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Background: Identifying new potential treatment options for medical conditions that cause human disease
burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and
clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying
different causal relations between biomedical entities is also critical to understand biomedical processes.
Generally, natural language processing (NLP) and machine learning are used to predict specific relations be-
tween any given pair of entities using the distant supervision approach.
Objective: To build high accuracy supervised predictive models to predict previously unknown treatment and
causative relations between biomedical entities based only on semantic graph pattern features extracted from
biomedical knowledge graphs.
Methods: We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and
test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the
SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of
Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and de-
cision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct
80–20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10
in the test set to model relatively more realistic scenarios.
Results: Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic
regression model coefficients also help us identify highly discriminative patterns that have an intuitive inter-
pretation. We are also able to predict some new plausible relations based on false positives that our models
scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are
able to retrieve over 50% of treatment relations from a recently created external dataset.
Conclusions: We employed semantic graph patterns connecting pairs of candidate biomedical entities in a
knowledge graph as features to predict treatment/causative relations between them. We provide what we be-
lieve is the first evidence in direct prediction of biomedical relations based on graph features. Our work com-
plements lexical pattern based approaches in that the graph patterns can be used as additional features for
weakly supervised relation prediction.

1. Introduction

Biomedical processes are inherently composed of interactions be-
tween various types of entities. Typically, these interactions are cap-
tured, for computational convenience, as binary relations connecting a
subject entity to an object entity through a predicate (or relation type).
For example, the relation (“Tamoxifen”, treats, “Breast Cancer”) in-
dicates that the subject entity Tamoxifen is related to the object entity
breast cancer via the relation type or predicate treats. Besides treats,

relations with other types of associative predicates such as causes, pre-
vents, and inhibits are also interesting for biomedical research. Often
different relations are put together to derive new relations, also termed
knowledge discovery. Given that we have established that relations are
central to biomedical research, a natural question that arises is how to
obtain these relations. Relations that are already discovered and con-
sidered common knowledge in the clinical and biomedical communities
are typically manually recorded and distributed in public knowledge
bases like the Unified Medical Language System (UMLS) Metathesaurus.
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However, relations that are not well-known and accepted by the sci-
entific community but are being discovered by particular individuals
are often reported in research articles that are subject to peer review.

Given the exponential growth [20] of scientific literature, it is un-
realistic to manually review all articles published on a given topic for
discovering/extracting any previously unknown relationships between
biomedical entities such as treatment/causative relations or drug-drug
interactions. Therefore, natural language processing (NLP) and ma-
chine learning [12,21] are being increasingly used to extract biomedical
relations from free text documents. For instance, the treatment relation
example discussed earlier in this section may be extracted from the
sentence – “We conclude that Tamoxifen therapy is more effective for early
stage breast cancer patients.” However, NLP extractions are essentially
based on evidence present in particular sentences and are prone to two
types of errors. First, the NLP techniques themselves might not be
foolproof given they are computational models and second, and more
important, the evidence found in a particular sentence might be cir-
cumstantial and not something that is universally accepted. Never-
theless, extraction of the same relation from multiple sentences is in-
dicative of the strength of the relation if it is being reported by multiple
research projects.

In this work, we take a completely different approach to predict
potential relations between arbitrary pairs of biomedical entities. We
refrain from NLP approaches that look at individual sentences to extract
a potential relation. Instead, we build a large graph of relations (given a
relation translates to a labeled edge) extracted using NLP approaches
from scientific literature and exploit semantic path patterns over this
graph to build models for specific predicates. That is, instead of looking
at what a particular sentence conveys, we model the prediction problem
at a global level and build models that output probability estimates of
whether a pair of entities participates in a particular relation. Our
models are trained with graph pattern features over the well-known
knowledge graph SemMedDB [15] extracted from biomedical literature
by researchers at the National Library of Medicine (NLM) using the rule
based SemRep NLP tool [26].

In our approach, a different binary classification model is trained
for each predicate. The ability to identify potentially viable drugs,
procedures, and other therapeutic agents for treating different con-
ditions that cause disease burden among humans is at the heart of
biomedical research. Similarly causative relations of different bio-
medical phenomena are also critical in understanding the complex
processes that underlie diseases and treatments. Hence, we demon-
strate our approach specifically using the treats and causes predicates.
Our method also generalizes to other predicates and can also com-
plement other lexical and syntactic pattern based distant supervision
[11,22] approaches for relation extraction. The following are specific
contributions of this paper.

1. We propose a novel and intuitive graph pattern feature based ap-
proach to predict treatment and causative relations between any
given pair of biomedical entities using logistic regression (LR) and
decision tree models.

2. We discuss and present details about the potential of graph patterns
in terms of coverage and utility of top patterns identified through
coefficients of our best LR model.

3. Based on inputs from practicing physicians, we analyze false posi-
tives with high probability estimates output by our model to assess
their expert based ground truth labels. We also assess the abilities of
our best models to recall treatment relations from an external drug
repositioning dataset.

We note that this paper is a major extension of a conference paper
we published earlier [3] just for the treats predicate where a balanced
dataset was used during training. In this paper, in addition, we ex-
periment with imbalanced datasets, extend our prior results to the
causes predicate, conduct qualitative analyses of top graph patterns

identified by our models, and assess the reliability of our approach
through physician inputs and experiments on a newer drug re-
positioning dataset.

2. Background: knowledge acquisition and approaches

High level knowledge in biomedicine typically involves interac-
tions between named entities (e.g., genes, drugs, diseases). For ex-
ample, there is typically a treatment relation between a drug and a
disease. Here, these interactions are generally called relations that
connect a subject entity (drug) with an object entity (disease) through
a predicate (treats). Beyond just named entities, a set of meaningful
relations extracted from a dataset can also be construed as a more
specific kind of knowledge. However, indirect or implicit relations
might exist and can be obtained by putting together several known
relations as a sequence where the entities at either end of the se-
quence are now seen as participating in a new relation. This can only
happen when the nature of entities and predicates along the sequence
is meaningful to derive this new connection. For example, consider
this sequence of two relations (obtained from SemMedDB) with sti-
mulates and treats predicates in that order:

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯Mercaptopurine Cytarabine triphosphate Leukemia
stimulates treats

From the two constituent relations taken in this order, we can now
see a potential new relation: Mercaptopurine ⎯ →⎯⎯⎯⎯

treats
Leukemia. In fact,

this is known to be a valid relation between Mercaptopurine and
Leukemia. This information is called implicit knowledge if it is not
explicitly expressed in textual narratives or structured data sources but
can be inferred from existing disparate pieces of evidence. Many simple
paths or sequences of relations clearly do not lead to new relations.
Even when they do, they may not sometimes be interpretable in a
biomedical sense due to missing additional context. Hence there are
cases where a compact subgraph connecting a pair of entities is es-
sential in inferring a new implicit relation [7].

