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ABSTRACT
In domain-specific search systems, knowledge of a domain of
interest is embedded as a backbone that guides the search
process. But the knowledge used in most such systems 1. ex-
ists only for few well known broad domains; 2. is of a basic
nature: either purely hierarchical or involves only few rela-
tionship types; and 3. is not always kept up-to-date missing
insights from recently published results. In this paper we
present a framework and implementation of a focused and
up-to-date knowledge-based search system, called Scooner,
that utilizes domain-specific knowledge extracted from re-
cent bioscience abstracts. To our knowledge, this is the first
attempt in the field to address all three shortcomings men-
tioned above. Since recent introduction for operational use
at Applied Biotechnology Branch of AFRL, some biologists
are using Scooner on a regular basis, while it is being made
available for use by many more. Initial evaluations point to
the promise of the approach in addressing the challenge we
set out to address.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess; I.2.7 [Natural Language Processing]: Text Analy-
sis, Language parsing and understanding

General Terms
Design, Experimentation, Management

Keywords
knowledge-based systems, text mining, information extrac-
tion, domain models, hypothesis generation
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1. INTRODUCTION
The problem of information explosion in life science lit-

erature is making it increasingly difficult for researchers to
meet their information needs. The citation count of bio-
science journal articles accessible through NCBI’s PubMed
web service is currently over 20 million [14] and has been
growing exponentially from 1985 at an annual growth rate
≈ 4%. On the other hand, the frontiers of biological and
medical knowledge are stretched to an extent where, accord-
ing to one estimate, just in the field of epidemiology it would
take 21 hours per day for a physician to stay current [7]. On
a daily basis, researchers need to lookup information spread
across different articles to satisfy their information needs
which range from gaining basic overviews of a topic to being
able to correlate different results across different articles to
generate new hypotheses.

A popular approach that addresses the information explo-
sion problem is focused or domain-specific literature search
where the user wants to search within a particular domain
or topic of interest. One way of enabling focused search
is to restrict the search to articles within a few important
journals or those with specific terms in the keywords por-
tion of an article metadata. Although this is better than
searching the whole universe of articles, it is still primitive
in the sense that all relevant keywords might not be known
ahead of time. Also, the boundaries of life science disci-
plines are disappearing quickly and often articles pertaining
to one topic are published in several different journals. This
makes it is difficult to predict which journals contain rele-
vant articles. For example, articles relating to the domain
of “chemical and biological warfare agents” are published in
different journals such as Infection and Immunity, Journal
of American Medical Association, International Journal of
Technology Assessment in Health Care, Microbiology and
Molecular Biology Reviews, Journal of Chemical Technol-
ogy and Biotechnology, and the Journal of Leukocyte Biol-
ogy. This list keeps growing with time and thus restricting
the search to a few journals is not ideal. This approach is
not ideal also because important pieces of information from
different journals that are not very relevant to the domain
of interest might actually be the missing links that could
lead to new discoveries. For example study of neurodegen-
erative diseases is observed to span the disciplines of psychi-
atry, neurology, microscopic anatomy, neuronal physiology,



biochemistry, genetics, molecular biology, and bioinformat-
ics [18]. One approach to address this situation is to use
the entire set of articles for searching but also use a domain-
specific knowledge base (KB) as a guide in the search and
exploration process to surface articles that are more related
to the domain. This idea of using an underlying KB in
the search process has been explored by many search sys-
tems built on PubMed citations [14]. We describe some of
these systems and discuss their limitations in Section 2. We
address these limitations with our approach in Section 3.
In Section 4 we elaborate on the steps we follow to create
focused knowledge bases. We present the knowledge-based
search system, Scooner, with examples and preliminary user
studies in Section 5. We discuss future improvements and
make some concluding remarks in Section 6.

2. BACKGROUND
Here we are using the term “knowledge base” to represent

some form of machine processable representation of infor-
mation that models a domain. In this sense, controlled vo-
cabularies or terminologies, taxonomies, and ontologies are
all different types of KBs. Each piece of knowledge here
is generally represented as a triple subject → predicate →
object that connects two entities subject and object with a
predicate (or relationship type). For example dopamine →
is a → neurotransmitter and dopamine → modulates →
brain plasticity are two triples with dopamine as the sub-
ject. An ontology is usually characterized by concept hierar-
chies and inter-concept relationships and constitutes the well
accepted and consensual knowledge of a domain; and the
instance base of concepts and inter-instance relationships in
a domain often constitute the KB that is built around an
ontology. The Gene Ontology (GO) [8] is the most cited
KB with over 450 PubMed citations per year [2]. Medical
Subject Headings (MeSH), Systematized Nomenclature of
Medicine – Clinical Terms (SNOMED CT), and the Unified
Medical Language System (UMLS) are other popular ter-
minologies that are frequently cited in the literature. KBs
not only serve as standalone references of the basic knowl-
edge pertaining to a domain, but also assist in tasks such
as knowledge management, data integration, decision sup-
port, information extraction, and literature search and ex-
ploration. Here we are more interested in approaches that
use KBs for facilitating effective search and exploration of
bioscience literature. For example in GoPubMed [5], the GO
has been used effectively to annotate entities in PubMed ab-
stracts and filter them with GO hierarchy concepts as facets.
XplorMed [16] and McSiBy [24] are two other systems that
use MeSH classifications to cluster search results. There are
also other systems that use synonym based query expansion
and rank search results based on analysis of a given set of
‘query’ documents (See [14] for an informative survey).
Because the construction of high quality KBs such as the

