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A B S T R A C T

Objective: We study the performance of machine learning (ML) methods, including neural networks (NNs), to
extract mutational test results from pathology reports collected by cancer registries. Given the lack of hand-
labeled datasets for mutational test result extraction, we focus on the particular use-case of extracting Epidermal
Growth Factor Receptor mutation results in non-small cell lung cancers. We explore the generalization of NNs
across different registries where our goals are twofold: (1) to assess how well models trained on a registry’s data
port to test data from a different registry and (2) to assess whether and to what extent such models can be
improved using state-of-the-art neural domain adaptation techniques under different assumptions about what is
available (labeled vs unlabeled data) at the target registry site.
Materials and methods: We collected data from two registries: the Kentucky Cancer Registry (KCR) and the Fred
Hutchinson Cancer Research Center (FH) Cancer Surveillance System. We combine NNs with adversarial domain
adaptation to improve cross-registry performance. We compare to other classifiers in the standard supervised
classification, unsupervised domain adaptation, and supervised domain adaptation scenarios.
Results: The performance of ML methods varied between registries. To extract positive results, the basic con-
volutional neural network (CNN) had an F1 of 71.5% on the KCR dataset and 95.7% on the FH dataset. For the
KCR dataset, the CNN F1 results were low when trained on FH data (Positive F1: 23%). Using our proposed
adversarial CNN, without any labeled data, we match the F1 of the models trained directly on each target
registry’s data. The adversarial CNN F1 improved when trained on FH and applied to KCR dataset (Positive F1:
70.8%). We found similar performance improvements when we trained on KCR and tested on FH reports
(Positive F1: 45% to 96%).
Conclusion: Adversarial domain adaptation improves the performance of NNs applied to pathology reports. In
the unsupervised domain adaptation setting, we match the performance of models that are trained directly on
target registry’s data by using source registry's labeled data and unlabeled examples from the target registry.

1. Introduction

Population-based cancer registries are the most valid source for
measuring the incidence of cancer in a population. Registry data are
essential to guide and evaluate evidence-based cancer prevention and
control activities, including playing an increasingly important role in
rapidly identifying patient cohorts and biospecimen cohorts across the

spectrum of basic, clinical and population-based translational science.
The Surveillance, Epidemiology, and End Results (SEER) program,
sponsored by the National Cancer Institute (NCI) and the National
Program of Cancer Registries, reports population-based cancer statistics
for the United States. For example, SEER registries manually assign
International Classification of Disease for Oncology Version 3 (ICD-O-3)
codes based on pathology reports to designate the site (topography) and
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histology and behavior code (morphology) of neoplasms [24]. Although
considerable amounts of information regarding cancer diagnoses is
documented in pathology reports [1], much of it is in the form of un-
structured text. Manually extracting all of the relevant information is
costly due to the growing number of cancer cases and the increasing
number of tumor characteristics that cancer registries are required to
report.

Molecular testing is an important tool to identify personalized
treatments for patients with actionable mutations, a crucial enabler of
precision medicine. While mutational test results may be discussed in
pathology reports, they are not coded in structured data sources col-
lected by cancer registries. Therefore, SEER registries do not currently
report results of mutation tests. Thus, automatically extracting muta-
tional test results as disclosed in pathology reports offers an excellent
opportunity to enable personalized treatments and clinical trial re-
cruitment. To this end, the SEER program funded rapid response studies
at the Kentucky Cancer Registry (KCR) and the Fred Hutchinson Cancer
Research Center (FH) to develop automated methods to extract muta-
tional test results for Epidermal Growth Factor Receptor (EGFR) and
Anaplastic lymphoma kinase (ALK) in non-small cell lung cancers
(NSCLCs). NSCLC patients with EGFR mutations are often candidates
for targeted therapy directed at their mutation and have longer survival
than with chemotherapy [17,5]. While the pathology reports collected
by different cancer registries may follow annotation standards estab-
lished by the College of American Pathologists, they may differ with
respect to writing styles, jargon and document formatting such that
simple machine learning tools, or rule-based systems, are ineffective at
extracting the relevant information with high recall and accuracy.

In this paper, we present generalization techniques to extract EGFR
test results from unstructured text in pathology reports of NSCLC pa-
tients using hand-labeled datasets created by the SEER sponsored stu-
dies1 at KCR and FH. This information will provide cancer registries
with an efficient tool to rapidly report genetic biomarkers that carry a
relevant clinical implication in non-squamous NSCLC for the selection
of candidates for effective oral targeted therapies. SEER registries cur-
rently lack the capacity of reporting genetic testing results. The use of
validated tools to ascertain EGFR tests will potentially assist SEER re-
gistries to provide modern, updated clinical, and genomic information
in nationally representative population samples of cancer patients. The
tools will enable population health researchers to conduct epidemio-
logical and outcomes research in clinically relevant, molecularly de-
fined subgroups of NSCLC patients.

