short, this mapping generates a single
SQL statement that can be completed in one transaction with
minimal need for temporary disk space or logging.

The CTE-based approach described above is in stark con-
trast to the procedural approach, which generates multiple

Fig. 2. Overview of the CTE-generation process. In stage 1, the incoming
XML message containing the query definition is placed inside a table where
groups of rows represent panels. Joined common tables are generated (stage
2) from generating SQL for panels (stage 3) by generating logically joined
SQL for constraints (stage 4).

Fig. 3. An example of stage 4 from Fig. 2 showing the logic needed to
generate the SQL for a date constraint. This is conditionally based on the
query definition’s values for the “to” and “from” of the date constraint received
from the user interface; for example, if both values are present, a between
clause is needed. This returns a SQL clause comparing “start date”, which is
found in the source database table.

SQL statements. In turn these statements invoke costly inserts,
updates, and hard-disk temporary table commits which require
disk space and are limited by disk-access speeds. Additionally,
the multiple statement procedural approach prevents the SQL
optimizer from generating an optimal join strategy due to its
limited knowledge of the overall query sequence. In contrast,
our relational approach presents the optimizer with a single
query that can be optimized effectively.

The left outer-join provides an elegant method for perform-
ing both the logical OR and NOT operations by using a com-
pound WHERE predicate with the help of the NOT operand.
For example, when a panel contains two or more concepts
from different tables, a new alias or1, or2, . . . , orN is added to
each table in subsequent joins. The final WHERE predicate for
a panel then looks like WHERE not (or1.patient num is NULL
AND or2.patient num is NULL ... AND orN.patient num is
NULL).

Note that this will return patients where at least one of the
concepts in the OR panel returns true. The logical NOT of a



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 4

Fig. 4. An example of a patient-count query translated into common table
expression.

panel is found simply by removing the NOT keyword before
the compound WHERE predicate. That is, the left join will
then only return those patient records that fail to return null
for all of the concepts in the OR list. The records that match
at least one of the concepts will be excluded. The modified
query generator also combines all exclusion panels into one
CTE, where it is logically consistent to do so.

For any query that can be logically composed in the i2b2
user interface, the query generator can construct a correspond-
ing CTE-based query. Although lab values were not present in
our CDW at the time of this testing, the current version of the
software supports searching for explicitly entered values such
as glucose >126 mg/dL. We also support the use of patient
sets or previous queries as a panel concept. Additionally, it
is feasible to expand functionality to support queries with
temporal relationships between panels such as before, after, or
within a certain number of days, by retrieving the encounter
date to further refine the joins between common tables.

B. Experiments

We created a random query generator to generate ran-
domized XML request messages that the CRC cell would
have normally received from the user interface. The query
generators processed these XML messages so that they could

translate the user supplied i2b2 query into actual SQL queries
that can be run on the warehouse. We chose to generate
random queries because our i2b2 user-base is small and may
not accurately represent the usage at other institutions. For
example, the occurrence constraint might be used more at
institutions with large longitudinal datasets as opposed to
institutions with smaller datasets with transient populations.
The goal was to stress test i2b2 by capturing every possible
type of query that users might design; we determined that
there were 16 types of queries possible by having binary
choices on the four user interface constraints (date, frequency,
negation/exclusion, and whether the concepts occurred in the
same encounter) (See Table I). For each of the 16 types of
queries, 40 queries were randomly selected. Each of these
40 random queries had between one and four panels, each
of which had randomized constraints and contained between
one and three randomly chosen concepts. Concepts that did
not appear in the dataset were not considered to prevent
trivial empty set calculations. Here concepts are arbitrary
placeholders that represent sets of patients, allowing us to
focus on how each query generator interprets the logical
constraints to construct a resulting aggregate patient set. This
approach to test query formulation might not represent clinical
reality, but does represent faithfully the effort it would take to
logically combine sets of these sizes for each generator. In
all our queries, each of the four possible constraints of query
timing, exclusion, date, and occurrence (frequency) need only
apply to at least one panel in the query to be considered that
query type. Date ranges were randomly assigned. The start
date and end date of a date range was restricted to exist
between the minimum and maximum date of our dataset,
and the end date was required to be after the start date. Of
these 640 queries, a small number were unable to be correctly
processed due to erroneous SQL being generated by the stock
query generator.