Binary relations are typically encoded as (subject, predicate, object)
triples and can be obtained from (1). well known expert curated
knowledge bases, (2). applying NLP techniques to free text from lit-
erature, or (3). employing global lexico-syntactic pattern based
methods. Due to excessive time consumption involved in manual
curation, knowledge bases are generally not complete/exhaustive [41].
NLP approaches can be used to extract relations from particular sen-
tences using the linguistic structure of a sentence (syntactic/de-
pendency parse) especially involving the spans of named entities that
occur in it [1,12,14,16,32]. Even though such systems are popular for
relation extraction, they are error prone and might result in extraction
of coincidental outcomes that cannot be considered general knowledge.
Furthermore, implicit relations that are not necessarily asserted in a
sentence cannot be obtained through such approaches. However, NLP
extractions can be used as a basis to develop more advanced techniques
that aim toward a global relation prediction modeling paradigm. This
process of distilling the literature and gleaning actionable information
that drastically reduces researcher efforts in dealing with information
explosion is termed as literature-based discovery (LBD).

An alternative approach for the LBD is distant supervision [22] (also
called “weak supervision”) when there are many predicates and manual
labeling of sentences with relations is impractical. In this approach,
pairs of entities, which come from a high quality knowledge base, are
known to participate in specific relations and are used to search lit-
erature to identify sentences that contain both of them. Such sentences
are used as training instances for the corresponding predicates to learn
lexico-syntactic patterns that could be used as features in supervised
models or in ranking new relations using unsupervised approaches
[40]. Although distant supervision offers a convenient approach to
overcome the labeled data scarcity issue, a disadvantage is that ex-
istence of a pair of entities in a sentence does not directly mean that the
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sentence is expressing the particular relation existing in the knowledge
base. Another important disadvantage is that the knowledge base could
be incomplete and hence negative example pairs (those that do not
participate in a relation in the knowledge base) may not be true ne-
gatives. Even though these disadvantages were comparatively men-
tioned and obviated by some other approaches [29,31,33,41], few re-
searchers have addressed these issues especially in biomedicine. In our
current effort, we propose an approach that is very different from these
existing popular methods by relying on graph path patterns extracted
from a large graph of extracted relations using NLP approaches. As
such, our approach is not “extracting” a relation form a particular
sentence, but is rather “predicting” a relation based on graph patterns
connecting the corresponding entities.

A well-known method for LBD is to utilize the pathway schemas or
discovery patterns [13] along with relations extracted by an NLP system
such as NLM’s SemRep program [30]. These discovery patterns are
essentially designed by domain experts and typically connect a drug
and a target disease. The task is then to identify a list of pairs con-
nected by the thusly designed pathways [42]. However, this assumes
the availability of experts’ time and can be tedious with scalability
issues specifically if it were to be undertaken for multiple diseases and
other predicates besides treats. Recent approaches leverage distribu-
tional semantics to automatically infer discovery patterns. Specifi-
cally, the predication-based semantic indexing [9,10] approach
identifies specific patterns by encoding entities and relations linking
them in a vector space using the random indexing approach [8]. This
approach typically outputs a ranked list of patterns the top few of
which are used to retrieve potential new treatments for target dis-
eases. Our approach deviates from this retrieval style framework in-
volving a few top patterns by taking a traditional probabilistic route to
output a probability estimate of a treatment relation holding between
an input drug-disease pair by considering all patterns that connect
them. As such, our approach starts with a closed discovery assumption
[38] but can later be adapted to an open discovery scenario by iden-
tifying concept pairs connected by top patterns discovered under the
closed assumption (details in Section 6). Besides treatment relations,
identifying the cause of a condition or symptom is also of significance
from a prevention perspective. Hence causative relations are also in-
cluded in well known knowledge bases [15,25] and also used in dis-
covery applications [36,42]. Thus in this effort our focus will be on
predicting both treatment and causative relations.

3. Semantic patterns over knowledge graphs

In this section, we describe the graph pattern features and their
extraction for predicting relations. Our basic intuition is simple: dif-
ferent entity pairs participating in a particular relation type (that is,
linked via a specific predicate) are potentially connected in “similar”
ways to each other where the connections are paths between them in
knowledge graphs extracted from scientific literature. This is analogous
to the NLP variant where a particular type of relation manifests with
certain lexico-syntactic patterns surrounding the entity pair mentions in
free text, the central idea exploited in distant supervision. In our ap-
proach, we need two essential components:

1. a broad scoped and large knowledge graph over which paths con-
necting candidate entity pairs can be obtained and

2. an approach to identify similar paths connecting entities, so we can
abstract or “lift” specific paths to high level semantic graph patterns
to be subsequently used as features in a supervised classifier.

3.1. SemMedDB knowledge graph

For this effort, we build a large knowledge graph of relations ob-
tained from SemMedDB [15,27], a large database of (subject, pre-
dicate, object) relationships extracted from biomedical citations (titles

& abstracts). SemMedDB is a public resource made available by the
NLM, which uses their NLP tool SemRep [26,30] to extract “semantic
predications” from biomedical text. SemMedDB is produced by running
SemRep on all biomedical citations made available thorough the
PubMed search system. The relations recorded in this database are
called semantic predications given SemRep normalizes textual
mentions of entities to unique UMLS Metathesaurus concepts (that is,
performs named entity recognition) and the predicates are also based
upon those available in the UMLS semantic network [23]. Each of the
UMLS concepts also has at least one semantic type [24], which is
essentially a classification system to categorize different biomedical
entities. As such, the relations in SemMedDB represent a semantic
summary of biomedical citations currently indexed by the PubMed
search system. Our knowledge graph is essentially a directed graph
with labeled edges formed from the relations in SemMedDB. The scope
of this graph is very broad in a thematic sense given its edges are not
limited to a particular biomedical topic. It is also large in that it has
14.3 million unique edges1 connecting over 3 million nodes. It has
already been used for literature based discovery and analysis of clinical
documents [6,7,19,42,43].