1.1. Biomedical text classification

Extracting information from biomedical documents has been stu-
died for a wide variety of problems. Methods have been developed to
extract diagnosis and procedure codes (ICD-9-CM) from electronic
medical records [21,13,28]. ICD-9-CM codes are used by all healthcare
facilities to standardize diagnosis reporting for billing purposes. Simi-
larly, there are machine learning methods that extract ICD-O-3 codes
from pathology reports [26].

Biomedical text classification methods generally fall into one of two
groups: linear or neural network models. Tsoumakas et al. (2013)
trained nearly 27 thousand Linear SVM models, one for each MeSH
term [31]. For medical coding, Perotte et al. (2013) developed a hier-
archical SVM to extract diagnosis and procedure codes from electronic
medical records [25]. Goulart et al. [8] show that simple rules can be
combined with an SVM model to extract EGFR and ALK results from
pathology reports. Compared to their effort, our work differs in two
major ways. First, we explore neural network-based methods to extract
EGFR results – not only linear models. As we show in the discussion

section of this paper, simple rules do not work well on pathology re-
ports collected at all registries. Second, our work focuses on cross-
registry performance. We test whether and to what extent machine
learning methods generalize across different cancer registries.

Deep neural networks have been advancing state-of-the-art results
across a wide range of biomedical tasks including bioinformatics
[14,16] and healthcare [19]. For text classification, Mullenbach et al.
(2018) introduced a label-wise attention mechanism for medical coding
[21]. In Rios and Kavuluru (2018), we introduced a matching network-
based method – originally developed for few-shot learning – that fur-
ther improved medical coding results [28]. Similar to this paper, Qiu
et al. (2018) apply convolutional neural networks (CNNs) to pathology
reports [26]. However, they focus on extracting topography and his-
tology ICD-O-3 codes from the reports, not genetic testing results.

1.2. Generalization in deep learning

Generalization in deep learning has been studied theoretically [11]
and empirically. At a high level, generalization of machine learning
methods is important for many biomedical applications. Small and/or
rural healthcare institutions and cancer registries may not have access
to the data required to train neural networks or may not have the re-
sources to annotate large amounts of data. If large institutions are able
to share models and/or data with smaller institutions, then the smaller
institution can dedicate resources to other tasks. With respect to cancer
registries, if our models do not perform well on pathology reports
collected by different registries, then our models have poor general-
ization. Developing methods that generalize across varying data dis-
tributions is known as domain adaptation. Both domain adaptation, and
similar methods such as transfer learning, have been applied to medical
documents [9,32,29]. There are two main domain adaptation settings
studied by researchers: supervised and unsupervised. For both adapta-
tion settings, we have access to two datasets – a source dataset and a
target dataset. To illustrate, assume we have data from two cancer re-
gistries, C1 and C2. C2 (source) shares their data with C1 (target). C1
wants to use a classifier based on data from C2, however, their objective
is to maximize the performance of the classifier on their own data. In
the supervised adaptation setting, data from both registries (C1 and C2)
have ground truth annotations. Multi-task learning [6] is a metho-
dology in machine learning where multiple problems (tasks) are solved
simultaneously. Similar to multi-task learning methodologies, models
can be trained on both datasets simultaneously. For the unsupervised
setting, only the source dataset (data from C2) is annotated. Therefore,
the C1 registry must incorporate their unlabeled target data – similar to
semi-supervised learning. Contrary to multi-task and semi-supervised
learning, domain adaptation tries to make better use of the auxiliary
data by matching the data distributions. For instance, if the C2 reg-
istry’s dataset differs substantially from C1’s data in terms of topic or
style, then simply combining the two datasets could reduce the overall
performance of the model [30].

There are several methods proposed for domain adaptation. Jiang
and Zhai (2017) used an instance weighting-based approach for text
[10]. They simply remove source instances that are significantly dif-
ferent from the target data. Daumé (2007) used a feature augmentation
method where they have special features for the source data, the target
data, and also shared feature representations for both the source and
target data [4]. Ganin and Lempitsky (2015) developed an adversarial
domain adaptation technique for neural networks [7]. Intuitively, they
train a domain classifier that takes a mid-level CNN representation as
input for each example, and predicts if the example comes from the
source or target datasets. Using the domain classifier, the CNN para-
meters are modified to make the performance of domain classifier
worse, thereby matching the data distributions. In Rios et al. (2018), for
relation classification, we use a two stage approach for adversarial
learning [30]. First, we train on the source data, then we fine-tune the
model to match the source and target data distributions.