The requested result type was restricted to a simple patient
count. The dataset used for this testing contains 10 years of
Kentucky State Medicaid claims data, covering 1.8 million
patients across 160 million encounters with 660 million facts.
The Medicaid data contains only demographics, diagnosis
billing codes (excluding procedures), and visit details such
as age at visit, length of stay, and visit type. For comparison
purposes, the i2b2 environment at the University of Kentucky
is housed on SQL Server 2008 R2 on a Dell PowerEdge M910
blade server with 32 processor cores and 128GB RAM; storage
is provided by a EMC CX3-40 SAN housing four 7.2K RPM
hard drives with 4Gbps transfer capacity. Version 1.6.04 of
i2b2 was used during the testing process. Both generators had
access to the pre-calculated frequency of each concept. This
allows the panels to be ordered starting with the smallest first,
since an intersection is no larger than its smallest member.

IV. RESULTS AND DISCUSSION

Because i2b2 users’ queries are placed into a processing
queue, we note that the stress test results based on our query
types are especially important in a multiple-client setting.
Excessive delays incurred by poorly formed queries from



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 5

TABLE I
AVERAGE QUERY RESPONSE TIME (IN SECONDS) PER QUERY TYPE.

Query Type Modified Stock

Timing Neg. Date Freq. Mean s.d. Mean s.d.

Any F F F 0.73 0.34 0.47 0.78
Any T F F 1.36 0.84 8.44 3.75
Any F T F 0.59 0.37 0.50 0.55
Any F F T 1.22 0.97 1.11 1.25
Any T T F 1.27 0.96 7.00 5.63
Any T F T 6.01 17.56 7.87 7.13
Any F T T 1.21 0.63 1.50 1.12
Any T T T 1.68 4.55 5.76 6.00

Same F F F 1.31 2.43 2.49 4.97
Same T F F 2.03 2.23 376.82 365.96
Same F T F 0.61 0.50 1.12 1.47
Same F F T 1.00 0.53 0.75 0.75
Same T T F 2.50 6.38 332.04 293.49
Same T F T 5.52 13.41 304.55 426.57
Same F T T 1.28 1.35 1.12 1.19
Same T T T 4.44 10.82 236.37 516.81

TABLE II
AVERAGE, MAXIMUM, AND STANDARD DEVIATION OF ALL QUERY

RESPONSE TIMES (IN SECONDS).

Modified Query Gen. Stock Query Gen.

Avg. Time to Complete 2.03 75.82

Max. Time to Complete 89.48 2407.64

Standard Deviation 6.64 238.88

novice users can affect the usability of i2b2 for other more ex-
perienced users. With the development and launch of SHRINE
[7], query response times should be consistent and have as
little impact on the server’s resources as possible, which also
improves the local user’s experience.

Table I shows the mean and standard deviation of time
in seconds for each of the 16 query types discussed in the
previous section. Bolded values indicate the approach that
provided the best performance in either average query response
time or standard deviation. Table II shows the global average
response time if all executed queries are considered. This gives
an indication of the resources both techniques might use when
deployed. In addition to these summary statistics, we chose to
plot our testing results in a box plot to illustrate the variance
in performance within and across all 16 query types. Fig. 5
shows the 16 query types by the four variables discussed in
the last section: query encounter timing, exclusion, date, and
occurrence (frequency) constraints.

The modified queries perform fairly consistently across all
16 query types and only show a large variance within a
population of queries in three cases: (1) a query with both
an exclusion and frequency constraint where the concepts
must occur in the same encounter, (2) a query with both
an exclusion and frequency constraint where the concepts do
not have to occur in the same encounter, and (3) a query
with exclusion, date, and frequency constraints where the
concepts must occur in the same encounter. In all three cases,

the CTE queries performed better on average. The variation
seen in these queries is relatively small (10-20 seconds) when
compared to the stock query generator’s largest variation (293-
516 seconds).

As Fig. 5 shows, the stock queries performed very incon-
sistently with highly varying minima, medians, and maxima.
Furthermore, the inter-quartile range for the stock queries is
much higher (almost twice the size) than those for CTE-based
queries in 15 of the 16 types of queries. A non-parametric
binomial test of proportions shows that significantly more than
half (59%, p<0.0001) of the queries required less computing
time for our modified approach; for these queries, the mean
difference between stock and modified execution times was
125.66 seconds (s.d. 297.61), which indicates a significant,
positive change in user experience. For the queries where stock
outperformed our modified generator, the mean difference of
execution times was only 1.21 seconds (s.d. 5.54).