GO is time consuming and requires significant human ex-
pert involvement, it is becoming increasingly important to
explore computational techniques to automate it to keep
pace with the large quantities and the dynamic nature of
new information. The expert-curated standard KBs are also
mostly static and do not cover emerging knowledge from re-
cently published results; granted such results might not be
well accepted by the community. Nevertheless, they are cru-
cial in enabling knowledge-based search systems that facil-
itate literature-based hypothesis generation and knowledge

discovery. That is, although manually built ontologies are of
high quality (or precision), their automatic counterparts of-
fer better coverage for effective information retrieval. We re-
alize that manually created KBs are indispensable in knowl-
edge management and data integration. Here we are only
concerned with their effectiveness in facilitating knowledge-
based search and exploration. Many of the popular KBs
generally have few relationship types (eg., is a or part of
in GO), which limits their utility in the search process to
merely cluster results while our goal is to provide interest-
ing new knowledge that might lead the user to interesting
trails of relationships (more on this later). Finally, most of
the current KBs are specific to a set of well known broad
domains of interest. However, current research trends point
to narrower specializations in the future and it is not clear
from the state-of-the-art how one would go about build-
ing domain-specific KBs for arbitrary domains for use in
knowledge-based search systems. For example, neither the
NCBO ontologies1 nor the NCBI databases contain signifi-
cant information related to biological warfare agents (BWA).
BWA occurs as a leaf concept (0 children) in the MeSH vo-
cabulary; it’s parents include Weapons of Mass Destruction
and Weapons. Even using the Metathesaurus is also not
very helpful. For example, it takes a path of length at least
five when starting at the concept biological warfare agents
to get to an example agent Francisella Tularemis, a popu-
lar agent currently being studied by our collaborators in life
sciences. Thus it is not clear how one can extract a KB for a
specialized domain from existing expert-curated KBs. Next
we outline our approach to address these shortcomings.

3. APPROACH AND OUTLINE
Motivated by the reasons detailed in Section 2, we started

out with two major objectives: 1. Build an up-to-date KB
based on a given user-specified focused domain 2. Build a
knowledge-based search system that uses the KB in the first
step as a backbone to facilitate KB-enhanced search and dis-
covery. Our final goal is to provide superior (both in quality
and speed) search and retrieval over scientific literature for
life scientists that will enable them to elicit valuable infor-
mation in a focused domain. Our use-case for the rest of
the article is the domain of “human performance and
cognition” (HPC) and our efforts are funded by the hu-
man effectiveness directorate of the Air Force Research Lab
(AFRL) that hosts biologists interested in the HPC topic.

The first hurdle is to find a way of letting users specify
a focused domain for our framework to create the KB. We
handle this by letting users provide keywords that represent
important concepts in their domain of interest. This initial
seed set of keywords is input to the framework, which has
the following main components.

C1 The input seed set of keywords is used to computation-
ally carve an initial hierarchy of concepts related to the
domain from Wikipedia based on its link structure and
the category hierarchy on top of its articles. Concepts
from this hierarchy are then mapped to any popular re-
lated expert-curated KBs. Once this initial model is
approved by domain experts, it is passed on to the com-
ponent C2. With C1, we facilitate a way of choosing an
arbitrary domain of focus for the search system. In the

1http://www.bioontology.org/



Figure 1: Up-to-Date Knowledge-Based Search and Exploration Framework

next two components, two complementary approaches
are used to add new knowledge related to the domain
represented by the hierarchy created here.

C2 Here the concepts in hierarchy obtained in C1 are con-
nected with any possible relationships that exist between
them. This is done using a supervised information ex-
traction technique based on lexical patterns that repre-
sent relationships in natural language. A training set
of triples is used to extract a set of candidate patterns
that represent the manifestation of certain relationships
in free text. Then the pattern frequencies are used to
infer most probable relationships (from the training set)
between unseen concepts, here, the concepts from the
hierarchy created in C1.

C3 Independent to the domain-specific components C1 and
C2, natural language processing (NLP) based techniques
are used to facilitate enhanced information extraction.
New PubMed abstracts are parsed periodically using the
Stanford parser [4] and triples are extracted from the
parse trees using specific heuristics based on dependency
graphs output by the parser.

C4 Triples extracted from NLP and pattern based tech-
niques in C2 and C3 are mapped to the hierarchy built
in C1. This is done using straightforward stemming and
string-matching based concept-inclusion heuristics. This
results in the final KB for the user specified domain.
With C2, C3, and C4, we incorporate triples involving
more interesting non-hierarchical relationships between
entities. We also keep the KB up-to-date by the peri-
odic extraction of triples from recently released PubMed
abstracts.

C5 While the first four components are the foundation, this
component embeds the KB created in the fourth step
into a knowledge-based search system called Scooner2,

2SCOONER – Semantically Connected Named Entities and

that provides search over PubMed abstracts and allows
exploration of the literature via the KB triples. The
associated entities of the triples found in the abstracts
resemble hyperlinks and essentially let the users browse
free text as if they were browsing hypertext. The search
process and collaborative extensions are elaborated and
preliminary user studies are discussed in Section 5.

