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Abstract

Background : Applications of natural language processing to mental health notes are not
common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016
Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by pro-
viding the first set of neuropsychiatric notes to participants. This study summarizes our
efforts and results in proposing a novel data use case for this dataset as part of the third
track in this shared task.

Objective: We explore the feasibility and effectiveness of predicting a set of common mental
conditions a patient has based on the short textual description of patient’s history of present
illness typically occurring in the beginning of a psychiatric initial evaluation note.

Materials and Methods : We clean and process the 1000 records made available through the
N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples
for which there is a narrative for history of present illness as well as Yes/No responses with
regards to presence of specific mental conditions. We propose two independent deep neural
network models: one based on convolutional neural networks (CNN) and another based on
recurrent neural networks with hierarchical attention (ReHAN), the latter of which allows
for interpretation of model decisions. We conduct experiments to compare these methods to
each other and to baselines based on linear models and named entity recognition (NER).

Results : Our CNN model with optimized thresholding of output probability estimates
achieves best overall mean micro-F score of 63.144% for 11 common mental conditions
with statistically significant gains (p < 0.05) over all other models. The ReHAN model
with interpretable attention mechanism scored 61.904% mean micro-F1 score. Both models’
improvements over baseline models (support vector machines and NER) are statistically sig-
nificant. The ReHAN model additionally aids in interpretation of the results by surfacing
important words and sentences that lead to a particular prediction for each instance.
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Conclusions : Although the history of present illness is a short text segment averaging 300
words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder,
and attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform
baseline approaches and complement each other when evaluating on a per-label basis.

Keywords: Psychiatric condition prediction, multi-label text classification, convolutional
and recurrent neural networks, and hierarchical attention networks

1. Introduction

According to the 2014 National Survey on Drug Use and Health, the National Institute of
Mental Health reports [28] that one in five adults suffer from a mental illness in a given year.
A February 2011 Robert Wood Johnson Foundation research synthesis report [11] presents
evidence that the subgroup of people with both mental and medical disorder comorbidities
are at significant risk for poor quality of care and high costs. Given this, there has been major
emphasis on identifying connections between mental disorders such as depression and anxiety
disorders that have high prevalence and other chronic medical conditions including cancer,
diabetes, and heart disease. Also, most of these analyses have generally focused on structured
datasets even when natural language processing (NLP) techniques are being extensively
used to derive insights from clinical notes for many chronic medical conditions. Overall,
applying NLP techniques to assess mental health disorders has been a largely unexplored
problem space. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric
Genome-Scale and RDoC Individualized Domains (N-GRID) NLP challenge proposed the
first open competition to address this gap. As part of the challenge, a dataset of 1000
neuropsychiatric notes, which constitutes the first of its kind, was released to the participants.

Novel data use track. Track three of the N-GRID challenge explores research questions and
novel use cases of the released dataset and is the primary focus of this paper while the first
two tasks focus on de-identification and symptom severity score prediction. Specifically, we
propose and demonstrate the application of deep neural networks in predicting individual
patient mental conditions based on the short history of present illness text field of the
corresponding note. For details about the organizational aspects of the shared task including
data collection, annotation, and track objectives, please refer to the corresponding overview
papers [12, 40].

Our novel data use-case. The notes provided for the challenge are rich in different types of
information including demographic variables, histories of violent behavior, substance use,
risk factors, and a treatment plan. Besides these, two additional fields that are consistently
available and represented in a uniform manner are

1. “History of present illness and precipitating events”: Averaging 300 words over all
notes, this short text segment appears as one of the first few headings in a typical note
describing the initial assessment and observations made by the psychiatrist.

2. “Psychiatric review of systems”: This section of the note has a high level structure and
is composed of a set of questions about the presence of 13 different mental conditions
and the corresponding Boolean assessments of the psychiatrist.
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Our novel data use case is to predict the presence of these mental conditions from the
second field above solely based on the short text narrative from the first field on history of
present illness. That is, the ground truth for the mental conditions’ presence that we aim
to predict is based on Yes/No answers to corresponding questions in the psychiatric review
portion of the note. We believe a model capable of making such predictions with reasonable
accuracy has several real-world applications. For one, it would make it possible for physicians
and other healthcare professionals to make quick assessments, based on a relatively small
narrative, that could lead to early hints of a mental disorder. It can also assist psychiatrists in
filling out the corresponding structured fields when needed. Furthermore, such a model would
make it possible to perform automated surveillance of a patient’s ongoing mental condition,
which can further be accomplished in a large-scale fashion over multiple databases for which
patient notes are available. In practice, for this shared task, the psychiatric review fields
are a good choice because unlike most other fields, as indicated earlier, they are consistently
present in a large majority of notes made available. Given multiple conditions can be present
for each case, we map the core prediction problem to a multi-label text classification instance
and solve it using conditional models including deep neural networks. Next, we outline the
organization of this manuscript.

In Section 2, we give further details about the dataset including specifics of different
target labels predicted and some preliminary analysis of label correlation. We discuss our
main methods involving deep neural networks in Section 3. In Section 4, we present the
experimental setup including model configurations and evaluation measures. We then discuss
our results and conduct extensive qualitative error analysis in Section 5.

2. Dataset: Labels and their Associations

Under the psychiatric review of systems heading of each note, there are questions per-
taining to the presence of these thirteen conditions: depression, bipolar disorder, psychosis,
general anxiety disorder (GAD), panic disorder, anxiety spectrum disorders, obsessive com-
pulsive disorders (OCD), obsessive compulsive spectrum disorder (OCSD), attention deficit
hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), eating disorders,
dementia, and complicated grief. The answers are Boolean Yes/No responses and unam-
biguously indicate the presence/absence of a condition. For dementia, for example, we have
the question: “Dementia: Has anyone told the patient they are concerned the patient has
memory problems?” Some conditions are fine-grained in that they distinguish between vari-
ants of a particular disorder; e.g. for dementia, there exists a separate question (and an
associated Boolean response label) concerning difficulty learning new information – Does
the patient have trouble learning new information? To minimize label imbalance issues and
for simplicity, we collapsed such couplings into a single label whose value is a yes if either
of the sub-labels (i.e., responses) is positive. We also combined OCD with OCSD and GAD
with anxiety spectrum disorders into single labels. So there are a total of 11 labels which we
predict based on the text from the history of present illness field. The final list set of labels
and their corresponding distribution in the dataset are displayed in Table 1. Given a note
can have multiple labels assigned to it based on Yes responses to the corresponding condition
related questions, we note that the proportions do not add up to 100% in the table.
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Condition Label Occurrence Proportion