The testing also reveals several use-cases in which the stock
procedural approach performs much more poorly than to be
expected, such as a query with same encounter timing paired
with an exclusion constraint. We feel this is a typical use case
that many users are interested in. For example, this could be a
query that is looking for patients who have diabetes but are not
recorded to have hypertension in the same encounter. This test
case and a few others in the same encounter timing query types
present a great deal of variance and represent an unpredictable
impact on server resources and the user’s experience.

There are query types in which the stock approach outper-
formed the modified CTEs, such as the simplest case where
no constraints are chosen at all. In these cases, both methods
produced queries that finished in less than one or two seconds
on average, likely resulting in no substantial difference in
the user’s experience. Additionally, all of the modified CTEs
performed well under the 180 second timeout feature of the
web-client user-interface, which would provide each user with
a better experience in either concurrent-user systems or in
systems that support i2b2 SHRINE.

Our solutions were implemented for Microsoft SQL Server,
but i2b2 is released for both Microsoft and Oracle systems.
Publishing an Oracle-compatible package is left as future
work; common-table expressions and all other tuning features
can be leveraged in an Oracle environment. We are confident
we would see performance gains in a similar Oracle envi-
ronment because there are principal differences in our query
techniques. We generate relational queries that require only a
single database transaction and thus are more friendly to the
internal optimizer; this is partly why we see a high degree of
parallelism. The stock technique generates procedural queries
that require multiple transactions, which paralyzes the opti-
mizer and inhibits parallelism. These philosophical differences
in techniques are expected to carry performance differences
regardless of architecture. We also acknowledge that testing
across varying hardware configurations may provide insight
into the relationship between memory and disk usage for these
approaches. We currently use our approach in our production
i2b2 environment and provide this as an open-source [21]
proof of concept for SQL Server.

The key benefit of this work is that it can improve the



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 6

Fig. 5. Logarithmic-scale plot of the execution times of the randomly generated queries across the 16 query combinations that were tested. The grey horizontal
line represents the default amount of time (180 seconds) that the user interface allows queries to run before timing out.

users’ experience by reducing response times and ensuring
consistent performance regardless of the logical constraints
of their queries. In i2b2, this is demonstrated by our queries
returning far more quickly than the default 180 seconds that
queries are allowed to run in the user-interface. Because a
queue for queries submitted by the users is used to delegate
resources, returning result sets quickly is crucial. Otherwise,
queries that take far too long to complete can block activity
from other users, which would be especially critical to address
in a federated query network such as SHRINE.

V. CONCLUSION

We have shown that stable and scalable Boolean queries
can be constructed using common table expressions. This
improvement is purely algorithmic and the result of elegant
relational programming. Hardware improvements can also
provide performance gains but require a costly investment.
The improvements we have presented can be installed and in-
tegrated into an i2b2 system in a short amount of time and can
provide performance gains with no investment of additional
financial resources. Because of their low cost, these types
of graceful programming solutions are crucial. Furthermore,
without scalable algorithms, clinical and translational science
cannot be performed at a national level. Translational work
must ultimately bridge and transcend across individual insti-
tutions, which is only possible with truly scalable architecture.

Our contribution enables efficient local querying, which in
turn, enables efficient federated querying.

Our experiments also describe an evaluation methodology
that provides a means of profiling and comparing CDW
performance using one or more algorithmic approaches across
a range of query types, and for tuning CDWs for the types
of queries that are most common to local user needs. The
process of enumerating the possible query types and randomly
generating queries per type gives a good indication of the
global performance profile and may help avoid local institu-
tional biases.

REFERENCES

[1] K. Marsolo, “Research patient data warehousing,” in Pediatric Biomed-
ical Informatics. Springer, 2012, pp. 93–108.

[2] S. N. Murphy, G. Weber, M. Mendis, V. Gainer, H. C. Chueh,
S. Churchill, and I. Kohane, “Serving the enterprise and beyond with
informatics for integrating biology and the bedside (i2b2),” Journal of
the American Medical Informatics Association, vol. 17, no. 2, pp. 124–
130, 2010.