3.2. Specific paths & semantic patterns

To abstract specific paths between entities over the SemMedDB
graph to semantic patterns, we exploit an intuitive heuristic – simply
replace the concepts along the path with their corresponding semantic
type sets (given a concept can have more than one type) and retain the
directions of the edges and edge labels as they are. For example, con-
sider a sample graph showing a couple of paths between the drug
Lexapro (L) and the condition major depressive disorder
(MDD) in Fig. 1. We only employ simple paths (that is, without cycles)
and ignore directionality when computing paths (but retaining it after
paths are identified). Thus, we have the following two paths between L
and MDD: (L, ingredient_of−1, E, is_a, SUI, treats, MDD) and (L, in-
gredient_of−1, E, treats, ND, treats−1, SUI, treats, MDD), where the
intermediate nodes are Escitalopram (E), Serotonin Uptake
Inhibitors (SUI), and Nonulcer Dyspepsia (ND).

For notational convenience we encode the reverse direction with a
superscript of −1 on the predicate. To obtain the patterns, we replace
the specific entities with their semantic type sets. Thus, the corre-
sponding two patterns are

−ingredientof oc ps isa ps treats( ,{ , }, ,{ }, )1 (1)

and

− −ingredientof oc ps treats f treats ps treats( ,{ , }, ,{ }, ,{ }, ),1 1 (2)

where oc, ps, and f are abbreviations of the semantic types organic
chemical, pharmacologic substance, and finding respectively. A pattern of
length l (i.e., based on a path of length l) has l predicates and −l 1 se-
mantic types in the representation we use for this effort as shown in
these examples (Eqs. (1) and (2)). Note that patterns do not include the
entities being connected, but only the semantic types of the inter-
mediate notes and the predicates along the path. By replacing specific
intermediate entities with their semantic types we aim to capture high
level patterns that connect candidate entity pairs. Although we just
showed two paths, there are usually many others with a variety of edge
types (over 50 different predicates) connecting related entities. We
reiterate that our main hypothesis is that these patterns will act as
highly discriminative features in identifying entity pairs that participate
in a particular type of relationship. Here we clarify that although we
refer to the SemMedDB graph as a knowledge graph (for general

1 Although SemMedDB (Ver. 22) has over 63 million relations, there are many dupli-
cates given a relation can be extracted from multiple sentences due to the semantic
mapping to UMLS concepts and semantic network predicates.
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understanding), the precision of NLM’s SemRep tool used to build
SemMedDB is known to be around 75% [15]. However, the advantage
of our approach is that our prediction is not directly dependent on the
correctness of each and every relation in the knowledge graph, rather
on the general patterns found within it. Hence, any knowledge graph
with reasonable quality will suffice although high quality graphs should
yield better results. This was also observed to be the case by Cohen et al.
[10] in their distributional semantics framework.

For extraction of the paths from the knowledge graph, from our
literature review, there are no efficient implementations for computing
all simple paths of an arbitrary length between two given nodes in large
graphs, although many well known algorithms (e.g., modified breadth
first search) exist for identifying shortest paths. In general, finding all
simple paths becomes extremely expensive with lengths greater than
three simply because the number of such paths could increase drasti-
cally in dense graphs. Our implementation for lengths ≤ 3 is based on
straightforward heuristics that maintain precomputed lists of neighbors
for each node in the knowledge graph. Specifically, to determine length
two paths between nodes e1 and e2, we simply look at nodes in
N N∩e e( 1) ( 2) where N e( ) denotes neighbors of node e. To identify
length three paths, we look for edge membership for pairs in
N N×e e( 1) ( 2) in our knowledge graph.

In this effort, we are exclusively interested in predicting treatment/
causative relationships and hence we chose this particular example for
treats predicate from Fig. 1. The two example patterns we show here
have a nice high level meaning. In the first pattern, we see that a
pharmacologic substance (SUI) is a hypernym for another (E) (whose
main ingredient is the source (L)) and is known to treat a dysfunction
(MDD). The second pattern is similar except that it has two pharma-
cologic substances (SUI and E) both treating a common second condi-
tion (ND) while one of them (SUI) treats the target condition (MDD)
and the source (L) is the ingredient of the other. However, in general,
the patterns themselves do not need to have interesting or meaningful
interpretations, but when considered together they should be reason-
ably predictive of the particular predicate that is of interest to us. In this
specific example, it turns out that the treatment relationship also holds
for our candidate pair (L, MDD). Essentially, we expect to leverage
machine learned models to automatically weight different patterns
based on their predictive power rather than human experts having to
manually identify interesting patterns, a highly impractical task with
the explosion of biomedical knowledge.

3.3. Primitive semantic type patterns

Henceforth we call the patterns discussed in Section 3.2 compound
type patterns given an entity is replaced with the set of all semantic
types assigned to it. However, there is a different way to look at se-
mantic patterns where we split these compound patterns into poten-
tially multiple primitive patterns to generate simpler and more generic
patterns. In order to generate primitive patterns, we replace each set of
types for the nodes in the compound pattern with just one of the con-
stituent semantic types. Thus, we derive primitive patterns from the
compound patterns simply by considering all possible combinations of
constituent semantic types for each entity in the compound patterns. If

we consider the first pattern in Eq. (1) as an example, the derived two
primitive patterns will be as in Fig. 2. So for a compound pattern of
length l, the number of corresponding primitive patterns is

S∏ =
− e| ( )|i

l
i1

1 , where ei are intermediate nodes along the path andS e( )
denotes the set of semantic types for entity e in the UMLS. Entities
joined by the original compound pattern are now considered to be
connected by all the primitive patterns generated from it. The primitive
patterns form a more generic feature space when compared with their
compound counterparts.