ADHD 41%
Anxiety 68%
Bipolar 33%
Dementia 27%
Depression 77%
Eating Disorder 31%
Grief 27%
OCD/OCSD 34%
Panic 47%
Psychosis 25%
PTSD 38%

Table 1: Distribution of labels in the N-GRID dataset

A
D

H
D

A
n
x
ie

ty

B
ip

ol
ar

D
em

en
ti

a

D
ep

re
ss

io
n

E
at

in
g

D
is

or
d
er

G
ri

ef

O
C

D
/O

C
S
D

P
an

ic

P
sy

ch
os

is

P
T

S
D

ADHD - 3.2 4.6 5.7 2.2 5.7 5.3 4.9 3.7 6.0 4.9
Anxiety 3.2 - 2.2 3.0 2.6 3.9 3.3 6.1 7.0 2.7 3.1
Bipolar 4.6 2.2 - 3.5 5.7 3.9 3.4 3.6 3.3 11.6 4.9
Dementia 5.7 3.0 3.5 - 2.1 9.8 18.4 6.6 3.5 7.2 5.7
Depression 2.2 2.6 5.7 2.1 - 3.5 2.9 2.4 3.0 3.9 2.7
Eating Disorder 5.7 3.9 3.9 9.8 3.5 - 11.4 7.7 3.8 5.5 6.8
Grief 5.3 3.3 3.4 18.4 2.9 11.4 - 8.0 4.3 5.7 7.5
OCD/OCSD 4.9 6.1 3.6 6.6 2.4 7.7 8.0 - 4.9 6.3 5.9
Panic 3.7 7.0 3.3 3.5 3.0 3.8 4.3 4.9 - 4.3 4.8
Psychosis 6.0 2.7 11.6 7.2 3.9 5.5 5.7 6.3 4.3 - 6.2
PTSD 4.9 3.1 4.9 5.7 2.7 6.8 7.5 5.9 4.8 6.2 -

Table 2: Odds ratios of exposure between mental conditions
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For this effort, we build a dataset composed of 986 of the total 1000 released notes for
each of which we have the history of present illness section as well as Yes/No labels in the
psychiatric review of systems. As a pre-processing step, we fixed a few formatting errors in
the text such as in cases when line-breaks are missing in appropriate places or when present
in inappropriate places. Next, we generated a key-value pair dictionary from each note by
matching text segments with certain regular expressions, which were based on our manual
observation of the note structure. In this process, we also accounted for other concerns
including some frequent spelling mistakes and structural inconsistencies. Although we could
have missed some fields, given this particular approach is based on few fields that are almost
always present and written up in a consistent manner in the notes, we believe this regex
based pre-processing strategy is effective for our purposes.

We computed the odds ratios (OR) of pair-wise labels and present them in Table 2; this
can be interpreted as a measure of how strongly two labels are associated. An OR of 1 implies
that there is no association, while OR < 1 implies that a condition is less likely to be present
when the other is positive and OR > 1 signals that presence of a condition makes it more
likely that the other occurs. From the table, it is clear that there is a positive correlation
among all label pairs, with complicated grief and dementia having an exceptionally high
correlation. This is an indication that multi-label classification methods that exploit label
correlations might be more effective than those that treat each label independently.

3. Methods: Deep Neural Networks for Multi-Label Text Classification

Predicting the binary presence (Yes/No) of mental conditions based on the history of
present illness field can be framed as a multi-label text classification problem where an
input document needs to be assigned one or more categories from a fixed set [42]. Well
known examples in biomedicine include assigning diagnosis codes to EMRs [21] and indexing
biomedical articles with medical subject headings [20]. If there are m labels, traditionally this
problem is solved by using the binary relevance approach – we form m datasets, one per label,
of positive and negative examples from the original dataset. Here, an instance is considered
a negative example if it is not assigned the label at hand even if it is assigned other labels.
Next, m binary classifiers are built one per label and at test time, the labels corresponding to
the classifiers that output a positive prediction are assigned to the test instance. Researchers
typically use a linear conditional model such as support vector machines (SVMs) for text
classification for each of the base models in the binary relevance approach. Such an approach
has been successful but does not account for label correlations and might not be the best
approach when associations exist. We nevertheless explore conventional approaches in our
experiments for comparison purposes.

Beyond the traditional approach, there has been notable advancement in the realm of
text classification by using a deep neural network architecture such as convolutional neural
networks (CNNs) in conjunction with neural word embeddings [37]. CNNs were originally
intended and motivated to replicate the visual perception of humans and animals and have
experienced success in image recognition tasks [23]. A powerful aspect of CNNs is trans-
lational invariance, which allows them to detect unique contextual features regardless of
where they appear in the field of vision. This along with the inclusion of the so called pool-
ing operation (more later) makes it possible for CNNs to deal with variable-length inputs
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such as text data. Using CNNs along with neural word embeddings has been shown to be
effective in many NLP tasks (including text classification and relation extraction) since they
additionally capture syntactic and semantic information [5, 9, 25]. Unlike CNNs, which are
a feedforward type of network, recurrent neural networks (RNNs) have been successful in
sequence labeling tasks such as part-of-speech tagging, named entity recognition (NER), and
machine translation [4, 18] due to their ability to handle arbitrary-length sequential input
via cyclical connections and some form of internal memory. In the main methods we propose
in this section, predictions are made on all 11 psychiatric labels simultaneously using a single
deep neural network model which has the advantage of accounting for label correlation to
some extent – this is conceptually similar to multi-task learning [8] given the task of predict-
ing each label is closely related. This setup is different from the binary relevance approach
where correlation is ignored altogether.