1 Due to extremely small number of positive instances for the ALK mutations,
this study is limited to EGFR test results.
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1.3. Domain adaptation scenarios in cross-registry settings

In this paper, we present a neural network-based adversarial do-
main adaptation method to extract EGFR results from pathology re-
ports. There are a few scenarios in which both supervised and un-
supervised domain adaptation may arise for cancer registries.
Therefore, our experiments investigate the following research questions
(RQs):

[RQ1.] Can machine learning methods, including neural net-
works, accurately extract EGFR information from pathology
reports? Before studying the various domain adaptation scenarios,
we first examine the performance of machine learning methods
when applied to the EGFR classification task. For this scenario, we
assume each registry has access only to its datasets.
[RQ2.] Are EGFR test results described differently in pathology
reports collected at different SEER registries? Will EGFR models
trained on pathology reports from a single cancer registry
generalize to other registries? In this setting, we analyze the cross-
registry performance without any adaptation. For example, if a
registry shares a pre-trained model, but did not give access to their
data, then we want to examine how it will perform.
[RQ3.] Can unsupervised adversarial domain adaptation tech-
niques improve the cross-registry performance of neural net-
works? This setting assumes a registry has access to another reg-
istry’s annotated data; however, we assume the registry’s own data
is not annotated. If the registry does not have the resources to create
a large high-quality annotated dataset, then this scenario can arise.
We test if our unsupervised domain adaptation method can match
the results produced when training on the source data directly.
[RQ4.] Do supervised domain adaptation methods improve the
performance of models trained jointly on two registries’ labeled
datasets? To answer this question, we assume that a registry has
access to high quality annotated data from their registry and labeled
data from another registry. We hypothesize that if we apply our
supervised adversarial domain adaptation method, then we can
improve on the performance of models simply trained on the com-
bination (union) of both datasets.

Overall, to the best of our knowledge, this is the first effort to ex-
plore generalization of text classifiers across different registries.
Furthermore, we evaluate the use of state-of-the-art techniques for
domain adaptation on our novel task.

2. Materials and methods

RQ1 and RQ2 are based on conventional ML configurations, whose
methodological aspects are well-known and hence are briefly men-
tioned in the Results section. In this section, we specifically discuss
neural adversarial adaptation techniques to answer RQ3 and RQ4, the
main contributions in this paper.

2.1. Datasets

This study is based on data from patients diagnosed with histolo-
gically confirmed, stage IV non-squamous NSCLC between 2011 and
2013, and reported to two SEER registries: KCR and the Cancer
Surveillance System of FH. For each NSCLC case, staff at each registry
retrieved electronic pathology reports, and following manual review
labeled each as one of three categories: Unknown/Technical
Difficulties, Positive, and Negative. The Unknown class is assigned to
reports if it is not clear if the EGFR test was done or if the result cannot
be ascertained properly; this class also represents instances where the
test was done, but the result was not reported. If the test results are
reported, then the positive and negative classes are used, respectively.
Both datasets are annotated for EGFR mutation results and Anaplastic

Lymphoma Kinase (ALK) fusion results. However, the KCR dataset only
has 3 pathology reports that mention a positive ALK result. Therefore,
for the purposes of this study, we focus on extracting EGFR test results
because we have more positive examples in both datasets. The relative
counts of different classes for both datasets are shown in Table 1.

2.2. Method overview

In Fig. 1, we provide an overview of our method. Our model has
three main components: the CNN (F), the classifier (C), and the dis-
criminator (D). The discriminator is a multi-layer neural network where
the final layer is a single sigmoid unit. During training, the dis-
criminator is trained to learn if a given pathology report comes from the
KCR or FH datasets. The CNN, F, is the adversary of the discriminator,
D. Intuitively, the CNN parameters are updated to minimize the clas-
sification loss, while maximizing the error of the discriminator. The
CNN and the discriminator compete during training, with the CNN
eventually producing representations that are indistinguishable by the
discriminator.

2.3. Convolutional neural networks for text classification

For the CNN component, we use a standard model from Kim (2014)
[12]. Word vectors form the base element of the model. Given a pa-
thology report, let wi

j d represent the j-th word’s vector in the i-th
document. As shown in Fig. 1, each pathology report is represented as a
matrix ×Xi

N di by concatenating the word vectors, where Ni is the
number of words in the i-th document, and d is the size of the word
vectors. Given the document matrix Xi, the CNN produces a fixed size
feature representation. To produce a fixed size vector, the CNN uses
max-over-time pooling. Each convolution filter q produces a feature
map +mq

N c 1i where c is the span of the convolution filter (the
filters in Fig. 1 span 3 words). To produce a fixed-sized vector with
max-over-time pooling we take the max value for each feature map to
represent a pathology report. We define the final output of the neural
network as

=F CNNX X( ) ( )i i

where F sX( ) ,i
f s· is the number of convolution filter sizes, and f is

the number of filters per size.