4. Datasets for treats and causes predicates

In this section we outline how we chose positive and negative ex-
amples to build the two datasets for experiments with graph pattern
features introduced in Section 3.

4.1. Positive examples from the Metathesaurus

We derive our positive examples dataset from the UMLS
Metathesaurus’s MRREL table [25] that has over 26 million manually
curated relations that are sourced from different biomedical ter-
minologies. Among these we also have several treats and causes re-
lations which are used for our experiments. We needed an external
human vetted resource like the relations in UMLS given our knowl-
edge graph is derived from a computationally curated relation data-
base. We curated a set of around 7000 unique treatment relations
(entity pairs connected through the treats predicate) and 2918 unique
causative relations (entity pairs connected through the causes pre-
dicate) connecting UMLS concepts from the MRREL table. For each
predicate, we divided positive example datasets into 80% (5600 for
treats and 2334 for causes) forming the training set and 20% (1400 for
treats and 584 for causes) constituting the test set split. Although there
were more positive examples in MRREL, these counts are based on
pairs that had at least one path connecting them in the SemMedDB

Fig. 1. A sample graph of biomedical relations.

Fig. 2. An example of primitive patterns generated from a compound pattern
(from Eq. (1)).
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graph. This is necessary given we cannot make any prediction (given
there is no information) if the entities are not connected in the graph
from which we plan to extract patterns.

4.2. Selection of negative examples

Considering concerns identified in Section 2 to select negative ex-
amples for distant supervision we carefully choose negative examples in
our dataset using the following two steps.

1. Every predicate in the UMLS semantic network, including treats and
causes, has a set of domain/range semantic type constraints. That is,
based on expert consultation NLM prescribes which types of entities
can take the role of the subject and object for each relation. All such
possible and allowable subject-object semantic entity type combi-
nations for each predicate are available in three tables with the
SRSTR prefix [25] in the UMLS. We first randomly select a pair of
entities (from over 3 million unique UMLS concepts) that satisfies
these domain/range constraints for the predicate for which we want
to build the pattern based model.

2. For each pair selected in step 1, we check to see if the pair is con-
nected via the predicate of interest to us either in the UMLS MRREL
table or in the SemMedDB relation database. If it does not already
occur in our knowledge bases, we include it as a negative example in
our dataset.

This two-step process selects fairly hard-to-classify negative ex-
amples since they satisfy the domain/range constraints but do not
participate in a relationship represented by the predicate for which we
want to built the model. Checking for membership in both the UMLS
and SemMedDB resources minimizes concerns surrounding incomplete
knowledge bases. Since we want to predict treatment (causative) rela-
tions based on graph patterns, if the knowledge graph already has a
treats (causes) edge between our candidate pairs, the prediction could
become trivial and the whole process would be self-deceiving.
Therefore, we deleted any existing treats (causes) edges between entities
in all training/test positive pairs from the knowledge graph (note that
negative example selection already ensures this) to guarantee a fair
analysis of the predictive ability of graph patterns.

5. Experiments and results

Elaborate experimentation is essential to identify performance
trends across different aspects of our relation prediction problem in-
cluding dataset constitution and model features and parameters. In
this section we first outline some experimental configuration basics
before moving on to specific models built for this effort. We start with
the LR model and build upon its findings to experiment with decision
tree models.

5.1. LR model configurations and findings

We use the well known LR algorithm to predict whether an input
pair of entities participates in treatment or causative relationship by
building two separate binary classification models. The features for the
LR models are frequencies of patterns connecting the input entity pair
as discussed in Section 3. The specific implementation used is the LR
classifier based on the LIBLINEAR formulation made available through
the Python scikit-learn [28] machine learning library. Parameter tuning
for the regularization coefficient in the LR model did not yield any
noticeable gains and hence we chose to leave it at =C 1, the default
value in scikit-learn. Performances assessment in this effort are based
on standard measures of precision, recall, and F-score. All experiments
were repeated using hundred distinct 80–20% train-test splits of the
full dataset so as to account for chance and to derive average scores and
confidence intervals.

In our earlier paper [3], we experimented with a balanced training
dataset (equal number of positive and negative instances) considering
imbalanced scenarios for our test dataset. In the universe of all pairs of
entities that satisfy domain/range constraints for a predicate, most are
going to be false. For treats, an arbitrary drug-disease pair would not
have a treatment relationship. So we increased the numbers of negative
examples in the test to double that of the positive examples. We ex-
tended this imbalance with positive:negative ratios of 1:5 and 1:10.
With a balanced training dataset, the performance gradually decreased
as the test set imbalance increased. We kept the training dataset ba-
lanced to ensure that there is enough signal for the model to learn
patterns for positive instances. This style of oversampling of the positive
class is not uncommon in these cases where the class we care about is a
rare one. In our preliminary results the performance also increased with
the length of the patterns. That is, considering all patterns of length ≤ 3
resulted in better F-score when compared with considering patterns of
length ≤ 2 or one. All of our prior experiments outlined in our con-
ference paper were done with compound patterns.

In this extended version, we always keep the 1:10 imbalance in the
test set given large imbalance is inherent to the true distribution for
treats/causes. We then experiment with various imbalance scenarios in
the training dataset. This is to see whether increasing the number of
negative instances in the training dataset would result in performance
gains on the imbalanced test dataset. The negative examples are chosen
as discussed in Section 4.2. The full dataset size depends on the training
dataset imbalance selected. For example, for the balanced training da-
taset and 1:10 imbalanced test set scenario, for the treats predicate, we
have 7000 positive examples (5600 for training, 1400 for test) and
19,600 negative examples (5600 for training, 14,000 for test). When
the imbalance is 1:10 in both training and test datasets, the corre-
sponding counts are 7000 positive examples (5600 for training, 1400
for test) and 70,000 negative examples (56,000 for training, 14,000 for
test). Note that these count configurations are limited by the number of
positive examples available (Section 4.1).