Next, we introduce two different deep learning based methods that form our core method-
ology to address the problem at hand. In Section 3.1, we present a CNN-based model based
on a prior approach for text classification as introduced by Yoon Kim [22] and later adapted
by Rios and Kavuluru [37] for biomedical text classification. We adapt these prior efforts
suitable for a multi-class (needing selection of exactly one class) scenario to the current multi-
label situation. CNN models, while exceptional in performance, are not easily interpretable.
To aid in interpretability, in Section 3.2, we introduce an alternative RNN-based approach
that uses hierarchical attention mechanism [43]; the advantage being that such a network
is able to learn word-level and sentence-level softmax weights which can be visualized and
interpreted. We call this the recurrent hierarchical attention network (ReHAN) model.

Neural word embeddings. Both our approaches are based on using neural word embeddings,
a setup that has been shown to be effective for learning tasks in NLP [10]. Word embeddings
(e.g., those generated by Google Inc.’s Word2Vec program) are dense vector representations
that have been shown to capture both semantic and syntactic information. A few recent
approaches learn word vectors [5, 9, 25] (as elements of Rd, where d is the dimension) in an
unsupervised fashion from textual corpora. These dense word vectors obviate the sparsity
issues inherent to the so called one-hot representations of words that lead to very large
dimensionality (typically the size of the vocabulary) resulting in further issues in similarity
computations. Before we proceed ahead, we note that the rest of this section focuses on
main foundations of deep learning architectures. The detailed experimental setup including
various hyperparameter settings and model configuration aspects are described in Section 4.

3.1. A CNN Model for Multi-Label Learning

We propose using a deep neural network architecture based on convolutional neural net-
works from our prior work [37] modified to suit this task. The full CNN architecture is shown
in Figure 1. The input is a document with words w = (w1, w2, .., wn) each represented by
their corresponding index to the vocabulary V . The words are mapped to word vectors via
an embedding matrix E ∈ R|V |×d to produce a document matrix D ∈ Rn×d where d is the
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Max-Pooling
Layer2 Fully-Connected

Output Layer3Convolutional Layer1

Figure 1: CNN model architecture for multi-label text classification

dimension of the word representation vectors. More concisely,

D =


Ew1

Ew2

...
Ewn


where Ei is the ith row of E. The word embedding matrix can be initialized to random
or pretrained values using methods identified in the introduction of this section; in either
case, the word vectors are (further) modified via backward propagation. The central idea in
CNNs is the so called convolution operation over the document matrix to produce a feature
map representation using a convolution filter (CF). The convolution operation ∗ is formally
defined as the sum of the element-wise products of two matrices. That is, for two matrices
A and B of same dimensions, A ∗ B =

∑
j

∑
k Aj,k · Bj,k. With this, a CF is the matrix

W ∈ Rh×d that is applied as a convolution to a window of size h over D to produce a feature
map v = [v1, . . . , vn−h+1], such that

vi = f(W ∗Di:i+h−1 + b)

where Di:i+h−1 is a window of matrix D spanning from row i to row i+ h− 1, W and b ∈ R
are learned parameters, and f is a non-linear activation function such as the sigmoid or
hyperbolic tangent function. The goal is to learn multiple CF that can collectively capture
diverse representations of the same document. Suppose there are k filters, then we produce k
corresponding feature maps v1, . . . ,vk. We select the most distinctive feature of each feature
map using a max-over-time pooling operation [10] to produce the final feature vector p̂ ∈ Rk,
such that p̂ = [v1max, . . . , v

k
max] where vjmax = max (vj

1, . . . ,v
j
n−h+1).
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We can also learn different sets of k CFs for different window sizes h as is typically the
practice. Choosing a larger h provides more context and thus could be beneficial in improving
predictive power but might adversely affect efficiency given the additional time needed. We
can then take the corresponding feature vector for each window size and concatenate them
to form the final feature vector. More formally, we can parameterize the window sizes as a
sequence h1, . . . , hH of H unique sizes. Suppose p̂hi denotes the feature vector produced on
k filters with a window size of hi, then the final kH × 1 feature vector is

p̂∗ = p̂h1 ‖ · · · ‖ p̂hH

where ‖ is the vector concatenation operation. The details covered thus far correspond to
components 1 and 2 of Figure 1.

The output layer consists of m sigmoid units (one per each of the m target labels) and
is fully connected to the full feature vector p̂∗. The output vector q ∈ Rm is thus defined as

q = σ(Wqp̂
∗ + bq) (1)

where Wq ∈ Rm×kH is a parameter matrix of the fully connected layer mapping feature
vectors to output layer, bq ∈ Rm is the vector of bias terms, and σ(x) is the sigmoid function.
This forms component 3 of Figure 1.

During training, we optimize the network parameters by minimizing the binary cross
entropy loss function [27]

− 1

L

L∑
i=1

(
m∑
j=1

yij log(qij) + (1− yij) log(1− qij)

)
(2)

where yij are the ground truth 0/1 values and qij are model output values for the j-th label
and i-th instance, and L is the number of training examples. Each sigmoid unit’s [0, 1] output
is the probability estimate on which predictions are made for the corresponding label. That
is, an output greater than 0.5 results in a positive prediction for the label. Thus, the final
set of labels determined as such becomes the predicted set of conditions for the patient.

The network is trained using stochastic gradient descent (SGD) using mini-batches [30]
approach, in which each training iteration uses only a small sample of the training data.
Multiple epochs or “passes” over the training data are usually necessary to obtain a good
fit. The model is prone to overfitting as the number of training epochs increases; in order
to combat this, we apply the now popular dropout [39] regularization to the feature vector
layer during the training phase. Given this has been a standard process in deep neural
networks, we request readers to refer to our prior work [37, Section 3.1] for more specifics
on the intuition and formal description of this regularization approach and the associated
dropout parameter.

3.2. Interpretable Recurrent Hierarchical Attention Networks (ReHANs)

The CNN model from Section 3.1 is effective but not suitable if interpretability is a desired
feature. Hence, we introduce an alternative model architecture using RNNs in combination
with Hierarchical Attention Networks (HANs), henceforth called the ReHAN approach, that
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performs competitively with interpretable predictions. The general model we present here is
based on the architecture by Yang et al. [43], which allows for observation of the contribu-
tional weights of words and sentences in a document toward the eventual prediction using
two levels of attention mechanisms [4]. We start out with a general introduction to RNNs.