[3] I. S. Kohane, S. E. Churchill, and S. N. Murphy, “A translational engine
at the national scale: informatics for integrating biology and the bedside,”
Journal of the American Medical Informatics Association, vol. 19, no. 2,
pp. 181–185, 2012.

[4] V. Deshmukh, S. Meystre, and J. Mitchell, “Evaluating the informatics
for integrating biology and the bedside system for clinical research,”
BMC Medical Research Methodology, vol. 9, no. 1, p. 70, 2009.

[5] S. Murphy, S. Churchill, L. Bry, H. Chueh, S. Weiss, R. Lazarus,
Q. Zeng, A. Dubey, V. Gainer, M. Mendis et al., “Instrumenting the
health care enterprise for discovery research in the genomic era,”
Genome Research, vol. 19, no. 9, pp. 1675–1681, 2009.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. AAA, NO. BBB, DECEMBER CCC 7

[6] National Human Genome Research Institute, “Dna sequencing
costs,” 2012, [Online; accessed 27-July-2012]. [Online]. Available:
http://www.genome.gov/sequencingcosts/

[7] G. M. Weber, S. N. Murphy, A. J. McMurry, D. MacFadden, D. J. Nigrin,
S. Churchill, and I. S. Kohane, “The shared health research information
network (shrine): a prototype federated query tool for clinical data
repositories,” Journal of the American Medical Informatics Association,
vol. 16, no. 5, pp. 624–630, 2009.

[8] J. J. Cimino, “The biomedical translational research information system:
clinical data integration at the national institutes of health,” in Data
Integration in the Life Sciences. Springer, 2012, pp. 92–92.

[9] M. M. Horvath, S. Winfield, S. Evans, S. Slopek, H. Shang, and
J. Ferranti, “The deduce guided query tool: providing simplified access
to clinical data for research and quality improvement,” Journal of
Biomedical Informatics, vol. 44, no. 2, pp. 266–276, 2011.

[10] O. E. Livne, N. D. Schultz, and S. P. Narus, “Federated querying
architecture with clinical & translational health it application,” Journal
of medical systems, vol. 35, no. 5, pp. 1211–1224, 2011.

[11] H. J. Lowe, T. A. Ferris, P. M. Hernandez, and S. C. Weber, “Stride–an
integrated standards-based translational research informatics platform,”
in AMIA Annual Symposium Proceedings, vol. 2009. American Medical
Informatics Association, 2009, p. 391.

[12] G.-Q. Zhang, T. Siegler, P. Saxman, N. Sandberg, R. Mueller, N. John-
son, D. Hunscher, and S. Arabandi, “Visage: a query interface for clinical
research,” AMIA Summits on Translational Science Proceedings, vol.
2010, p. 76, 2010.

[13] D. Segagni, F. Ferrazzi, C. Larizza, V. Tibollo, C. Napolitano, S. G.
Priori, and R. Bellazzi, “R engine cell: integrating r into the i2b2
software infrastructure,” Journal of the American Medical Informatics
Association, vol. 18, no. 3, pp. 314–317, 2011.

[14] D. Segagni, M. Gabetta, V. Tibollo, A. Zambelli, S. G. Priori, and
R. Bellazzi, “Onco-i2b2: improve patients selection through case-based
information retrieval techniques,” in Data Integration in the Life Sci-
ences. Springer, 2012, pp. 93–99.

[15] N. Wattanasin, A. Porter, S. Ubaha, M. Mendis, L. Phillips, J. Mandel,
R. Ramoni, K. Mandl, I. Kohane, and S. N. Murphy, “Apps to display
patient data, making smart available in the i2b2 platform,” in AMIA An-
nual Symposium Proceedings, vol. 2012. American Medical Informatics
Association, 2012, p. 960.

[16] T. Ganslandt, S. Mate, K. Helbing, U. Sax, and H. Prokosch, “Unlocking
data for clinical research–the german i2b2 experience,” Methods of
Information in Medicine, vol. 47, no. 2, pp. 117–123, 2008.

[17] V. Gainer, K. Hackett, M. Mendis, R. Kuttan, W. Pan, L. C. Phillips,
H. C. Chueh, and S. Murphy, “Using the i2b2 hive for clinical discovery:
an example,” in AMIA Annual Symposium Proceedings, vol. 959, 2007.