All the components of our framework can be summarized as
shown in Figure 1. Next we elaborate on each of these com-
ponents with details of techniques, rationale for selection,
evaluation approaches, and examples.

4. KNOWLEDGE BASE CREATION STEPS
When discussing each component, we point out other re-

lated efforts. As can be observed, each component is an
independent research problem and we build upon our ear-
lier efforts to construct the focused KBs. For brevity and
to allow for space constraints, we only give overviews of our
efforts with citations to detailed manuscripts.

C1 Domain Hierarchy Creation: The
Wikipedia corpus contains a vast category graph on top of
its articles and a study [12] shows that Wikipedia is the most
sought online resource for basic medical information. It is,
however, determined [3] to be only a good starting point
and that is exactly how we use Wikipedia in our framework.
Note that for purely medical purposes recent community ef-
forts like MedPedia3 can also be used.

Although the articles’ content might not be accurate, they,
nevertheless, capture the important concepts in a domain
of interest by mentions in hyperlinked text. Our original

Relationships. For a screencast of Scooner, please visit:
http://archive.knoesis.org/library/demos/
scooner-demo/
3MedPedia started in 2007 and is growing. It still has many
stubs instead of full articles for several topics. Furthermore,
the text in MedPedia is not hyperlinked as in Wikipedia.



work [20] on this subtopic takes advantage of the hyper-
linked structure and the underlying category hierarchy of
Wikipedia articles to build a hierarchy of concepts given an
input set of keywords. Besides the set of keywords that de-
scribe the domain, we also take as input a smaller set of
keywords that describe the broader focus domain for the hi-
erarchy. For example, Dopamine is both a neurotransmitter
and the name of a 2003 film. We do not want to consider
neighbors of the film article but only from the neurotrans-
mitter article. Similarly, the biological warfare pages also
link to various officials involved in warfare issues and facil-
ity locations in the US, which might not come under the
broader focus domain of harmful bacteria, viruses, fungi,
and toxins. We build the hierarchy by using an “expand
and reduce” paradigm that allows us to first explore and ex-
ploit the concept space before reducing the concepts that
were initially deemed interesting to those that are closest to
the actual domain of interest.

Expansion: In this phase, first a few keywords describing
the focus domain are used to query Wikipedia. The
seed set of a predefined number of top ranked articles
returned from this search are input into the second step.
The seed set of articles is then expanded to a larger set of
articles by including “similar” neighboring articles that
link to or are linked from the seed set of articles. We
determine the similarity between two articles based on
a weighted sum of similarity between their shared in-
neighbors and out-neighbors. The weighting scheme we
used in similarity computation is empirically determined
based on the Wikipedia link types such as regular, “com-
mon category”, or “see also”. This link-based similarity
measurement is based on the intuition that articles that
share a significant number of similar neighbors through
various types of hyperlinks are more tightly linked com-
pared to those linked via isolated hyperlinks. This no-
tion of similarity is described in [13] and extends the
SimRank similarity measure [11] by assigning different
weights to different types of links. The names of the ar-
ticles in the expanded set represent the concept space.
Finally, a category hierarchy is imposed that initially
copies the original Wikipedia categories starting at ev-
ery term in the set to the root node.

Reduction: The set of concept terms from the expansion
phase is taken as input for this step. For each term in
the list of extracted terms, the conditional probabilities
p(Term|Domain) and p(Domain|Term) that describe
the importance of each term for the domain and in the
domain, respectively, are computed. Knowing both mea-
sures is important for the subsequent use of the created
domain model in probabilistic document classification
tasks and for threshold-based pruning of the concept set
in the hierarchy. After pruning, leaf categories that are
empty are deleted recursively. All categories outside the
broader focus domain are also deleted.

We mine the Wikipedia article link graph and compute inter-
article similarities for shared neighbors of each article to
be able to find similarity between any two given articles.
Some manual pruning at the end might be required as was
observed in the case of our HPC hierarchy. The top few
classes of the hierarchy are shown in Figure 2. The maxi-
mum depth of the hierarchy is 16 levels. There are a total of

Figure 2: Top Categories in HPC Hierarchy

905 named classes and the average number of children for a
class is 15 while the average number of parents per class is 3.
In Wikipedia, anchor texts of hyperlinks are often indicators
of synonymous labels for the original concept the links point
to. Using relative frequencies of these anchor labels among
all articles they link to, we also aggregate lists of synony-
mous labels for each concept. To further increase recall,
we choose expert-curated ontologies that are related to the
domain and map concepts in the hierarchy to those in the se-
lected ontologies using exact string matching. For the HPC
domain, we used the Yale University SenseLab Neuroscience
ontologies (http://neuroweb.med.yale.edu/senselab/).