3.2.1. RNNs, BiRNNs, and LSTMs

Unlike feedforward networks like CNNs and multi-layer perceptrons, RNNs have cyclical
connections and are more suitable for language processing tasks where the meaning of a
text segment is naturally dependent on what occurred in the narrative before it. This aligns
closely with how we process language where the interpretation of a word is dependent on what
occurred before it in the document. This recurrent composition of word vectors effectively lets
information persist from the history of previously seen words. There is typically an input
layer, a hidden layer that is connected to itself, and an output layer. The hidden layer’s
output is fed back to itself at consecutive time steps (generally as many times as there are
words in the narrative) and the output at any time step is generally the recurrent composition
of information until that point. Parameter optimization is implemented through the so called
back propagation through time because of the “unfolding” of the cyclical connections in the
hidden layer through different time steps. For a thorough treatment of RNNs, we encourage
the reader to refer to a popular resource by Graves [15, Chapter 3].

In the context of RNNs for NLP, the input at each time step is the vector corresponding
to the next word in the narrative. The output is the context vector that composes word
vectors that include all previous words and itself using the RNN architecture. Additional
details of RNNs for NLP applications are available in the detailed primer by Goldberg [14].
The final prediction for text classification can be made based on the output at the final time
step or using some combination of all outputs generated at each step (more in Section 3.2.2).

Bidirectional RNNs. In addition to the default left to right processing of a document, it
has been shown that running the RNN from right to left over the input text can yield
additional contextual hints for eventual prediction tasks. This aids in exploiting signals that
come from the future in interpreting the current word. This is not uncommon in NLP tasks
where presence of passive voice and other language constructs have valuable information
pertaining to the context of a word coming later in the text. This gave rise to bi-directional
RNNs (BiRNNs) which essentially have two separate RNNs, each with its own parameters,
capturing the context at each position from both directions. The output at each time step
is a combination of output vectors from both RNNs typically produced via concatenation.

Long short-term memory. A significant issue with traditional RNNs is the problem of vanish-
ing gradients [31] where the back propagated errors that are needed to update the parameters
become extremely small for earlier layers (in the cyclical layer unfolding) due to the applica-
tion of the familiar chain rule in computing derivatives of expressions involving functions of
functions. Because of this, learning becomes extremely slow and may be ineffective overall.
This effect increases the deeper the network is and hence is an issue for RNNs given the un-
folded cyclical connections are as deep as the lengths of sentences. To counter this in RNNs,
one popular idea is to use a more involved hidden layer with the so called long short-term
memory (LSTM) units [13, 16]. Unlike in a traditional RNN, in LSTMs, the state represen-
tation includes an explicit memory cell access to and use of which is controlled through three
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gates – first to control how much of the next input to incorporate in the memory (input gate),
second to determine to what extent the current memory is to be forgotten (forget gate), and
third to limit the extent of information from the current memory cell to propagate to the
output state (output gate). These three gates control the flow of information based on the
previous output and cell state via sigmoid outputs ∈ [0, 1]. We encourage readers to refer to
Graves [15, Chapter 4] and Goldberg [14, Section 11] for thorough details of LSTMs and the
corresponding derivations of gradients. In this paper, we used BiRNNs with LSTM units
(simply termed BiLSTMs) in the hidden layer as the main neural architecture augmented
by attention mechanism.

3.2.2. BiLSTM based ReHANs with Word and Sentence Level Attention

Interpretability is a major issue for nonlinear predictive models, especially for deep neural
networks, where it is traded-off for better performance. As such, many recent efforts are
focusing on deriving interpretable insights from neural models for NLP tasks. Although
there exist methods that visualize and analyze the inner workings at different network layers
and in different dimensions [24], high level insights can be derived from attention mechanisms.
The intuition behind attention based classification in deep learning also arises from how we
process language. Specifically, in classifying a document, human assessors also determine
that certain segments are more informative/contributive toward the eventual decision than
others. In fact, the N-GRID clinical NLP challenge’s main task of predicting RDoC positive
valence symptom severity scores is introduced in a document where the organizers highlight
portions of a sample narrative that lead the experts to classify it as a SEVERE case. The
attention mechanism essentially learns these informativeness weights as part of the overall
prediction task when the BiLSTM network is augmented in a specific manner. Yang et
al. [43] offer the first hierarchical attention framework for text classification by exploiting
such inherent structure – words are composed to form sentences and sentences in turn form
the document. We implemented their method (originally used for sentiment classification) to
our current task of multi-label classification. The hierarchical attention architecture ReHAN
is outlined in Figure 2.

Contextual Sentence 
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Figure 2: BiLSTM hierarchical attention network architecture for multi-label classification

Word-level attention. Let wi,t denote the t-th word of the i-th sentence. For simplicity, we
assume the length of a sentence is T words. It is important to have fixed sentence size
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given the attention mechanism learns custom weights per word position. Typically, this is
accomplished by choosing T to be the length of the longest sentence in training data and
padding a special blank word vector for small sentences and ignoring words after the T -th
word for longer sentences encountered at test time. The blank word vector is treated like any
other word vector and is updated during the training phase. Each word is mapped to a word
vector via an embedding matrix E such that xi,t = Ewi,t

as in the case of CNNs. The input is
passed through a recurrent layer composed of bi-directional LSTM units, i.e., iterating both
in the forward and in the backward direction for the input sequence. In order to produce a
feature vector for each word in the sequence that captures contextual information in both
directions, we concatenate the outputs of the forward and backward word level LSTM (or
WLSTM) units at each corresponding word position:

−→
h i,t = WLSTM→(xi,t),

←−
h i,t = WLSTM←(xi,t), and hi,t =

−→
h i,t ‖

←−
h i,t, for t = 1, . . . , T,

where
−→
h i,t,
←−
h i,t ∈ Rkh (the forward or backward LSTM is indicated based on the arrow

direction for the corresponding symbols), hi,t ∈ R2kh is the concatenated output from both
LSTMs, and vector length kh is a hyperparameter specific to these LSTM units. Next, we
outfit an attention mechanism layer on top of the contextualized word features as to produce
a softmax weight αi,t for each word in the sequence. This is achieved by first producing hidden
feature vectors ui,t of length ku (another hyperparameter) using the equation

ui,t = tanh(Wword · hi,t + bword), (3)

where Wword ∈ Rku×2kh and bword ∈ Rku are parameters. We then learn the per word
attention weights αi,t via a learnable context position vector aw ∈ Rku as

αi,t =
exp(u>i,t · aw)∑
t exp(u>i,t · aw)

. (4)

The αi,t weights are used as scalar factors to the original word-wise context vectors such that
a sentence representation si ∈ R2kh can be obtained as a weighted average:

si =
∑
t

αi,thi,t. (5)

The word level LSTMs and the corresponding attention structure correspond to components
1 and 2 of Figure 2.