Another parameter to select is the number of patterns to be included
in the feature space. When classifying text with word n-gram features,
researchers typically ignore all n-grams whose frequency is less than a
small threshold (mostly set to five). That is, all n-grams that occurred in
fewer than five documents (regardless of class membership) are ignored
in populating feature vectors. We have a similar situation here with an
overwhelming number of patterns of length ≤ 3 connecting entities
that have a treats or causes relation. We had over 50 million unique
compound patterns for treats and nearly 25 million such patterns for the
causes dataset. To reduce noise and address computational efficacy
concerns, we chose those patterns that occurred as connectives for at
least 500 entity pairs for treats and 100 pairs for causes in the corre-
sponding datasets. This rendered the feature spaces to manageable sizes
of around 600,000 unique patterns for treats and 200,000 for causes.

The overall architecture of our method is shown in Fig. 3. Although
we are currently discussing LR models, any supervised learning algo-
rithm can be used with graph pattern based features.

5.1.1. Balanced training dataset scenario
As we mentioned earlier in this section, the balanced models have

equal number of positive and negative examples in training dataset; the
test set always has ten times as many negative examples as the positive
ones to model realistic scenarios. In Table 1, we show the average
precision, recall, and F-scores computed over hundred distinct splits of
the full dataset for treats. The performance gains between the 1000 and
500 pattern frequency thresholds are not substantial. We see a precision
gain of around 4% and a recall loss of 0.3% for each threshold when
using primitive patterns over compound patterns.

Performances when using primitive patterns are also superior for
causes as shown in Table 2 except for the higher pattern frequency
threshold of 1000. The actual F-scores are lower for causative relations
when compared with treatment relations. The 95% confidence intervals
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we computed for F-scores have widths ≈ 0.01 when using primitive and
compound patterns; thus they do not overlap for both predicates. Thus
overall, primitive patterns are more effective for the balanced training
dataset scenarios.

5.1.2. Imbalanced training dataset scenarios
While keeping the 1:10 positive to negative class test imbalance, we

wanted to see the effect of increasing the imbalance in the training
dataset in contrast with the scenario in Section 5.1.1. From Tables 3 and
4, we notice that the imbalance setting where =N P| | 10·| | in training
datasets gives the best overall F-score when compared with situations
with less imbalance (including in comparison with top scores in Tables
1 and 2). Furthermore, the 95% confidence interval widths for the top
F-scores in Tables 3 and 4 are very small – 0.0011 (for treats) and
0.0036 (for causes). The improvements are not as substantial for treats
but are prominent for causes when training set imbalance is increased;
for the latter predicate, however, the recall goes down with increase in
training set imbalance which is compensated by an increase in precision
leading to an overall better F-score. Lowering the minimum pattern
frequency yields marginal improvements for treats compared with
corresponding gains for causes.

Note that our improvements in Tables 3 and 4 with imbalanced
training datasets are using compound patterns. Contrary to our ob-
servations in balanced training dataset scenarios (Section 5.1.1), we
noticed that compound patterns provided major gains over primitive
patterns for the imbalanced scenarios. Furthermore, the number of
patterns is substantially higher for primitive patterns (at least twice as
many) leading to additional efficiency concerns. We show our ob-
servations for causes in Table 5 when using primitive patterns. When
comparing these scores with those in Table 4, it is clear that

compound patterns are better overall in imbalanced training dataset
cases, which offer the best case for improving test score performances.
The 95% confidence intervals we computed for F-measures in the last
row and last column in Tables 4 and 5 have widths <0.01 and hence do
not overlap. Thus the improvements with compound patterns are
statistically significant. Although we do not show the results here, we
observed a similar trend with compound patterns outperforming
primitive patterns when considering patterns of length ≤ 2 for both
treats and causes. We believe this reversal in performance trend for
primitive patterns is due to the fact that imbalanced training datasets
lead to an explosion of unique patterns from the negative examples.
When this happens, the generic and simpler primitive patterns may
lose their discriminative power in comparison with the more specific
compound patterns.

5.2. Experiments with decision trees

In Section 5.1, we exclusively studied application of logistic re-
gression models to predict relations. In this section, we discuss addi-
tional experiments we conducted with decision trees [4] to explore
nonlinear models that are also interpretable. We use the same approach
as in Section 5.1 to come up with average scores over hundred distinct
runs with 80% used for training and 20% for testing. Our results are
shown in Table 6 for the imbalanced training dataset scenario with 1:10
imbalance in the test set (given this turned out to be the best config-
uration based on results from Tables 3 and 4). Given deeper trees can
model more complex relationships by trading off interpretability, we
experimented with scenarios where the maximum depth is restricted to
five and when it is left unconstrained. As can be noticed from the table,
the recall is much better when depth is not constrained. The scores are
also slightly better than the best results obtained through LR models
(from Tables 3 and 4).

5.3. Recall analysis using an external dataset: repoDB

Our experiments reported thus far involved positive relations that
are well known and recorded in the UMLS. Although our performance
scores reported are on held-out datasets, it is possible that patterns
connecting well known relations may not be present in newly dis-
covered relations. repoDB [5] is a database that has over 6000 FDA
approved drugs and corresponding indications collected from the reg-
ularly updated DrugCentral platform [35]. As such repoDB is expected

Fig. 3. Schematic of graph pattern based relation prediction.

Table 1
Balanced training data: test set scores with patterns of length ≤ 3 for treatment
relations.

Pattern Type Min. Frequency: 1000 Min. Frequency: 500

Precision Recall F-score Precision Recall F-score

Compound 0.675 0.926 0.781 0.683 0.928 0.786
Primitive 0.717 0.924 0.807 0.721 0.925 0.810

The bold scores indicate the highest values of F-score (indicating best perfor-
mances of the models).
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to contain the latest FDA approved drugs. To test our best (both LR and
decision tree) models,

1. We removed UMLS treatment relations from the list of all FDA ap-
proved drug-disease indications from repoDB.

2. We also removed relations whose entities are already connected
through a treats edge in SemMedDB.

3. Out of the remaining approved drug-disease relations, we removed
those that do not have at least one path connecting the involved
entities in the SemMedDB graph from which we derived
our patterns.