C2 Pattern-Based Fact Extraction: Once
the hierarchy is available from C1, we connect its concepts
with any non-hierarchical (or associative) relationships that
might hold between them. Extracting meaningful triples
from free text has been a significant challenge in biomedi-
cal informatics. We explored two options to populate the
hierarchy with non-hierarchical relationships. The first of
these is a supervised statistical pattern mining algorithm
that is based on the intuition that relationships manifest in
free text by occurring with certain lexical patterns. For in-
stance, relationships involving the predicate is a often man-
ifest with the pattern “x such as y”. In initial attempts
along these lines, a set of hand coded patterns were used
to identify is a relationships [9]. Later pattern based ap-
proaches for general types of relationships were developed
[1, 6, 23]. Most of these systems target news articles or Web
pages for relations such as “Company located at Headquar-
ters”, “Player plays for Team”, or “Person born in City”.
In the biomedical area, pattern based approaches have been
mostly used to extract very specific types of relationships
such as protein-protein interactions [15]. Our current work
[21] is inspired by Turney’s [22] vector space methods and is
based on frequency distributions of automatically extracted
patterns. We used the UMLS Metathesaurus for the seed
set of around 4100 input triples and 84 predicates for re-
lationship types. Concepts pairs in the training triples are
used to obtain lexical patterns that are further generalized
using wild-card tokens to make a relationship-pattern ma-
trix analogous to term-document matrices commonly used
in information retrieval applications. Then the relationship
between a concept pair is determined by a Bayesian net-
work that takes into account the conditions: 1. how well do
the terms found in text indicate the concepts in the pair?
2. how well is a relationship indicated by the patterns found
between the terms? and 3. how likely is it that this type of



relationship occurs with the concepts? After subjecting to
a threshold, the relationship type with the maximum simi-
larity value is chosen as the predicate for the new concept
pair. Employing random 3:2 splits of our fact corpus for
training and testing, we obtain a precision ≈ 80%. We note
that as long as there are enough number of facts (≥ 25 in
our experiments) for any relationship type, new triples that
participate in that relationship can be found given access to
a representative text corpus.

C3 NLP-Based Fact Extraction: While the
statistical pattern-based approach helps determine relation-
ships between two given concepts, it does not cover biomed-
ical entities and relationships of a more complex nature that
might not be in the hierarchy created in C1. For example
consider the triple “haloperidol accelerates dopamine syn-
thesis and metabolism”. The object of the triple “ dopamine
synthesis and metabolism” is what we call a complex entity,
usually a noun phrase that represents a biomedical concept.
While the hierarchy contains ‘dopamine’, ‘metabolism’, as
concepts, it does not have ‘synthesis’ and in particular this
complex entity that characterizes metabolism and synthe-
sis of dopamine. Since C2 only connects concepts already
present in the hierarchy, interesting triples such as the one
discussed here might not be covered through C1–2. Also
the set of nearly 600 predicates in the UMLS Metathesaurus
(2010 release) does not include interesting predicates such
as increase, decrease, modulate, stimulate, and also acceler-
ate that is used in the example triple here. From a manual
inspection of the 600 predicates, other than ‘regulates’ and
‘affects’, we do not see any that come close to what these
predicates mean. That is, a number of interesting predi-
cates expressed in the text do not have interesting training
facts for C2. Hence, supervised extraction does not suf-
fice to cover complex entities and interesting predicates. So
in this component, we use an NLP-based “open extraction”
approach that will help us increase the recall by capturing
more interesting triples. In the open extraction approach,
both the predicates and concepts do not come from prede-
termined sets, they rather emerge as they are encountered
when NLP techniques are applied to free text. However,
once identified, these entities and the associated triples can
be later filtered to curate a subset that is interesting to a
domain of interest.
We used the Stanford parser [4], a probabilistic CFG-

based parser, for parsing all sentences of PubMed abstracts
available as of August, 2008. Our work [17] uses heuristics
based on long range dependencies, among different terms in
sentences, that are obtained from the dependency graphs
[4] output by the Stanford parser for each sentence. De-
pendencies are grammatical relations expressed as triples
between words that are not necessarily adjacent in the sen-
tence parsed. Consider the example sentence: “These re-
sults demonstrate that in the septum NMDA receptors ton-
ically activate GABAergic neurons which in turn inhibit the
cholinergic septohippocampal neurons.” From the parser
output we see dependency relations such as amod (neu-
rons, GABAergic), advmod (activate, tonically), nn (recep-
tors, NMDA), and nsubj (activate, receptors); here amod is
the adjectival modifier stating that the adjective GABAer-
gic modifies the head noun ‘neurons’. Similarly advmod
stands for the adverbial modifier and nn is for the noun
compound modifier. Note that the nominal subject de-

pendency nsubj(activate, receptors) connects non-adjacent
words. The various types of dependencies form a hierar-
chy and the dependency triples for any given sentence also
form a directed graph. Thus dependencies are a prelimi-
nary mechanism to capture long range dependencies. We
then use heuristics involving the modifier, complement, and
preposition classes of the dependency hierarchy to extract
compound entities and triples from the parsed output. We
discard entities that are longer than five words to avoid noun
phrases that are too complicated. On a set of five most fre-
quent predicates, we report an accuracy of 68% in triple ex-
traction and 82% in complex entity recognition (measured
by manual inspection) with a sample size of nearly 2000
triples. Before we proceed, we emphasize that pattern-based
extraction (C2) is also important because relationships cap-
tured based on lexical patterns (multi word expressions and
other phrases that do no involve a verb form) are not cov-
ered using the deep parsing based technique we employ here.