Sentence-level attention. We now apply the same attention mechanism but at the sentence
level using sentence vectors si, i = 1, . . . , N , where N is the fixed number of sentences
per document chosen to be the maximum such value over the training dataset with addi-
tional blank vector padding as outlined for word level attention. We can produce contextual
sentence vectors by feeding the sentence embeddings through a bidirectional sentence level
LSTM (SLSTM) layer as follows:

−→g i = SLSTM→(si),
←−g i = SLSTM←(si), and gi = −→g i ‖←−g i, for i = 1, . . . , N,
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where gi ∈ R2kh is the contextual sentence vector for the i-th sentence. We again fit an
attention network at the sentence level, producing a final vector r̂ ∈ R2kh that represents the
full document as follows

ûi = tanh(W sentence · gi + bsentence), α̂i =
exp(û>i · as)∑
i exp(û>i · as)

, and r̂ =
∑
i

α̂igi,

where the formulation is similar to that for word level attention in eqs. (3) to (5), albeit with
different parameters. The sentence level LSTMs and the corresponding attention structure
correspond to components 3 and 4 of our full model in Figure 2.

Just as in eq. (1) in Section 3.1 for CNNs, the m sigmoid outputs are determined by

q̂ = σ(Wq̂ · r̂ + bq̂)

where Wq̂ ∈ Rm×2kh and bq̂ ∈ Rm are parameters. We optimize on the same binary cross
entropy loss introduced in eq. (2). Dropout regularization is applied at the hidden feature
layer for both word and sentence-level attention. This forms the final component of Figure 2.

4. Experimental Setup

In this section, we describe specific details of different experiments we conducted including
baseline methods, model configurations, and evaluation measures. The CNN model was built
using the Theano library [7] and the ReHAN model was implemented in the TensorFlow
framework [1].

4.1. Baselines

Given the present illness text field may already contain direct mentions of various psy-
chiatric conditions, running a named entity recognition (NER) and concept mapping tool
on that field is an important baseline for our experiments. We first manually curated a set
of related named entities (Concept Unique Identifiers (CUIs)) for each target label using
the UMLS Metathesaurus [29] (2016AA dataset) as a reference by browsing through NLM’s
online interface. Let this set be Kc for label c where |Kc| is 26 on average based on our
curation. All such curated CUIs for each condition are presented in a supplementary file
for this paper. For each instance i, we ran NLM’s MetaMap [3] concept mapping tool and
thus extracted UMLS concepts Mi from the corresponding text field. We configured the tool
to run on strict mode using the 2016AA dataset with word sense disambiguation enabled.
Next, we predicted label c for instance i if and only if |Kc ∩Mi| > 0.

We also ran our experiments with a straightforward linear support vector machine (SVM)
based binary model, training one model per label, based on uni/bi-gram features extracted
from the narrative.

4.2. CNN Model Configuration

As a reminder, both of our neural network models rely on word vectors to form the input
document matrix. Given our prior experiences with obtaining superior results with using pre-
trained word vectors [37] as opposed to randomly initialized vectors, we used those published
by Pyysalo et al. [34] with a dimensionality of 200 induced from PubMed abstracts with
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the word2vec [25] program. In neural network learning, it is common practice to initialize
parameters with relatively small non-zero values [15, Chapter 3.3] to break symmetry and
facilitate the learning process [19]. Hence non-word vector parameters were heuristically
initialized to a random value in [−0.15, 0.15]. We use k = 250 filters for each window size
of three, four, and five adjacent tokens. For the non-linear activation function, we use the
recommended rectified linear unit [26]. We set the dropout regularization hyperparameter
p = 0.5 for the training process. We trained 25 epochs with a mini-batch size of five instances.
Parameter states are check-pointed on each epoch and the parameter state with the best
micro-F1 on the validation set is used for evaluation on the test set. The models are trained
using the RMSProp [41] optimizer, an extension of SGD, with a learning rate of 0.001. We
train ten such CNN models with different random parameter initializations as part of an
ensemble and predictions are made by averaging the probability estimates output over all
models. Next, we outline two additional CNN configurations that involve post-processing
the basic CNN model’s per-class outputs.

CNN with meta-labeler. In this variant, we extend the CNN model with a meta-labeler com-
ponent. We rank labels based on CNN output scores and select the top k̄ labels (regardless
of whether the corresponding sigmoid output is > 0.5) as the final predictions. k̄ is a hyper
parameter predicted for each instance based on a linear regression model built using uni/bi-
gram features. The intuition is that the narrative might also be informative of the number
of labels to be chosen. This could be important to pick up infrequent labels whose sigmoid
units may not fire often.

CNN with optimized threshold. This is similar to the meta-labeler approach but instead of
selecting the top few labels, we choose customized sigmoid unit output thresholds for each
label separately based on the validation fold. That is, we choose a hyperparameter threshold
t̄j ∈ [0, 1] for each label j = 1, . . . ,m, such that we predict the label as true if and only if
qj > t̄j where qj is the sigmoid unit output for the j-th label. The thresholds are learned on
a validation fold in each cross validation iteration. Both this approach and the meta-labeler
approach are popular in literature and have resulted in performance gains in our earlier
efforts in multi-label classification [21, 35, 36].