2.4. Classification loss

Extracting EGFR test results from pathology reports is a multi-class
classification problem. Therefore, we pass the feature vector returned
by F X( )i to a fully-connected softmax layer

=C softmax FX X( ) ( ( ))i i

where C X( )i r and r is the number of classes. Next, we can train the
classifier C (), and the CNN F (), using a multi-class cross-entropy loss

=
=

y C Xlog( ( ) )C i S T
j

r

i j i jy( , )
1

,i
(1)

where y {0, 1}i j, is a binary indicator for the i-th pathology report’s j-
th class andC ()j is the prediction for the j-th class. S and T represent the
index set of source and target instances. In the unsupervised domain
adaptation setting, we only include S. Likewise, T is only used when
training on the target dataset – the supervised classification setting. The

Table 1
Number of pathology reports for the three classes in the FH and KCR datasets.

Cancer Registry # Unknown # Positive # Negative

Fred Hutch. (FH) 2921 232 1126
KCR 599 47 354

A. Rios, et al. Journal of Biomedical Informatics 97 (2019) 103267

3



combination of F () and C () form the CNN model introduced by Kim
(2014) and has been shown to work well on a wide variety of biome-
dical text classification tasks [2,27].

2.5. Adversarial loss

We are interested in training a model to extract EGFR test results
from pathology reports. We want the model to generalize across data-
sets collected by different cancer registries. However, the pathology
reports collected by separate cancer registries may differ in terms of
writing style, format, and jargon. Some registries may collect reports
that are thorough and document everything, while others may only
have high-level summaries. Furthermore, EGFR testing may be out-
sourced by the reporting lab with results incorporated as addenda in a
variety of formats across different labs. To overcome these issues we
combine the CNN with an adversarial domain adaptation method.

First, we define the discriminator for report Xi as

=D sigmoid MLP FX X( ) ( ( ( )))i i

where MLP F X( ( ))i is a multi-layer feed-forward neural network with a
single sigmoid unit for the final layer. The discriminator is trained using
a binary cross-entropy loss

= +D DX Xmax min [[ log( ( ))] [ log(1 ( ))]]adv i S i j T j
F D (2)

where F represents the parameters of the CNN, D represents the
parameters of the discriminator, and represents the expected value of
the loss over different input instances. For example, i S represents the
expectation over source instances. Intuitively, the loss is minimized
(gradient descent) with respect to D such that the discriminator is
trained to predict which cancer registry each pathology report is from.
The CNN weights, F , are updated to confuse the discriminator by
maximizing the loss (gradient ascent), making it hard for the dis-
criminator to distinguish the CNN feature representations with respect
to different cancer registries.

For gradient-based training, we use a gradient reversal layer (GRL)
which takes a gradient as input and reverses the gradient’s sign [7]. As
shown in Fig. 1, we apply the GRL between the CNN and discriminator.
Formally, this GRL is defined as

=GRL adv

F

adv

F

where /adv F is the gradient of the adversarial loss with respect to

the CNN parameters. weights the intensity of the GRL. A large will
encourage larger changes of the CNN, making the CNN a stronger ad-
versary for the discriminator. Following Ganin and Lempitsky (2015),
instead of using a static value, we modify its value over the course of
training as

=
+ exp p

2
1 ( · )p

where p [0, 1] measures the training progress and + is a hy-
perparameter. Following prior work, we set to 10 [7]. Likewise, after
each epoch, we linearly increase p from 0 to 1 by increments of size

epochs1/# . By starting with a of 0, the CNN parameters are not in-
itially affected by the discriminator. At the early stages of training, the
CNN is mostly affected by the classification loss. Therefore, in the be-
ginning, we control the noisy signal of the discriminator.

2.6. Training

For both the supervised and unsupervised domain adaptation sce-
narios, both the classification loss from Eq. (1) and the adversarial loss
from Eq. (2) are combined as

= + ,C adv (3)

such that the CNN, classifier, and discriminator parameters are learned
jointly. In the base scenario, where we only have access to the labeled
target dataset, adv is ignored. However, depending on the training
scenario, the training process will slightly differ. Both loss functions are
used in the unsupervised domain adaptation setting, with the exception
that only the annotated source examples are used to train F with C.
Finally, for the supervised domain adaptation scenario, the annotated
source and target examples are used by C.