After these filtering processes, we were left with 2739 new treat-
ment relations. We built 100 different models for the treats predicate
based on positive examples used in Sections 5.1 and 5.2 with a fresh set
of negative examples chosen for each of the models. Next, we computed
the average recall by running them on these 2739 instances we ob-
tained from repoDB. Our results shown in Table 7 indicate that we are
able to recall over 50% of the approved drugs that are at least con-
nected with one path in SemMedDB. Decision trees (without max depth
constraints) proved to be much better than LR models. Primitive pat-
terns seems to help LR models while both types of patterns resulted in
similar performances when using decision trees. Using imbalanced
training data that gave us over 95% F-scores for held-out UMLS treat-
ment relations turned out to be ineffective to retrieve repoDB relations.
Under-sampling the majority class when the minority class is of high
relevance is a tested method [37] and appears to work well for our
situation too.

6. Qualitative analyses of LR models: informative patterns and
new hypotheses

In Section 5, we focused exclusively on quantitative evaluation of
our methods and showed that best results are obtained by using com-
pound patterns and imbalanced training datasets for both predicates.
But it is also important to analyze the patterns qualitatively in terms of
their discriminative power and their suitability in discovering pre-
viously unknown relations.

6.1. Exploring highly discriminative patterns

In order to assess the predictive contribution of different graph
pattern features, we conducted an additional experiment to identify
patterns that correlate well with positive examples. During the process
of building hundred different models based on hundred distinct
80–20% train-test splits of the full datasets, we stored model coeffi-
cients for all features. Subsequently, we ranked all patterns based on the
average coefficient value across the hundred models. If β is the model
coefficient of a pattern in the LR model, we know eβ is the odds ratio of
that pattern with respect to the positive class [17]. Hence, ranking
patterns in the descending order of the corresponding average model
coefficient values is equivalent to ranking them based on their im-
portance toward the positive prediction for the corresponding pre-
dicate. Thus we ranked all patterns accordingly and made them avail-
able as supplementary materials along with this manuscript. The
patterns can also be searched and visualized using an online interface:
http://patterns.mgokhanbakal.net/. In order to assess the sensitivity of
the top patterns, we considered the top hundred patterns selected as per
this ranking. For treats, the top 100 patterns cover 43% of the 7000
instances. For causes, the top 100 connected 25% of the full positive
instance dataset. This indicates that our method is able to identify high
quality patterns that can be used to query knowledge graphs for gen-
erating potential new hypotheses.

Another objective is to manually examine these patterns and see if
they are meaningful or informative in some sense. We show some in-
teresting patterns in Fig. 4 from our full pattern list for treats predicate.
Patterns P1–P4 are those obtained from the top 100 patterns among
nearly 600,000 unique patterns ranked. P1 indicates the situation
where two drugs treat a common condition (node 2) and given one of
them (node 3) treats our target condition, it is also plausible for our
source substance to treat the target. P2 has a similar structure except we

Table 2
Balanced training data: test set scores with patterns of length ≤ 3 for causative relations.

Pattern Type Min. Frequency: 1000 Min. Frequency: 500 Min. Frequency: 100

Prec. Rec. F-score Prec. Rec. F-score Prec. Rec. F-score

Compound 0.446 0.744 0.554 0.472 0.776 0.583 0.478 0.811 0.598
Primitive 0.400 0.736 0.518 0.510 0.756 0.609 0.546 0.791 0.645

The bold scores indicate the highest values of F-score (indicating best performances of the models).

Table 3
Imbalanced training data: test set scores with ≤length 3 compound patterns for
treatment relations.

Imbalance in training set Min. Frequency: 1000 Min. Frequency: 500

Prec. Rec. F-score Prec. Rec. F-score

=N P| | 2·| | 0.979 0.962 0.970 0.981 0.964 0.973
=N P| | 4·| | 0.988 0.964 0.976 0.988 0.966 0.977
=N P| | 10·| | 0.992 0.966 0.979 0.992 0.968 0.980

The bold scores indicate the highest values of F-score (indicating best perfor-
mances of the models).

Table 4
Imbalanced training data: test set scores with ≤length 3 compound patterns for causative relations.

Imbalance in training set Min. Frequency: 1000 Min. Frequency: 500 Min. Frequency: 100

Prec. Rec. F-score Prec. Rec. F-score Prec. Rec. F-score

=N P| | 2·| | 0.744 0.724 0.732 0.868 0.775 0.819 0.865 0.846 0.855
=N P| | 4·| | 0.851 0.698 0.766 0.922 0.760 0.833 0.924 0.837 0.878
=N P| | 10·| | 0.950 0.646 0.769 0.967 0.745 0.842 0.967 0.816 0.885

The bold scores indicate the highest values of F-score (indicating best performances of the models).
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have a common therapeutic procedure that uses the two medications (a
source and another intermediate antibiotic). P3 involves the patient
group semantic type (e.g., cancer patients) that is connected to a con-
dition via the process-of predicate. It also uses a class membership re-
lation as the first edge to form a meaningful pattern connecting the
instance of a class of drugs to a target condition affecting a patient
group. P4 involves two conditions (an intermediate one and the target
condition) that share an immunologic factor and the pattern connects
the source to the target via a treatment relation involving the inter-
mediate condition. Thus we see that patterns identified through our
approach appear to have an intuitive semantic interpretation.

Patterns P5–P8 are also high scoring patterns that appeared in the
top 1% of the full ranked list. We show them in the figure given a recent
effort by Cohen et al. [10] also identified them as top scoring reasoning

pathways for cancer therapies. In fact, all pathways identified by them
show up in the top 1% of our ranked pattern list. We do not show the
semantic types of intermediate nodes given Cohen et al. do not consider
types as part of their reasoning pathways. So each of their pathways can
match multiple patterns in our list; hence, we show counts of our un-
ique patterns (or unique type combinations) that match the corre-
sponding pathway in parentheses next to the ID for P5–P8 in Fig. 4.
However, as we pointed out in Section 2, Cohen et al.’s work takes a
retrieval approach to identify a few top patterns, while we focus on
building a high accuracy predictive probabilistic model that is also
interpretable through its feature coefficients.