C4 Knowledge Base Creation: The triples
extracted in C3 using NLP-techniques are anchored to the
output of C1 and C2: the focused hierarchy and associated
non-hierarchical triples. This anchoring is done by mapping
the complex entities of those triples from C3 whose subject
and object labels match at least one concept in the domain
hierarchy to the matching concepts through a related entity
predicate. This way only those triples that are related to
concepts in the domain of focus are included in the KB.

Note that since the original open extraction using NLP
techniques does not consider plurality (for entities and pred-
icates) and tense variants, we used Wordnet to normalize
predicates and entity labels. However, predicates that are
expressed in passive voice are retained as separate from those
in the active voice to differentiate the switch between the
subject-object roles of the entities involved. For example,
predicates indicated by verbs used in active voice such as
‘contribute’, ‘contributing’, ‘contribute’, are all normalized
to ‘contribute’ while those used in passive voice such as ‘was
contributed’ are treated differently and are not subjected to
normalization. This appears to be in agreement with some
of the passive forms in the Metathesaurus relationship types
that include pairs like uses and used by.

5. KNOWLEDGE-BASED SEARCH
The final KB at output from C4 in Section 3 is captured

as an Web Ontology Language (OWL) file. However, it does
not semantically satisfy all the requirements of a strict on-
tology as several named entities which would be considered
synonymous by human experts are treated as different in-
stances in the ontology. We, however, have synonyms based
on anchor texts and redirect labels present in Wikipedia
for concepts in the domain hierarchy. For example, the
Wikipedia page for ‘prolactostatin’ redirects to ‘dopamine’,
and hence, a relationship for prolactostatin is also consid-
ered to hold for dopamine. The domain hierarchy from C1
is also not a strict taxonomy owing to Wikipedia category
hierarchy not being a strict part of or instance of taxon-
omy. However, for the application component of the project,
this is observed to be sufficient. For our use case of the HPC
KB, we have about 2 million entities and 3 million triples
in the final KB pending more efficient normalization of sim-
ilar entities. Next we discuss the application component C5
that deals with how the KB in C4 is used in a search system.



C5 Scooner: Scooner is the search and exploration
application over PubMed abstracts that is based on the fo-
cused KB output from C4 in the previous section. The idea
of an up-to-date KB-enhanced search system arises from our
belief that the search process can benefit from recently pub-
lished results that are not well known in the research com-
munity and also by incorporating relationship types that go
beyond the taxonomic ones. This is part of our approach
to address the shortcomings mentioned in the abstract. The
key aspect of Scooner is the domain-specific KB that guides
the search process is extracted from the universe of literature
that is being searched.

5.1 Scooner’s Search & Exploration Process
The starting point of Scooner is a simple keyword based

search interface. But the search process is modeled as an in-
teractive process where, after retrieving ranked results, the
points of interaction are based on the triples, there by si-
multaneously encouraging users to explore relationships. To
elaborate, raw text results (based on conventional search en-
gine ranking procedures) are input to a spotter module that
annotates them with entities from the focused KB. When an
annotated entity (shown akin to a hyperlink) is clicked on, a
relations window pops up and displays all triples where the
entity participates as a subject or object. Clicking on the
corresponding object (resp. subject) would then bring up
abstracts that contain that triple and also those that men-
tion the subject and object of the triple. Users can also do
further searches within the list of abstracts corresponding to
a triple in the relations window. Once these abstracts are
studied, to know more about the triples, users can import
some interesting abstracts to a workbench and continue ex-
ploring relationships for entities spotted in these abstracts.
This way triples can be browsed in the context of the ab-
stracts from which they were extracted.
From our experiments using the 2006 Text REtreival Con-

ference (TREC) Genomics dataset questions [10], this ap-
proach of using KB-based browsing resulted in an average
83% coverage of answer documents over all the 26 questions
that had answers in the dataset. Besides performing regu-
lar searches like in any search engine, Scooner can be used
to explore the background KB in the context of the corre-
sponding abstracts and can lead to new knowledge (See next
section, 5.2.1).
We encourage the readers to watch the video screencast

of Scooner made available at http://tinyurl.com/6g7ntrr.
Although, it does not appear in the screencast yet, we also
recently implemented hierarchical filtering of search results
based on MeSH headings and qualifiers associated with each
abstract available on PubMed. With this, users can also
limit search results to specific topics (particular diseases, or-
ganisms, experimental techniques) before using the focused
KB enhanced search.

5.2 Example Search & Exploration Tasks
In this section we show a few examples using Scooner’s

knowledge-based search process.