4.3. ReHAN Model Configuration

We used the same pre-trained word vectors as in Section 4.2 and similarly initialize
other network parameters to a random value in [−0.15, 0.15] for the ReHAN architecture in
Section 3.2.2. Words that occur less than five times in the dataset were are not only ignored
in order to reduce vocabulary space (as in Yang et al. [43]) but discarded altogether to
additionally reduce maximum sequence length and hence overall training time. We introduce
another form of noise similar to dropout by randomly removing words from the sequence
and replacing it with the blank word token during training. In doing so, we force the model
to cope with a distinctively noisy version of the training set on each epoch. We find that
introducing this noise by nullifying words at a probability of 0.25 along with a dropout
hyperparameter of p = 0.7 worked favorably as a form of regularization. Likewise, we found
that setting the LSTM unit length kh and hidden feature vector length ku to relatively small
values (kh = ku = 50) worked well for this task. We train at most 25 epochs with a mini-batch
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size of three instances using RMSProp [41], again picking the parameter state checkpoint
with the best F1 score on the validation to be used for testing and evaluation. Here also we
ensemble ten ReHAN models and average their outputs to make final predictions.

4.4. Evaluation Measure and Experimental Design

Since the distribution of labels is not balanced, we evaluated the effectiveness of our
methods using the F1 score metric instead of accuracy. We use label specific precision,
recall, and F1-score to measure per-label effectiveness of our methods. In order to evaluate
the overall model performance over all 11 conditions, we used the well known micro-averaged
F1 score [42] which is the harmonic mean of

micro precision =

∑
c TPc∑

c TPc +
∑

c FPc

and micro recall =

∑
c TPc∑

c TPc +
∑

c FNc

,

where TPc, FPc, and FNc are the true positive, false positive, and false negative counts,
respectively, for class c. We evaluated each method using the 10-fold cross-validation tech-
nique. Given we also need a validation dataset for hyperparameter tuning, we used eight
folds for training, one fold for validation, and the remaining one for testing.

5. Main Results and Discussion

Our per-label scores are shown in Table 3 and micro measures are displayed in Table 4.
In the rest of this section we analyze these results and discuss interpretability aspects of the
ReHAN model.

5.1. Result Analysis

From Table 3, we find that neural models outperform the baselines for nine out of 11
labels in terms of F1 scores. The CNN model is the best performer for five labels, ReHAN
model for four labels, and SVM for the other two labels. Although relatively short, we find
that the history of present illness field tends to be a good predictor of some conditions,
such as depression and anxiety, with F1 scores of 87 and 80 respectively. However, these
are also the top two most frequent labels in our list (depression and anxiety occur in 77%
and 68% of all records, respectively). The ReHAN approach exhibits high recall across
almost all labels as observed from Table 3. We see that the CNN/Thresholding and ReHAN
approaches complement each other very well with CNN/Thresholding being the best model
for predicting bipolar disorders, depression, eating disorders, and OCD/OCSD while ReHAN
is the decisive choice for predicting ADHD, dementia, complicated grief, and panic disorder.

From the per-label results we conjecture that it is possible to improve on these results
by either (1) combining the RNN and CNN models at the architectural level or (2) keeping
the two models separate and delegating label prediction to the model that exhibits the best
results for that particular label. In any case, the ReHAN approach would be the ideal choice
under circumstances that require fewer false negatives (better recall). Such situations are not
uncommon especially in medicine when it is best to “err on the side of caution”. Conversely,
the NER approach exhibits high precision overall but very low recall (nearly half that of the
ReHAN model), which can be attributed to the fact that it is looking for presence of very
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Label
SVM NER CNN CNN/ML CNN/Threshold ReHAN

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

ADHD 58.7 45.5 50.5 87.2 23.0 35.7 63.2 54.8 58.0 63.4 50.2 54.6 62.2 58.8 59.9 56.4 65.3 60.1
Anxiety 69.4 95.9 80.4 75.7 66.4 70.7 68.5 95.8 79.9 68.2 94.7 79.2 68.0 96.4 79.7 69.2 94.5 79.9
Bipolar 58.5 37.6 45.3 79.9 24.2 36.9 72.6 44.8 54.9 78.3 36.7 49.6 71.6 47.5 56.7 58.5 54.0 54.1

Dementia 41.5 20.0 26.2 31.8 3.6 6.3 55.0 17.3 25.6 63.5 5.7 10.1 59.7 16.3 24.9 48.0 23.8 30.4
Depression 78.5 98.1 87.1 84.7 64.9 73.4 78.7 98.0 87.2 78.3 97.8 86.9 78.7 98.1 87.3 76.9 99.3 86.6
Eating Disorder 50.2 31.6 38.4 62.7 17.8 27.4 61.4 35.0 43.0 72.1 22.2 32.4 62.0 35.5 44.0 48.5 38.8 42.4

Grief 47.5 20.8 28.1 37.7 3.3 6.0 54.7 17.3 25.6 58.2 7.2 12.4 56.2 16.6 24.7 49.3 28.6 35.0
OCD/OCSD 60.2 38.6 46.2 46.7 21.0 28.7 63.0 42.8 49.4 65.0 28.4 38.2 61.9 44.8 51.2 50.3 47.3 47.8
Panic 60.6 57.0 58.2 60.4 31.6 41.1 56.3 70.9 61.9 56.1 64.8 59.4 57.0 72.8 63.2 55.4 77.5 64.2

Psychosis 57.7 25.5 34.9 24.3 17.5 20.1 57.7 22.3 30.9 69.3 10.3 17.0 54.9 24.3 31.4 46.0 23.2 28.7
PTSD 52.0 42.7 45.7 66.7 20.2 30.8 57.8 49.2 52.0 54.0 34.5 40.8 56.8 53.6 54.3 48.9 47.1 47.2

Table 3: Results comparing methods on each target label

specific terms in the text with little inference. Nevertheless, it does very well in predicting
depression since depression is more likely to be explicitly discussed in text. After depression
and anxiety, we notice F1 scores over 60 for ADHD and panic disorder.