One interesting observation here is that most of the patterns for
treatment relations shown in Fig. 4 have a treats edge in them. In fact,
among the top 1000 treatment (causative) relation patterns 646 (241)
contain a treats (causes) edge. This is not surprising for treatment re-
lations given certain drugs and procedures treat clusters of diseases that
share certain characteristics. Thus, even though the predicted relation
may not be there in the SemMedDB graph, other treatment relations
involving the subject medication might be indicative of its therapeutic
potential for the target condition. Intuitively, this also conveys the
general motivation behind computational drug repurposing efforts that
are popular these days [2,18,39]. Another aspect of note is that most
top patterns are of length three. Of the top 10,000 patterns for each
predicate, the count of length two patterns is only 24 for treats and 47
for causes. This might simply be because of the fact that, in general,
paths of length three are much more common than length two asso-
ciations in SemMedDB. Hence length three patterns offer a much larger
feature space to exploit for our predictive models.

6.2. Discovering new relations

Our evaluations thus far focused on hand curated relations already
recorded in the UMLS or repoDB. However, we thought it would be
more interesting to see if our approach can discover new plausible

Table 5
Imbalanced training data: test set scores with ≤length 3 primitive patterns for causative relations.

Imbalance in training set Min. Frequency: 1000 Min. Frequency: 500 Min. Frequency: 100

Prec. Rec. F-score Prec. Rec. F-score Prec. Rec. F-score

=N P| | 2·| | 0.531 0.685 0.597 0.626 0.710 0.665 0.667 0.728 0.696
=N P| | 4·| | 0.619 0.667 0.642 0.721 0.684 0.702 0.761 0.689 0.723
=N P| | 10·| | 0.762 0.597 0.669 0.799 0.623 0.700 0.817 0.621 0.705

The bold scores indicate the highest values of F-score (indicating best performances of the models).

Table 6
Imbalanced training data: average test set scores using decision trees with
compound patterns.

Predicate type Max depth= 5 No depth constraint

Precision Recall F-score Precision Recall F-score

Treats 0.998 0.815 0.897 0.994 0.987 0.990
Causes 0.994 0.506 0.669 0.922 0.887 0.904

The bold scores indicate the highest values of F-score (indicating best perfor-
mances of the models).

Table 7
Balanced training data: average recall on repoDB.

Model Compound Primitive

LR 18.6% 43.1%
Decision tree 52.9% 50.7%

Fig. 4. Example discriminative treats patterns obtained through our methods.
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relations that are not already known. From Sections 5.1.2 and 5.2, it is
clear that our approach achieves very high precision for both treatment
and causative relations. However, we still have some false positives
(FPs). The intuition is that high scoring FPs could actually be plausible
new relations that are not already known to the medical community. To
this end, we chose 10,000 new negative examples for treats and causes
that are not part of the negative examples chosen to be in our training
datasets used in Section 5 and the additional examples used in this
section. We built 100 different models for each predicate changing only
the negative examples as was done in Section 5.3. We applied these
hundred models to each of the 10,000 negative examples chosen for
this experiment.

Next, we needed a way to carefully choose high confidence positive
predictions for expert review. For this, we finalized a list of all negative
examples that were predicted as positive by at least 90 models (that is
with output probability ≥ 0.5) and have an average probability estimate
of at least 0.9 (overall hundred models). This process resulted in a total
of 181 instances for treats and 138 instances for causes. These poten-
tially new relations were independently reviewed by two practicing
inpatient physicians (co-authors Drs. Talari and Kakani) at the
University of Kentucky hospital for biomedical plausibility. After in-
dependent annotations, both physicians resolved their disagreements.
33% of treats FPs and 28% of the causes FP instances examined were
deemed plausible by the physicians. Thus we are able to identify rela-
tions that are not in our knowledge bases but are still plausible.
However, we needed experts to also assess novelty based on their
knowledge. Although these FPs are plausible positive instances, they
could just be common knowledge to experts and are simply not avail-
able in UMLS and SemMedDB. Among the treats instances that were
deemed plausible, 68% were also identified as potentially novel find-
ings by the physicians. This proportion is only 5.5% for causes; so most
plausible FPs were already known to the experts despite their absence
in our sources.

Among the manually reviewed FP examples, the experts chose a few
plausible and novel examples for each relation (treats and causes) and
came up with the corresponding plausibility explanations as follows.
This was done to simulate the discovery process using our approach and
offers additional evidence of practical relevance of our methods.

Plausibility of new treatment relations identified.

1. Gentamicin Sulfate ⎯ →⎯⎯⎯⎯⎯⎯⎯
TREATS

Anthrax disease: Gentamycin Sulfate is
an antibiotic that is used on the outside of the body (topical). It
belongs to aminoglycoside class of antibiotics. It acts by disrupting
the normal cycle of ribosomes, which are the structures present
inside a cell. This disrupts initiation of protein synthesis inside the
cells. These antibiotics are directed primarily against aerobic gram-
negative bacilli class of bacteria but have limited activity against
gram-positive class of bacteria. Bacillus Anthracis bacteria causing
Anthrax is classified as gram-positive rod. Cutaneous Anthrax dis-
ease can be potentially treated by topical gentamicin sulfate with
the above rationale.

2. Orbifloxacin ⎯ →⎯⎯⎯⎯⎯⎯⎯
TREATS

Dysentery — Infectious Diarrhea:
Orbifloxacin is an antibiotic mainly used in animals. It belongs to
fluoroquinolone class of antibiotics. Fluoroquinolone class of anti-
biotics are used in human beings for the treatment of Dysentery and
Infectious diarrhea. Orbifloxacin is a fluoroquinolone antibiotic, so
there is a biological plausibility for it be used in human beings for
the treatment of Dysentery and Infectious diarrhea, as the me-
chanism of action of these group of drugs is the same.

3. Zorubicin ⎯ →⎯⎯⎯⎯⎯⎯⎯
TREATS

Acute Myelomonocytic Leukemia: Zorubicin is
a medication that belongs to Anthracyclin class of drugs.
Anthracyclin class of drugs are used in the treatment of cancers
including leukemia. Therefore, it is biologically plausible for it to be
used in the treatment of acute myelomonocytic leukemia.

4. Ziconotide ⎯ →⎯⎯⎯⎯⎯⎯⎯
TREATS

Nonspecific Urethritis: Ziconotide is a synthetic

peptide related to the marine snail toxin ω-conotoxin, which selec-
tively blocks N-type calcium channels at the cellular level. It is used
in patients with chronic pain by injecting this substance into the
spinal canal. With this rationale, this drug can be used to treat pain
from Nonspecific urethritis as well through the same mechanism
of action.