[18] G. M. Weber, “Supercharging i2b2,” in AMIA Summit on Translational
Bioinformatics Proceedings, vol. 2012. American Medical Informatics
Association, 2012, p. 182.

[19] S. N. Murphy, M. Mendis, K. Hackett, R. Kuttan, W. Pan, L. C. Phillips,
V. Gainer, D. Berkowicz, J. P. Glaser, I. Kohane et al., “Architecture of
the open-source clinical research chart from informatics for integrating
biology and the bedside,” in AMIA Annual Symposium Proceedings, vol.
2007. American Medical Informatics Association, 2007, p. 548.

[20] Microsoft, “Sql server 2005 beta 2 transact-
sql enhancements,” 2004, [Online; accessed 27-
July-2012]. [Online]. Available: http://msdn.microsoft.com/en-
us/library/ms345144.aspx#sql05b2tsqlen recquercte

[21] Division of Biomedical Informatics, University of Kentucky, “i2b2
common-table expression query generator,” 2012, [Online; accessed
26-October-2012]. [Online]. Available: https://code.google.com/p/i2b2-
cte-query-generator-ukbmi/

Daniel R. Harris received a B.S. degree in com-
puter science and mathematics from the University
of Kentucky, Lexington, KY in 2008, where he
is currently a Ph.D. student of the Department of
Computer Science.

He is also currently an Information Technology
Manager at the Center for Clinical and Translational
Science at the University of Kentucky. His research
interests include biomedical informatics, information
visualization, data and text mining, and database
systems.

Darren W. Henderson received a B.S. degree in
Biology from the University of Kentucky, Lexington,
KY in 2011.

He is currently a Database Administrator for the
Center for Clinical and Translational Science at the
University of Kentucky. He has worked in this ca-
pacity for 6 years. His interests include performance
tuning and effective clinical data warehousing.

Ramakanth Kavuluru received a B.Tech degree in
computer science and engineering from the Jawahar-
lal Nehru Technological University, India, in 2002.
He received an M.S degree in computer science from
the Western Kentucky University, USA, in 2004
and a Ph.D degree in computer science from the
University of Kentucky, USA, in 2009.

He currently works as an Assistant Professor
in the Division of Biomedical Informatics in the
Department of Biostatistics at the University of
Kentucky; he also holds a joint appointment in the

Department of Computer Science. Earlier, he worked as a Postdoctoral
Research Scientist in the Kno.e.sis Center at the Wright State University.
His current research interests include biomedical and health infomatics, text
mining, Semantic Web techniques, knowledge-based approaches to machine
learning and data mining, and information security and privacy. Earlier, for
his doctoral thesis, he pursued research in analysis of security measures for
pseudorandom sequences in the context of stream ciphers.

Dr. Kavuluru is a member of the American Medical Informatics Associa-
tion, ACM SIGBio, and the International Society for Computational Biology.

Arnold J. Stromberg received his B.S. in Mathe-
matical Sciences from Stanford University in 1983
and his M.S. (1988) and Ph.D. (1989) in Statistics
are from the University of North Carolina at Chapel
Hill.

He is Professor and Chair of the Department of
Statistics at the University of Kentucky. He is also
Director of Data Analysis for the U.K. Microarray
Core Facility. He is Co-Director of Biomedical In-
formatics Core for the U.K. Center for Clinical and
Translational Science. He and his research assistant

provide statistical services for many federal grants. His research interests
include statistical bioinformatics, outlier detection and statistical process
control.

Todd R. Johnson received a B.S. degree in Com-
puter and Information Science from the Ohio State
University in 1984, a M.S. Degree in Computer and
Information Science from the Ohio State University
in 1986, and a Ph.D. in Computer and Information
Science (Artificial Intelligence with minors in cog-
nitive science and theory of computation) from the
Ohio State University in 1991.

He is a Professor and the Director of the Division
of Biomedical Informatics in the Department of Bio-
statistics, College of Public Health at the University

of Kentucky. He is also the Director of the Biomedical Informatics Core at the
Center for Clinical and Translational Science at the University of Kentucky.
His research areas include clinical informatics, clinical research informatics,
patient safety, decision making, human-centered design of information tech-
nology and medical devices, and information visualization.