3. Results

3.1. Evaluation method and baselines

For this study, we use nested 5-fold cross-validation, where the
inner-loop is used to pick the best hyperparameters [3]. Here by inner-
loop we refer to the second level of cross-validation that lets us select
potentially different sets of hyperparameters for each test fold in the
main cross-validation setup. It should be noted that the neural network-
based methods can vary run-to-run – especially for the positive class
which has a small number of positive examples. Therefore, for each

Fig. 1. High-level overview of method for determining EGFR status of NSCLC cases from pathology reports. The architecture has three main components: a CNN (F),
classifier (C), and discriminator (D). F returns a fixed size feature representation of a pathology report. C is a standard softmax output layer, and D is an MLP that
predicts which registry a report originates. The reverse gradient changes the sign of the gradient, such that C is optimized to maximize the loss involving D, while D is
optimized to minimize the loss (i.e., correctly predict the original registry).
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neural network-based model, and for each cross-validation fold, we
train 5 models using a different random seed and we report the average
of the 5 runs. When two datasets are used in a supervised and un-
supervised domain adaptation scenario, for each fold of the target da-
taset, we append the entire source dataset to the target training split.
For example, in the “FH+KCR” section of Table 2, we perform cross
validation on the KCR dataset and we append the entire FH dataset to
the training KCR fold. The testing fold will only contain KCR examples.

We report the precision (P), recall (R), and F1-Score (F1) for the
unknown, positive, and negative classes, respectively. We also combine
the Positive and Negative classes into a single class at test time. This
combined class measures how well our models can predict if the results
are stated in the report, even though we may predict the wrong result.
We refer to this as the “known” class. Meaning, if we predict either
Positive or Negative, we change the prediction to “known”.

For evaluation purposes, we experiment with four models: two
linear models and two neural network-based models. We briefly de-
scribe the models below:

• Rule-based – We experiment with a simple rule-based method that
uses the following regular expressions: “positive (\w+ \s){1,7}
egfr”, “egfr[:](\w+ \s){1,7}positive”, and two similar regular ex-
pressions where the word “positive” is replaced with “negative”. If
one of the regular expressions is matched, then we predict the class
it represents, otherwise we return “Unknown”. For example, the
string “the patient tested positive for an egfr mutation” matches the
regular expressions we created. At a high level, this regular ex-
pression matches all strings that contain the word “positive” fol-
lowed by, or preceded by, “egfr”; and the string “egfr” must be no
more than seven words away from “positive”.
• SVM – This model uses TF-IDF weighted ngrams as features to train
a linear SVM. The model is trained using Scikit-Learn’s Linear SVC
method [23]. We grid-search over the C regularization parameters
[1e−4, 1e−3, 1e−2, 1e−1, 1., 10], the set of class weight options
(“None” and “Balanced” in scikit-learn), and the combination of
unigrams, bigrams, trigrams, and 4-grams.
• BSVM – Similar to the SVM method, this model uses ngrams as
features and we grid-search over the same parameters. However,
instead of using a TF-IDF weighting scheme, we use a binary re-
presentation, 1 if a feature is present, and 0 otherwise.
• BioBERT [15] – BioBERT is a method of pre-training neural net-
works. Specifically, BioBERT trains a general-purpose “language
understanding” model on a total of 29 million PubMed citations. We

fine-tune the parameters of BioBERT on our task.
• CNN – A standard CNN model for text classification [12].
• CNN+Adv. – The method proposed in this paper. As stated in the
previous section, this method will vary slightly depending on the
domain adaptation scenario, unsupervised or supervised.

For each CNN-based model, we use convolution filters that span 3,
4, and 5 words. We learn 300 filters for each size. We use dropout with
a value of 0.5 and apply it after the CNN and before the classifier and
discriminator. We also use L2 regularization over all CNN and classifier
parameters with weight of 1e-3. For the discriminator, we use a 3-layer
MLP, where the first two layers have 1024 hidden units with ReLU
activation functions [22]. The final layer of the discriminator is a single
output unit using a sigmoid activation function. Dropout is added be-
tween each layer of the discriminator with a value of 0.5. Furthermore,
each CNN-based model is trained using the Adam optimizer with the
learning rate 1e-3. Finally, we initialize the word embeddings with
word2vec vectors trained on PubMed articles and abstracts. The word
embedding size is 300.

With the exception of CNN Adv., each model is tested in three dif-
ferent scenarios:

1. “KCR/FH Only”, where we assume that each cancer registry only
has access to its own data. Therefore, the “CNN+Adv.” method is
not considered for this scenario.

2. “KCR+FH”, with which we test the supervised domain adaptation
setting, where we assume we have access to ground truth annota-
tions from both cancer registries regardless of which site is the
target.

3. “KCR FH”/“FH KCR”, with which we assess the unsupervised
domain adaptation setting, where we assume the target registry’s
pathology reports have not been manually annotated. However, the
registry has access to source registry’s annotated data. For this
scenario, grid-search is performed on a subset of the source dataset’s
training split because we assume that we do not have access to
annotated target data.

3.2. Experiments

In this section, we address each of the research questions stated in
Section 1.3.

RQ1. How difficult is it to extract EGFR test results for an un-
structured pathology report? To answer this question, we analyze the

Table 2
Model performances on the KCR dataset. Precision (P), Recall (R), and F1-Score (F1) are reported for the four major classes: Unknown, Positive, Negative, and
Known. Note that the models were not trained on the Known class. The Known class metrics were calculated by merging the metrics for the Positive and Negative
classes.