5.2.1 Literature-Based Hypothesis Generation
Scooner’s exploration process also enables users to follow a

trail of triples that surface any implicit knowledge in the lit-
erature (e.g., DR Swanson’s popular magnesium deficiency

– migraine connection [19]) and in many cases gives insights
into new interesting hypotheses to be experimentally vali-
dated. An interesting example we found involves concepts:
Vasoactive Intestinal Peptide (VIP) and fear conditioning.
If we search for VIP and click on one of the annotations for
the VIP peptide in an abstract, we see several relations, but
the following sequence of relations make up for an interesting
hypothesis. We notice the triples

1. VIP peptide increases Catecholamine biosynthesis

2. Catecholamines induce Beta-adrenergic receptor activity

3. Beta-adrenergic receptors are involved contextual fear
conditioning

Note that these triples are not randomly selected; when
exploring the first triple in the list, Scooner actually ex-
poses the user to articles where Catecholamine is annotated
since the object of the first triple is the biosynthesis of cat-
echolamine. In fact, the first article that is displayed when
the users clicks on the object “catecholamine biosynthesis”
contains the sentence: “Vasoactive intestinal peptide (VIP)
increased catecholamine biosynthesis in bovine adrenal chro-
maffin cells by 50-200%.” This is actually the sentence from
which the triple was extracted and the user can observe the
context of the triple; in this particular example the user
would know the information conveyed by the triple is ob-
served in cattle and the degree of catecholamine increase
is up to 4 times. Next, this particular abstract contains
the word catecholamine elsewhere and is annotated so the
user can explore the relationships of “catecholamine”. From
there, users can continue browsing more related articles and
explore relationships for annotated entities. Coming back
to the sequence of the three triples mentioned earlier, from
the predicates increases, induce, and are involved, one can
hypothesize the new triple: VIP affects fear conditioning.
A caveat here is that the first triple in the list is observed
in cattle, the second one in mice, and the third one in hu-
mans. Hence, we term these new triples as hypotheses as
opposed to treating them as factual knowledge. That these
triples come from different organisms should be apparent to
the users since they are browsing the triples in the context
of the corresponding abstracts.

5.2.2 Searching for Answers to Specific Questions
Here we discuss how Scooner can be used to quickly find

answers to specific questions in the bioscience areas. In the
2006 TREC Genomics challenge [10], the questions dealt
with associations between genes and diseases, some of which
are neurodegenerative diseases such as Alzheimer’s, Hunt-
ington’s, and Parkinson’s, topics related to the human per-
formance and cognition domain for which we built the KB.
Here we consider the question:
“How do Presenilin-1 gene mutations affect Alzheimer’s dis-
ease (AD)?”

Note that in bioscience domains, most questions like this
do not necessarily have simple answers that can be found
in a single document. More often, the full answer spans
multiple documents and ongoing research generally adds to
the understanding of how genes affect diseases. To find an-
swers to this question, we set out by entering “Presenilin-1
mutations” in Scooner’s search box. Several entities related
to Presenilin-1 from our background KB are spotted in the
abstracts on the first two pages of results. Among those



Figure 3: Screenshot of Scooner’s Interface and Features

entities “presenilin-1 mutation” and “PS1 mutation” appear
best matches. Clicking on these entities and exploring triples
gave us significant information on different mutations of the
gene that affect AD. The triples we found included

1. PS1 mutation causes familial Alzheimer’s disease

2. PS1 mutation associated classic Alzheimer’s disease

3. presenilin-1 mutations are involved Alzheimer’s disease
pathology

Once these triples are shown in the relations window, click-
ing on the objects (the AD related entities) surfaced ab-
stracts that contain the triple and also those that talk about
specific Presenilin-1 mutations and their role in AD.
Although browsing through the search results list in a

regular search engine might also give insights into the muta-
tions, the triples for the entities discussed above also provide
specific information related to the“how”part of the question.
For example, “PS1 mutation” participates in these triples:

1. PS1 mutation alters pepstatin binding site

2. PS1 mutation increases Gadd153 protein translation

When clicked on the objects of these triples, the first ab-
stract for each triple contains the sentence from which we
extracted the triple. Furthermore, the abstracts also discuss
how specific mutations use pepstatin binding and Gadd153
protein translation in affecting AD. Thus new results ex-
tracted from abstracts can be used to quickly provide the
user specific information that answers the question. Again,
the actual abstracts that contain the triple will inform the
user how the triple came about (experimental parameters,
techniques, organisms involved) and lets the user validate
the triple. During this experiment, when browsing abstracts
in the relations window for some of the triples above, we also
found some abstracts corresponding to the original TREC

corpus of the gold standard full text documents that dis-
cuss Presenilin-1’s effects on AD. Since the TREC corpus
had only ≈ 162,000 documents (we indexed 18 million ab-
stracts) and most of them were published before 2006, the
TREC answer document abstracts ranked lower than (ap-
peared after) several recent documents in Scooner. This is
also because of the boosting we give to recent abstracts.

5.3 Collaborative Features and Implementa-
tion Details:

Scooner combines the ideas of conventional and triple-
based search and exploration with persistent search sessions.
Users can create search projects and store their search his-
tory including the abstracts they felt important and triples
they found useful. Users can also create new meaningful
trails by combining individual triples they explore. The
workbench tab in Scooner facilitates a central aggregation
of important abstracts imported for further review by the
user. The work bench can be filtered to only show only those
abstracts that pertain to a selected set of triples or trails.
Additionally, collaborative features were incorporated using
which users can write comments on abstracts they find rel-
evant and then share their (sub) projects with other users
on a public dashboard visible to other users. A screen shot
of Scooner is shown in Figure 3. Details of different imple-
mentation components of Scooner (see C5 in Figure 1) are
given here.