Micro-P (%) Micro-R (%) Micro-F (%)

NER 69.500 34.400 46.000

SVM 63.863 56.423 59.787 ± 0.583
CNN 65.386 60.789 62.843 ± 0.704
CNN+Meta-Labeler 67.029 53.314 59.276 ± 0.657
ReHAN 59.478 65.184 61.904 ± 0.946
CNN+Thresholding 65.629 61.115 63.144 ± 0.709
CNN+Thresholding+RandInit 64.857 59.641 62.000 ± 0.941

Table 4: Results comparing overall effectiveness of our methods

According to the results in Table 4, the CNN model with output score thresholding
works best overall with a mean micro-averaged F1 score of 63.144, offering good balance of
precision and recall. The base CNN model comes in at second in terms of mean micro F1
score. The last column shows 95% confidence intervals around the mean F1 score computed
using 40 repeated experiments using different shuffles of our dataset. We performed pair-wise
comparisons between different models using the F1 scores from these forty train-test splits
with the paired t-test approach. All our deep net models except for the CNN meta-labeler
model had statistically significant (p < 0.05) improvements over the linear SVM model. We
also found that the CNN model with thresholding showed statistically significant (p < 0.05)
improvements over all other models in Table 4.

When evaluated based on the F2 measure (which gives more importance to recall), we
found that the ReHAN outperforms all other models. This is not surprising given we noticed
that its recall gains are statistically significant (p < 0.05) in comparison with all other
models. The CNN with meta-labeler performs poorly even when compared to the base CNN
model and this is likely because the former is underestimating the label count and making
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very precise predictions at the expense of recall. To evaluate the importance of using pre-
trained word embeddings instead of randomly initialized embeddings, we took our model
with the best mean performance, the CNN with thresholding, and experimented with it
using randomly initialized word vectors. The mean F1 score went down by more than 1%
(last two rows of Table 4) and this dip was found to be statistically significant (p < 0.05).
Hence, it is clear that pre-trained embeddings would be helpful for this task based on this
dataset.

These are our preliminary results with a 986 instance dataset and we believe the perfor-
mances will improve with larger datasets; as we do not need any hand labeling for this task,
adding more records that are curated as part of routine patient care should be feasible in
general with appropriate IRB protocols.

5.2. Interpretability and Error Analysis

In Section 3.2 we introduced the ReHAN model that employs hierarchical attention mech-
anisms. Such a model is able to learn to recognize the importance of words and sentences
based on context as it pertains to the task. Specifically, once a test instance is passed through
the model, the weights that are generated for different words and sentences at runtime can
be visualized and interpreted in order to assess how and why the model made a particular
prediction for that instance. This in turn can help the physician make informed final deci-
sions and can be a complementary tool that can help expedite tasks and maintain quality
control in a clinical setting. Following the trend established in Yang et al. [43], we scale the
weight of each word by the square root of its parent sentence weight and use αi,t ·

√
α̂i as the

word weight for visualization so as to emphasize words in very important sentences while at
the same time granting visibility to important words in less important sentences.

In Figure 3a, we show a nuanced true positive instance for depression and anxiety. Only a
few segments of the full note are shown with all private health information altered. Although
no direct usage of the word depression or its derivatives occur in this narrative, ReHAN is
still able to correctly classify based on several highlighted phrases including “feeling down
over the past several months” which is directly related to depression based on the questions
in the note. Similarly, although the word anxiety is not directly mentioned, highlighted
phrases such as “feeling worried about career options”, and “losing enjoyment” are directly
indicative of anxiety based on the questions for anxiety in the psychiatric review of systems.
Even though the word PTSD is present in the note, ReHAN correctly classified it as a
negative case for it given the semantics of the note around the word clearly indicate the
psychiatrist not leaning toward such an assessment based on the PCL score. In Figure 3b,
we see a false positive for anxiety. However, we see several strong indications via highlighted
phrases such as “potential anxiety issues”, “experiencing anxiety with the move”, and “short
lived anxiety”, all of which seem to indicate that this could be a potential error in the ground
truth annotation of this note. That is, we believe this surfaces a potential quality control
issue and a possible missed diagnosis. These examples demonstrate the power of hierarchical
attention models in producing instance specific insights into the prediction process.

In order to identify ambiguous words that could be sources of difficulty for the model,
we looked at the top ranking words for both correct (FPs and TNs) and incorrect (FPs and
FNs) predictions for each class. The word-level attention weights are scaled by sentence-
level attention weights to better represent its ranking for a document instance given the
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pt has a history of three deployments , presented with

interest in treatment recommendations for improving his

mood and marital issues .

patient reported experiencing marital conflict soon after

moving to egypt .

patient shared having similar challenges in his first

marriage of 26 months which ended in 2088 .

while patient presented an interest in learning if his

military deployments have contributed to current marital

stressor , his score on pcl was a 23 , significantly

below the score expected of a veteran with ptsd .

while exposed to several traumatic events during his

first deployment to myanmar , he denied having

experiencing symptoms or experiencing distress .

patient described having difficulties sleeping after

returning from both deployments but denied having

nightmares , cold sweats , or feeling anxious .

he described his current mood as somber and reported

feeling down over the past several months as marital

stressors have increased and he was passed up for

promotions .

patient described feeling worried about career options

because if he is not promoted next year , he will be

forced to leave the army due to downsizing .

he reported losing enjoyment in things he used to enjoy

, including eating foods and traveling , though he

noted financial limitations were also a significant

barrier for traveling .

(a) A TP for depression and anxiety

the patient is a 27 yo caucasian female who was

referred for concerns of potential anxiety issues in

current pregnancy .

there have been numerous stressors during this pregnancy

, most notable stress in her relationship with the FOB.

she described her depressive symptom as mild at that

time and was not in treatment .

the patient states that she was on bupropion from her

20s up until about 3 year prior to pregnancy .

she recalls moving to kentucky to start a new job

after school and experiencing anxiety with the move .

she again pursued therapy and medication management but

did n't find the therapy as helpful .

after moving back to alaska , her pcp continued writing

her bupropion before finding a psychiatrist for combined

therapy and med management .

she has a h/o of ruminating on academic issues in the

past or work issues .

she states that she has been under significant stress

given environmental stressors

during this pregnancy , she states that she had

episodes of anxiety in the morning that would end by

the time she was at work in the morning .

in addition , she had some mild depressive symptoms .

she had short lived anxiety and depressive symptoms in

her second trimester and that aside from stressors ,

she has been managing from a mental health standpoint .