5. Miocamycin ⎯ →⎯⎯⎯⎯⎯⎯⎯
TREATS

Staphylococcus Aureus Pneumonia:
Miocamycin is an antibiotic that belongs to Macrolide class anti-
biotics. Macrolide antibiotics have activity against many classes of
bacteria including gram-positive cocci class of bacteria.
Staphylococcus Aureus is a gram-positive cocci class of bacteria.
With this rationale, miocamycin can be used to treat Pneumonia
caused by Staphylococcus Aureus bacteria.

Plausibility of new causative relations identified.

1. Human Metapneumovirus ⎯ →⎯⎯⎯⎯⎯⎯⎯
CAUSES

Systemic Lupus
Erythematosus (SLE): The etiology of SLE is unknown and is
probably multifactorial. Interplay of genetic predisposing factors,
environmental factors, and hormonal factors is thought to play a
role. Among environmental factors, various viruses are thought to
stimulate the body’s immune network. For example, people with
SLE are known to have high levels of autoantibodies to Epstein Barr
virus and certain retroviruses. Thus the role of immune response to
Human metapneumovirus infection in the etio-pathogenesis of SLE
is a topic that warrants additional exploration.

2. Maternal Fetal Infection Transmission ⎯ →⎯⎯⎯⎯⎯⎯⎯
CAUSES

Autoimmune
Diseases: The etiology of many autoimmune diseases is unknown.
During immune development in the fetus, maturing lymphocytes in
thymus and bone marrow are exposed to several antigens and those
immune cells reacting to self-antigens are selectively inactivated via
apoptosis (programmed cell death) or by induction of anergy. Thus
the involvement of fetal infection during gestation with the process
of self-antigen recognition is worth further analysis.

3. Human Herpes Virus 6 ⎯ →⎯⎯⎯⎯⎯⎯⎯
CAUSES

IgG Gammopathy: Human herpes
virus 6 (HHV-6) was first isolated in patients with lymphoproli-
ferative disorders. HHV-6 infection has been associated with a
prolonged mononucleosis like syndrome with prolonged lympha-
denopathy and encephalitis. Associations between HHV-6 and dis-
eases such as multiple sclerosis and neoplasia have been proposed
but remain unproven. HHV-6 antigens and DNA have reportedly
been detected in some malignant tissues such as lymphomas. Hence
HHV-6 may play a role in IgG gammopathies (increased im-
munoglobulins belonging to Ig-G class due to abnormal proliferation
of some bone marrow cells) such as Monoclonal gammopathy of
uncertain significance (MGUS) deserving additional attention.

7. Limitations

Despite the evidence of effectiveness of our models from Sections 5
and 6, our methodology has a few important limitations.

1. A main caveat of our approach pertains to the “true” recall of our
models. Specifically, in Sections 4.1 and 5.3 we make an important
assumption that the positive examples we chose for our experiments
must be connected in the SemMedDB graph with at least one path.
Otherwise, our feature vector will be a zero vector and will have no
information for prediction. Similar to the assumption that the rela-
tion must be expressed in the sentence for NLP approaches and the
assumption that candidates must co-occur in at least one sentence
for pattern based distant supervision approaches, our assumption is
also reasonable. In fact, our constraint is less restrictive than those of
other approaches given we do not require subject-object co-occur-
rence but that they simply be participants in relations with other
entities and have enough shared context to have a path of length
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≤ 3. Nevertheless, our recall values should be qualified with the
constraint of being relevant only for recoverable instances.

2. Another issue with our core method is the need to extract paths
connecting entities of length ≤ k. Although we handled =k 3 using
straightforward heuristics, we are not aware of a simple way to do
the same for >k 3. One could argue that longer paths may not be
essential and may adversely affect the prediction accuracy.
However, even for =k 3, as the knowledge graph becomes denser
with new findings connecting more and more entities in it, the
simple task of enumerating all paths can be very expensive. In this
case, one might need to resort to effective heuristics to prune which
edge types to include in the analyses, a common practice in graph
based knowledge discovery [7,10].

3. In our approach, we need to train a binary model for each predicate
separately. This may be general practice when we are interested in
specific relation types but ideally an approach that jointly learns a
single model capable of predicting one or more viable predicates
among several possible (say, the 54 predicates from the UMLS se-
mantic network) may be preferable. Recent advances in neural
networks especially with the multi-class or multi-label cross entropy
loss [34] may enable such a unified model.

8. Conclusion

Treatment and causative relations are central to knowledge discovery
in biomedicine. In this paper, we employed semantic graph patterns
connecting pairs of candidate entities as the sole set of features to predict
treatment and causative relations between them. We exploited a well-
known biomedical relation database, SemMedDB, to build a knowledge
graph with over 14 million edges extracted from scientific literature. We
then used this graph to derive features and also select suitable negative
training instances for predictive modeling experiments.

Evidenced by the results presented in Section 5, we have success-
fully verified our hypothesis that semantic patterns over knowledge
graphs can be powerful predictors of treatment and causative relations.
Specifically in Section 5.3 we demonstrated that supervised treats
models trained with graph pattern features can also recall newly ap-
proved drugs along with the corresponding indications from an external
dataset. In Section 6, we analyzed the top patterns informed by model
coefficients and demonstrated their interpretability for gaining insights
into the prediction process. Additionally, we sought human expert as-
sessments to demonstrate the utility of the proposed approach in
identifying potentially novel and previously unknown relations. Even
though our central idea is straightforward and intuitive, it can be
naturally generalized to other predicates such as disrupts and prevents,
and also to other domains of interest where knowledge graphs of rea-
sonable quality are available. In addition to potential extensions in-
dicated in Section 7, an important research direction is to adapt our
work to n-ary relations or events such as protein-protein interactions
where besides the participating entities and the interaction type, ad-
ditional attributes such as cell/tissue type where the interaction took
place are also to be predicted. For now, our results in this effort de-
monstrate that semantic patterns over knowledge graphs hold great
promise for global relation prediction in biomedicine.
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