• Full text index wrapper service: Our full text in-
dex consists of abstracts released by PubMed until Oct
2010. Our next release will automatically index new up-
dates. We support two types of queries. The first is a
traditional query with fields including title, abstract, au-
thor, year, and pmid. The second query is a phrasal range
query which looks for a co-located presence of a subject,
predicate, and object labels in the abstract field to re-
trieve abstracts that contain (information relevant to) the
triple. Indexing is done using Lucene API where an En-



glish stemmer is used for the abstract and the title fields,
while the remaining fields are analyzed to support exact
matching. Also, boosting on the year of publication is
performed at the query time so that relevant articles that
are more recent are ranked higher.

• Triples model interface: The triples in the original
HPC KB extracted by us are serialized using conven-
tional search engine indexing techniques (through Lucene)
for efficient programmatic access through Java. We also
incorporated a second set of triples biased to the HPC
domain from the National Library of Medicine’s (NLM)
Biomedical Knowledge Repository (BKR), which consists
of triples from PubMed abstracts involving UMLS con-
cepts, extracted based on shallow parsing and rule based
approaches. These are hosted on a Virtuoso RDF triple
store4 and are accessed programmatically using a Java
interface to the SPARQL end point that provides triple
access.

• Spotter service: Named entities in either of the data
sets are spotted using an in-memory prefix tree data struc-
ture populated with the entity labels when the server is
set up to host Scooner. We avoided on-the-fly parsing and
part-of-speech tagging and other NLP-based approaches
to provide faster response with annotated abstracts. The
prefix tree algorithm spots the longest available label in
the set of the entities of the KB. For example when it
encounters, “long term memory formation”, even if both
“long term memory formation” and “memory formation”
are entities in the KB, it spots the longest label, that is,
long term memory formation. But the next time, it en-
counters the same phrase, “memory formation” is spotted
instead because we chose to spot each entity only once in
each abstract.

• Ext JS GUI front end: An Ext JS based Javascript
framework is used to generate the user interface that cap-
tures and responds to users’ interactions with the sys-
tem. Search sessions can be broken down by users into
various projects depending on their needs. The triples
browsed, trails created, searches made, and important ab-
stracts added to the workbench of each project, all persist
in a MySQL database to be retrieved by users after subse-
quent logins. The Ext framework provides maintainability
to the GUI components of the system and also assists in
addressing cross browser compatibility; Scooner has been
tested in Firefox, IE, and Chrome.

5.4 Preliminary User Study
Note that we presented evaluations of techniques used in

C1–3 in Section 4 when discussing the components used in
the creation of the KB. The search project management
and collaborative features are not present in PubMed and
hence those aspects of Scooner are not used in our eval-
uations. Here we present a user study based on day-to-
day information seeking efforts undertaken by researchers
at the AFRL. Qualitative evaluations of the first version of
Scooner were conducted by five researchers from the human
effectiveness directorate of the AFRL. They reported that
Scooner provided an useful way to navigate between doc-
uments through the relationships and that its organization
of various searches performed and triples browsed made it

4http://virtuoso.openlinksw.com/

convenient when pursuing a focused search task. Two re-
searchers reported that they were able to save significant
time relative to their experience with PubMed. The head of
the team reported that it saved him a lot of efforts in easily
delegating tasks to his team members by sharing his sessions
with his comments and notes on the various abstracts in the
workbench.

After these qualitative observations, two researchers (dif-
ferent from those mentioned earlier, say, evaluators E1 and
E2), who have been conducting research for approximately
the same number of years in the area, participated in evalu-
ating Scooner by conducting a study on two different topics
in the HPC domain: 1. Nootropics (pharmaceutical cog-
nitive enhancers) and 2. Neurotrophic factors (proteins re-
sponsible for growth and survival of neurons). In both top-
ics, the specific subtopics searched include most efficacious
examples, adverse effects, molecular mechanisms of agents,
effects on normal young people, and synergistic effects of
combination treatment. E1 used Scooner for Nootropics and
PubMed for Neurotrophic factors and E2 swapped the tools
used by the E1. Both evaluators were also asked to spend
the same amount of time to search for information and write
an organized report. There reports were later consolidated
into a final evaluation by Victor Chan, the group leader and
one of the authors of this paper.

Due to different personal preferences in conducting search,
evaluator E1 used 25% of the time in searching and 75%
in writing up the findings, while E2 used 75% in searching
and 25% for report writing. By considering the time spent
on searching (instead of searching and report generation),
Scooner appeared to have more leverage based on the focus
facilitated by the background KB. However, at this point it
is not completely clear whether Scooner has definitive ad-
vantages over PubMed in terms of the amount of informa-
tion gained in a fixed amount of time spent on search alone.
As far as relevance of information obtained is concerned,
Scooner encouraged users to get to more specific and in-
depth information, while PubMed let them peruse and pick
from a list of articles. Evaluator E1 studied few articles
that provided in-depth analysis on some subtopics, while E2
studied significantly more articles and provided better cov-
erage of the topics. Scooner’s functionality that lets users
discover new implicit knowledge (Section 5.2.1) or find con-
nections between given entities has not been evaluated here.
Both evaluators reported the following observations.