(b) An FP for anxiety

Figure 3: ReHAN based visualization of word and sentence weights for interpretability

hierarchical nature of the model. If a word ranks among top five for an instance that is a
true positive for some class c, we add it to the set STP

c . We do the same for FPs, FNs,
and TNs by adding top weighted terms in corresponding instances to SFP

c , SFN
c , and STN

c

respectively. We examine the overlap of high ranking terms for TP and FP examples for each
label by computing STP

c ∩SFP
c . The terms in these intersections are ambiguous in that their

presence is deemed important by the model but reality informs that their presence alone
may not be enough to arrive at a positive decision. Similarly we also determine STN

c ∩ SFN
c

for each label c. We present some of the more interesting overlapping terms resulting from
this experiment in Table 5. We note that there are no overlaps between top five terms
for TN and FN instances for anxiety, depression, and panic disorder. Unsurprisingly, these
are also the top three labels for which our model performs relatively well (especially with
high recall), which may be an indication that there is less semantic ambiguity when making
predictions on these labels. We believe these terms may need special handling potentially in
a post-processing setup to refine model decisions.

6. Related Work and Limitations

Although the dataset used in our study represents the first of its kind released to all
participants in a shared task setting, a few earlier efforts already used psychiatric notes in
interesting ways.

NLP applications in psychiatry. Almost all papers in our literature review that applied NLP
methods to psychiatric notes are from the past decade. Rumshisky et al. [38] predict early
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Label Intersection of top ranking terms for TPs and FPs Intersection of top ranking terms for TNs and FNs

ADHD medication, mental, weight, obsessive, attacks, emotional emotional, down, feelings

Anxiety harm, sexual, mood, angry, nightmares, concerns, stress ∅

Bipolar eating, weight, disorder, mania, generalized, anger harm, mental, sexual, mood, dose, violence

Dementia disordered, weight, anger mood, agoraphobia, driving, crying, abusing, outbursts

Depression crying, emotionally, insomnia, nightmares, dose, violence ∅

Eating Disorder violence, years, medication, anger past, insomnia, heroin, years, stress, attacks

Grief disordered, weight, spring, problems, anger issues, mood, crying, experience, feelings, heroin, stress

OCD/OCSD harm, medication, disordered, years, anger driving, mood, emotionally, feelings, generalized, experienced

Panic medication, weight, anger, children, nightmares, obsessive ∅

Psychosis eating, disordered, weight, years, disorder house, anger, children, issues, mood, angry, crying, pain

PTSD program, harm, spring, medication, disorder, nightmares down, anger, dose, conflict, years, wife, stress, past, behavior

Table 5: Ambiguous but heavily weighted terms leading to FPs and FNs. Other commons terms
in these lists that were omitted to avoid redundancy are: depressive, depressed, anxiety, manic,
hypomanic, bipolar, panic, psychotic, and psychotherapy.

readmits (within 30 days) to inpatient psychiatric units through topic models built with
discharge summaries. Jackson et al. [17] identify over 40 key symptoms (e.g., aggression,
apathy, irritability, and stupor) of severe mental illness based on discharge summaries from
nearly 8000 patients visiting a UK based mental healthcare provider using SVM models.
Perlis et al. [32] provide results of one of the first text mining applications of psychiatric
notes where they apply logistic regression models (with LASSO regularization) and show that
combining information from unstructured notes with coded information results in major gains
in predicting patient mood state when compared with using coded information alone. For
additional examples of NLP applications in psychiatry, we refer the reader to this detailed
literature review by Abbe et al. [2]. There is also a quickly growing body of literature
detailing machine learned models to predict mental health status based on social media
data. For a detailed analysis of the current state-of-the-art in this emerging domain, readers
are encouraged to refer to the deep learning architecture by Benton et al. [6]. An important
related effort by Pestian et al. [33] involves identifying emotions discussed in suicide notes.

Limitations of our study. An important caveat of our work is that concept mapping based
approach through MetaMap is a weak baseline that relies on catching only explicit direct
mentions of conditions in the notes and does not go for any prediction/inference. As such,
it is expected to perform poorly as a baseline. In fact, its recall in our task is almost half
that of the recall achieved by our best model. This method may simply be capturing those
conditions that are the primary reasons for the current visit (and hence directly mentioned)
but are nevertheless assessed as part of the psychiatric review of systems, thus showing up
in our 11 labels. The SVM model is a stronger baseline and we demonstrated that except
the CNN+Meta-labeler model, all our deep net models outperform it.

We would like to clarify that our prediction of the 11 conditions in this study is based
solely on the training ground truth labels obtained from the Yes/No responses to the
condition-specific questions as explained earlier in Section 2. In this sense, these may not
be directly used in medical practice to arrive at a clinical diagnosis given such diagnoses
are typically made using more exhaustive resources such as the Diagnostic and Statistical
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Manual of Mental Disorders (DSM-5) published by the American Psychiatric Association.
Nevertheless, our predictions can be treated as signals that warrant further examination
of the patient’s case. In this preliminary effort, we have not exploited label correlations.
Accounting for such correlations and fine-tuning individual per-label classifiers may lead to
further improvements overall.

7. Conclusion

In this paper, we demonstrated that the short history of present illness segment in a
psychiatric evaluation note can be used as a good predictor for a few psychiatric conditions.
We introduced models based on CNNs and RNNs and compared them to baseline models.
We showed that CNNs had superior performance on average while RNNs with attention
networks are more suitable when interpretability is desired. We found that the CNN model
with output score thresholding results in statistically significant improvements over all other
models. However, our efforts in employing RNNs to address the problem are preliminary.
We believe there is unexplored potential in using attention mechanisms for this particular
problem and dataset based on how well the RNN and CNN models complement each other on
a per-label evaluation. The next focus of our research will be to improve on performance while
retaining interpretability, possibly using CNNs in conjunction with attention mechanisms.
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[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural
probabilistic language model. The Journal of Machine Learning Research, 3:1137–1155,
2003.

[6] Adrian Benton, Margaret Mitchell, and Dirk Hovy. Multitask learning for mental health
conditions with limited social media data. In Proceedings of the 15th Conference of the
EACL: Volume 1, Long Papers, pages 152–162, 2017.

[7] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010. Oral Presentation.

[8] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998.

[9] Ronan Collobert and Jason Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In Proceedings of the 25th
international conference on Machine learning, pages 160–167. ACM, 2008.
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