Unknown Positive Negative Known

Method P R F1 P R F1 P R F1 P R F1

Rule-based 0.620 0.881 0.728 0.200 0.064 0.097 0.524 0.203 0.292 0.524 0.196 0.284

KCR Only SVM 0.945 0.951 0.948 0.612 0.476 0.530 0.881 0.896 0.888 0.927 0.918 0.922
BSVM 0.934 0.958 0.946 0.767 0.329 0.446 0.893 0.867 0.879 0.937 0.898 0.916
CNN 0.973 0.977 0.975 0.858 0.626 0.715 0.923 0.948 0.935 0.966 0.960 0.963

BioBERT 0.937 0.933 0.935 0.826 0.791 0.804 0.884 0.895 0.889 0.901 0.907 0.904

FH+KCR SVM 0.956 0.946 0.951 0.761 0.540 0.612 0.901 0.913 0.906 0.935 0.918 0.926
BSVM 0.966 0.972 0.968 0.732 0.518 0.595 0.906 0.924 0.914 0.959 0.948 0.953
CNN 0.980 0.969 0.974 0.885 0.667 0.746 0.925 0.968 0.945 0.956 0.970 0.962

CNN+Adv. 0.973 0.980 0.976 0.899 0.729 0.801 0.941 0.952 0.946 0.970 0.959 0.964

FH KCR SVM 0.848 0.820 0.832 0.100 0.147 0.118 0.742 0.749 0.742 0.746 0.779 0.760
BSVM 0.804 0.855 0.828 0.259 0.249 0.253 0.691 0.647 0.668 0.760 0.689 0.723
CNN 0.867 0.888 0.875 0.273 0.230 0.244 0.741 0.737 0.732 0.832 0.791 0.805

CNN+Adv. 0.965 0.979 0.972 0.900 0.708 0.780 0.938 0.938 0.938 0.969 0.948 0.958
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results in the “KCR Only” and “FH Only” sections of Tables 2 and 3,
respectively. For the KCR data, in Table 2, we find that the CNN out-
performs both linear methods substantially across all four classes. For
the Unknown class, the CNN outperforms the best linear method (SVM)
by nearly 3%, from 0.948 to 0.975 F1. For the Positive class, which has
only 47 examples in the dataset, the CNN outperforms the SVM method
by 18%. Furthermore, we find that the SVM method, which uses TF-IDF
weighted features, outperforms BSVM across all four classes. We find
that the Unknown, Negative, and binary Known class F1 scores slightly
vary across folds for the CNN in “KCR Only” with standard deviations
0.017, 0.034, and 0.026 (not shown in the table), respectively. For the
linear models, and for all classes except the Positive class, the standard
deviations are all around 0.015. Because of the limited number of Po-
sitive examples, the F1 standard deviation is much higher with a value
around 0.11 for the SVM, BSVM, and CNN methods. We also find that
BioBERT does not perform well overall on our task. For the Positive
class on the KCR dataset, BioBERT achieves the best F1 of 0.804, but the
performance on the Unknown and Negative classes is much worse.
Because the Unknown and Negative classes occur more often, the
Known F1 is also lower than the SVM.

For the FH dataset, all 3 methods achieve an F1 score of 0.95 or
higher across all four classes. Similar to what happened with the KCR
dataset, the CNN method generally outperforms the two linear models,
with an exception for the positive class. However, unlike the KCR da-
taset, the CNN model does not outperform the linear models by much.
All the improvements are less than 1%. Given the high level of per-
formance across all models, substantial improvements may not be
possible in the FH dataset. We also find that BSVM slightly outperforms
SVM. We find that machine learning may not be as important to extract
EGFR test results for the FH dataset because the rule-based method
achieves an F1 greater than 90% for every class. However, machine
learned models still improve the results with a 4% improvement in F-
score for the positive class. We do not report the standard deviations in
Table 3, for the FH dataset. For all FH results, except for KCR FH, the
standard deviation is less than 0.01.

Overall, when the EGFR test results are recorded in the pathology
report, we find that it is possible to extract the information using ma-
chine learning-based methods. However, we find that the performance
can vary substantially at different registries. For example, the simple
rule-based method achieves an F1 of 0.923 on the FH dataset in Table 3
for the Positive class. The rule-based F1 on the KCR dataset is only
0.097. This result suggests that the language used to describe EGFR
results is more varied in the KCR dataset. We examine this more in the
Discussion section.