1. Advantages: The evaluators noted that Scooner helped
them stay focused in the cognitive research area, which
is one of the original goals of the framework. They felt
that the narrow focus helped them to perform in-depth
exploration of specific topics without significant perus-
ing of PubMed results. They also found the persistent
projects and collaborative features made it easier to
organize their search tasks.

2. Improvements suggested: The evaluators felt that us-
ing Scooner needs some getting used to before they
can reap the benefits of KB-enhanced search. They
thought the number of relationships for some entities
was at times overwhelming, especially for users new
to the domain, and felt that additional filtering and
contextual ranking would be beneficial.

We plan to conduct a more rigorous evaluation using more
specific questions with known answers involving metrics such



as number of articles read, time spent on each article, triples
browsed compared to useful triples found, and the propor-
tion of relevant information found via the usage of the KB
component.
A more important challenge is to develop use-cases that

will help evaluate the literature-based knowledge discovery
abilities of Scooner. These initial evaluations have helped
us design yet to be completed more detailed evaluations
that can measure 1. accrued benefits once a user is trained;
2. benefits to a less trained user due to the use of background
knowledge; and 3. benefits of use of KB for collaboration and
training.

6. CONCLUDING REMARKS
We presented an up-to-date knowledge-based search and

exploration framework that addresses some shortcomings in
the state-of-the-art biomedical search systems. Our frame-
work first carves a focused concept hierarchy, which is then
populated with associative relationships using both pattern-
based and deep parsing based approaches. We demonstrated
the utility of the framework by building the KB for the do-
main of human performance and cognition; the KB has 2
million entities and 3 million non-trivial triples, nearly all
of which are extracted computationally. The KB is finally
used to annotate and facilitate triple-based search and ex-
ploration of PubMed abstracts. Initial evaluations of the
resulting search system, Scooner, show that this framework
improves upon conventional search and is an important com-
plementary contribution to the state-of-the-art by address-
ing focus, up-to-dateness, and recall.
It is well known that evaluation of knowledge-based sys-

tems is a very hard problem especially considering many
components involved in constructing the KB. In spite of a
three year research and development effort involved in what
is reported here, each of our components C1–5 in Figure 1
can be improved and we are currently exploring the follow-
ing opportunities for improvement.

• We aggregate synonymous labels from Wikipedia anchor
labels, redirects, and also from other related controlled vo-
cabularies for concepts that have exact matching labels.
We are exploring ways to handle partial or approximate
matches which are hard to map to particular concepts
in standard terminologies. For example, the entity “cat-
echolamine biosynthesis” does not have an exact match
in Metathesaurus, but has a partial match with “cate-
cholamine biosynthetic process”, which appears to be a
synonym. Determining such mapping for complex enti-
ties, would give us access to the relationships that are
well known in the area. One immediate way of accom-
plishing this is to use the Norm program from the Lexical
Tools offered by the NLM.

• Normalizing predicates is also an important task we plan
to work on. The open extraction approach, while sur-
facing many interesting relationships, poses the problem
of creating too many predicates. Like mentioned in the
C3 component, predicates like increase, accelerate, and
stimulate appear similar but do not appear in the UMLS
Metathesaurus (600+ predicates) or the UMLS Semantic
Network (54 predicates). Even if mapping is not possi-
ble, imposing hierarchies and identifying domain/range
semantic type restrictions for these predicates would as-

sist in auditing the quality of the significant number of
new triples that arise out of NLP-based techniques.

• We plan to extend Scooner using synonyms-based query
expansion (recently incorporated in PubMed) that would
further reduce the efforts on part of the user.

• Currently, Scooner uses dictionary ordering on the pred-
icates when displaying triples for an entity. Several well
known and thoroughly studied concepts will have signifi-
cantly large number of triples with them as subject/object.
Displaying all those triples for such entities creates a data
overload problem (as reported by the evaluators) when
there is a predefined search objective. We see two differ-
ent ways of addressing this. One is to use the MeSH hi-
erarchy and the associated provenance information of the
triples (that is, the ids of abstracts they came from) to let
users browse triples based on hierarchical filtering. The
association between MeSH terms and the triples needed
for this filtering is established based on the association be-
tween the abstracts that contain the triples and the MeSH
terms assigned as metadata for the abstracts by the NLM.
We have already implemented this and found it beneficial,
for example, to find triples that only appear in abstracts
that report research on a specific disease or employ a cer-
tain experimental technique. A second way of addressing
the overwhelming number of triples we plan to pursue is
to take users interaction with the system in the active
search session as implicit feedback to automatically rank
the triples to be displayed for subsequent user sessions.

• The quality of a KB extracted using our framework is
hard to control because the ultimate correctness of the
triples extracted depends on several, possibly confound-
ing, factors. First, computational techniques dealing with
natural language cannot guarantee 100% precision. So the
associated error rates of the techniques involved affect the
quality of the database. Second, the quality of the jour-
nals that report results also affects the extracted KB. One
way to address this is to use journal impact factors and
confidence scores from algorithms to associate a quality
measure to triples extracted. This measure can act as an
additional parameter in ranking the triples displayed in
Scooner.

With the improvements outlined above, our framework aims
to reduce the cognitive load on the users by presenting in-
teresting and latest facts relevant to a specific domain of
interest.
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