RQ2. For the second research question, we test the cross-registry
generalization of models trained on a single registry’s data. The results
related to this question can be found in the “FH KCR” and
“KCR FH” sections of Tables 2 and 3. For the KCR dataset in Table 2,
generalization suffers across all classes when applying a model trained
only on the FH dataset. For the Unknown class, the CNN’s F1 drops from
0.975 to 0.875 – a 9% drop in performance. The best method for the
Positive class is the BSVM with an F1 of 0.253. However, the BSVM
method still has a drop of 24% if we compare it to training on the KCR
(target) dataset. For the frequent classes, TF-IDF weighting seems to
help. Overall, we find that the CNN generalizes better than both linear
models on three of the classes: Unknown, Negative, and Binary.

For the FH dataset, we find a large drop in performance in F1 for
both the Positive and Negative classes. For the positive class, the SVM
performance drops from 0.960 to 0.155. Likewise, the negative class
results drop from 0.968 to 0.504. The BSVM linear model outperforms
the SVM across all 4 classes. Nonetheless, while the linear models
perform similar to the CNN when trained in the “FH only” setting, in the
cross-registry scenario the CNN provides the best performance for all 4
classes.

RQ3. If a cancer registry has access to another registry’s annotated
data, but does not have the time or resources to annotate their own
data, do unsupervised domain adaptation methods help? The results for
this question are in the “FH KCR” and “KCR FH” sections of Tables
2 and 3 (“CNN+Adv” rows). Overall, on both the KCR and FH data-
sets, we achieve substantial improvements using adversarial learning in
the unsupervised domain adaptation setting. For the KCR dataset in
Table 2, “CNN+Adv” performs similar to the CNN that is trained on
both the FH and KCR datasets (KCR+FH). Also, compared to the CNN
trained only on FH data and applied to the KCR dataset, the
“CNN+Adv” improves the performance on the Unknown class by 10%
and the Positive class improves by more than 50%, from 0.244 to 0.780
in F1. On the FH dataset, when we train on the KCR dataset and test on
the FH dataset, we match the performance of the CNN that is trained
directly on the FH dataset for all classes. For the Positive class,
“CNN+Adv” models slightly outperform the corresponding models
trained on the target datasets (“FH Only” and “KCR Only” in Tables 2
and 3) in this unsupervised domain adaptation setting (“KCR FH”/
“FH KCR”).

RQ4. When annotated datasets are available for both registries, do
adversarial learning techniques improve on methods that train on both
datasets? For this research question, we focus on the “FH+KCR” sec-
tions in both results tables. First, for the KCR dataset, every method
shows improvements when compared to training only on the KCR

Table 3
Model performances on the FH dataset. Precision (P), Recall (R), and F1-Score (F1) are reported for the four major classes: Unknown, Positive, Negative, and Binary
(Known). Note that the models were not trained on the Binary class. The Binary class metrics were calculated by merging the Positive and Negative classes.

Unknown Positive Negative Known

Method P R F1 P R F1 P R F1 P R F1

Rule-based 0.941 0.998 0.969 0.971 0.879 0.923 0.995 0.859 0.922 0.995 0.866 0.926

FH Only SVM 0.983 0.994 0.988 0.987 0.936 0.960 0.977 0.959 0.968 0.986 0.963 0.975
BSVM 0.983 0.996 0.989 0.979 0.952 0.963 0.985 0.959 0.972 0.990 0.964 0.977
CNN 0.991 0.994 0.993 0.979 0.937 0.957 0.978 0.979 0.978 0.988 0.981 0.984

BioBERT 0.982 0.979 0.981 0.935 0.840 0.885 0.930 0.955 0.943 0.956 0.961 0.958

KCR+FH SVM 0.983 0.995 0.988 0.996 0.940 0.967 0.979 0.960 0.969 0.988 0.962 0.975
BSVM 0.989 0.996 0.993 0.979 0.961 0.969 0.987 0.972 0.979 0.992 0.976 0.984
CNN 0.991 0.994 0.993 0.972 0.948 0.959 0.982 0.978 0.980 0.988 0.981 0.984

CNN+Adv. 0.989 0.993 0.991 0.981 0.940 0.960 0.976 0.974 0.975 0.985 0.977 0.981

KCR FH SVM 0.792 0.981 0.876 0.234 0.116 0.155 0.780 0.375 0.504 0.916 0.445 0.597
BSVM 0.853 0.984 0.914 0.435 0.378 0.387 0.903 0.555 0.685 0.953 0.634 0.758
CNN 0.956 0.994 0.975 0.545 0.389 0.452 0.882 0.843 0.862 0.986 0.902 0.942

CNN+Adv. 0.988 0.993 0.990 0.984 0.941 0.962 0.976 0.973 0.974 0.984 0.974 0.979
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dataset. For example, for the positive class, SVM improves from 0.530
to 0.612, an 8% absolute improvement in F1. The CNN also improves by
3%. Furthermore, without adversarial learning, the CNN outperforms
both SVM and BSVM when we use both datasets. When we train the
CNN on both datasets and use adversarial learning, we outperform all
other methods on the KCR dataset in the “FH+KCR” scenario. Finally,
we achieve the largest improvement for the positive class where the F1
improves from 0.746 to 0.801.

For the FH dataset, unlike the KCR dataset, we achieve little to no
improvement when we train on both datasets. Likewise, our proposed
CNN adversarial method does not perform as well as the CNN which
only trains on the FH dataset. Because the overall performance is very
high when we only train on the FH dataset, there is not much to be
gained by training on both datasets.

4. Discussion

Based on our results in Tables 2 and 3, we find that there are
multiple factors to consider if one is deciding to use adversarial domain
adaptation techniques – at least for pathology reports from cancer re-
gistries. Does the cancer registry have access to annotations for their
own data? If so, how well do the models perform when trained only on
their data? As seen on the FH dataset, if the model performs very well
(>0.95 F1), then domain adaptation techniques may not help. However,
as seen in the supervised domain adaptation setting on the KCR dataset,
adversarial learning can help if the performance is not particularly good
with locally annotated data. If the cancer registry does not have the
resources to annotate their own data, but they have access to another
registry’s annotated data, then adversarial domain adaptation techni-
ques achieve similar results as if they were training on an annotated
dataset from their registry.

Overall, the performance across all four classes is higher on the FH
dataset when compared to the KCR results. There are two possible
reasons for the differences in F1. First, the FH dataset is three times as
large as the KCR dataset. The largest difference in performance between
the two datasets is found with the Positive class, which has the smallest
number of labeled examples. Are the differences in F1 on the Positive
class between the two datasets caused by different dataset sizes? In
Fig. 2, we plot the learning curve of the BSVM method on the FH da-
taset. The best result on the KCR dataset is marked with an X (i.e., the
CNN). With 1000 training examples, we find that the Positive class
performance is still higher on the FH dataset. Via manual examination,
we find that the reports in the FH dataset are much more consistent. For
examples, the simple regular expression “positive (\w+ \s){1,7}egfr”
correctly predicts 188 out of 232 pathology reports for the Positive class
in the FH dataset. Furthermore, the rule only results in 3 false positives.
For the KCR dataset, using the same regular expression, we match 13
pathology reports. However, only 3 of the reports are correctly matched

with the Positive class. This explains why the “KCR FH” F1 scores
were higher than the “FH KCR” setting, even though the FH dataset
was larger. Interestingly, we find that adversarial learning provides
large improvements in the “FH KCR” setting, even though the FH
dataset is relatively simple. This suggests that if we can create training
datasets for many genomic tests using simple rules (i.e., distant super-
vision [18]), then we may be able to use unsupervised adversarial do-
main adaptation to match the results we would obtain if we had a hand-
labeled gold standard dataset.

5. Conclusion

In this paper, we study the generalization of machine learning
methods across different cancer registries to understand many ques-
tions: Will models shared between registries perform well? Can we
combine two registries datasets to improve performance? Do pathology
reports collected by different registries substantially differ? Many ma-
chine learning methods, including neural networks, perform well when
trained with carefully annotated data. However, if these models are
shared with other registries, the performance may suffer. Therefore, we
introduced an adversarial domain adaptation method for neural net-
works. Using adversarial learning, we improve the cross-registry gen-
eralization substantially, sometimes outperforming methods that were
trained on datasets from both registries. There are two avenues we plan
to explore in the future:

• We performed adversarial learning via backpropagation using a
GRL. The GRL method is known to have vanishing gradient issues
[30]. If the discriminator becomes very accurate, then the gradients
backpropagated to the CNN will be small. Therefore, the CNN will
not overcome the discriminator to produce vector representations of
the pathology reports that are indistinguishable between registries.
Hence, we plan to explore other adversarial methods in the future.
• There are many genomic tests of interest to cancer registries, in-
cluding, but not limited to, EGFR, KRAS, and ALK. In this paper, we
focused on extracting EGFR test result information. A natural next
step would be to apply our methods to other genomic tests.
However, curating datasets for each test is costly. In future work, we
plan to use distance supervision in combination with domain
adaptation to overcome curation issues.
• Our method only extracts generic EGFR mutations in the context of
NSCLC. Ideally, we should develop techniques to identify specific
EGFR mutations. For example, EGFR exon 20 insertions predict
tyrosine kinase inhibitors (TKI) resistance which occurs in ap-
proximately 10% of EGFR positive patients [20] at diagnosis. In
addition, specific EGFR mutations have prognostic implications:
exon 19 deletions are associated with longer overall survival com-
pared with exon 21 L858R mutations, irrespective of treatment with
EGFR TKIs. Future development will also focus on refinements to the
current algorithms to extract specific EGFR mutations. Because of
the high cost of annotating data for different mutation types, we
expect distance supervision-based methods and our adversarial do-
main adaptation approach can be combined to reduce study costs.
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