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Abstract—Medical subject headings (MeSH) is a controlled
hierarchical vocabulary used by the National Library of Medicine
(NLM) to index biomedical articles. In the 2014 version of MeSH
terminology there are a total of 27,149 terms. Librarians at the
NLM tag each biomedical article to be indexed for the PubMed
literature search system with terms from MeSH. This means
the human indexers look at each article’s full text and index it
with a small set of descriptors, 13 on average, from over 27,000
descriptors available in MeSH. There have been many recent
attempts to automate this process focused on using the article title
and abstract text to predict MeSH terms for the corresponding
article. There has also been an open automated biomedical
indexing challenge, BioASQ [1], that started in 2013. The best
general supervised learning framework in these challenges has
been a pipeline with four different components: 1. pre-processing
and feature extraction; 2. employing the binary relevance and/or
nearest neighbor approaches to select a set of candidate terms;
3. ranking these candidate terms using corresponding informative
features; and 4. applying label calibration to dynamically predict
the number of top terms to be included in the final selection
for the current instance. The specific details in how each of
these components is implemented determines the performance
variations of various entries in the challenge. In this paper,
we analyze these moving parts of the MeSH indexing multi-
label classification pipeline with experiments involving different
combinations. Our best combination achieves ≈ 1% increase in
micro F-score compared with the top performing team across
the five weeks of the final batch of the BioASQ 2014 challenge.
The main take away from our efforts is that small improve-
ments/modifications to different components of the pipeline can
offer moderate improvements to the overall performance of
the method. Our experiences show that, at least thus far, top
performances have resulted mostly due to these improvements
rather than drastic changes of the core methodology.

I. INTRODUCTION

Indexing biomedical articles with medical subject headings
(MeSH) is an important task that has significant impact on how
researchers search and retrieve relevant information. This is
going to be more essential in the future given the exponential
growth of biomedical articles indexed by PubMed R©, the main
biomedical literature search system of the National Center
for Biotechnology Information (NCBI). PubMed lets users
search over 22 million biomedical citations available in the
MEDLINE bibliographic database curated by the National Li-
brary of Medicine (NLM) from over 5000 leading biomedical
journals in the world. To deal with the explosion of information
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on various topics, users rely on queries involving MeSH terms
that are assigned to each biomedical article. This is because
MeSH terms are assigned by librarians after considering the
full text of an article and, as such, capture the semantic content
of an article that cannot easily be captured by keyword or
phrase searches. Once articles are indexed with MeSH terms,
users can quickly search for articles that pertain to a specific
subject of interest instead of relying solely on key word based
searches. Besides this direct application, recent efforts also
demonstrated that using the set of MeSH terms assigned to
an article as its semantic proxy can be helpful in high level
applications such as literature based knowledge discovery [2].

Indexing biomedical articles with MeSH terms involves
human indexers’ understanding of the article and their familiar-
ity with the MeSH vocabulary. As such, the manual indexing
task suffers from consistency issues and takes a significant
amount of time leading to delays in the availability of indexed
articles. Hence many recent efforts focused on assigning MeSH
terms to biomedical articles to expedite this process. They
typically use solely the abstract and title text of the articles
(the citation text) given most full text articles are available
based on paid licenses not subscribed by many researchers.
Increased interest in automated indexing has led to the creation
of the annual automated indexing challenge, BioASQ [1],
where participants are asked to upload their predictions for a
few thousand citations each week for a total of fifteen weeks
divided into three batches of five weeks each. This paper
describes our approach and results on the final batch of the
2014 BioASQ dataset 1 where we were able to outperform the
best model by ≈ 1% in micro F-score over the five weeks of
the third and final batch. We primarily discuss our experiences
in analyzing and fine tuning various moving parts of the multi-
label classification framework used earlier by us [3] and other
prior efforts including the top contenders in the challenge.

We outline the rest of the paper here. In Section II, we
discuss prior work on predicting MeSH terms and also outline
the basic approaches taken to that end. We subsequently
elaborate the full multi-label classification pipeline we use

1We did not participate in the 2014 challenge; our analysis was conducted
in a post-hoc fashion in Fall 2014. We participated in batches two and three of
the recently concluded 2015 BioASQ challenge where our model is currently
placed 2nd in second batch and 3rd in the final batch. The final results are
not yet determined presumably because several citations have not yet been
assigned terms at the NLM. Also, the participants and their methods are not
disclosed and hence at this point we are not able to discuss these details.



Fig. 1: High Level Overview of the MeSH Indexing Pipeline

for our experiments, including specific details of different
components employed, in Section III. We present our results
and lessons learned in Section IV and conclude with future
research directions in Section V.

II. BACKGROUND AND RELATED WORK

Indexing a biomedical article with multiple MeSH terms
is an instance of the well known multi-label classification
problem where multiple labels from fixed vocabulary need
to be assigned for each instance. The large scale nature of
indexing with MeSH terms comes due to two aspects: the
large number of labels (over 27,000) and the label cardinality
≈ 13. Furthermore, Rubin et al. [4, Figure 1] also observe that
MeSH is a power-law dataset with most terms having very few
examples. Hence traditional approaches that seem to perform
very well on multi-label learning problems do not perform well
for MeSH indexing.

NLM initiated efforts in automatic MeSH term assignment
with their medical text indexer (MTI) program that exploits
terms from already tagged related citations in combination with
named entity recognition (NER), unsupervised clustering, ad
hoc indexing rules, and candidate term ranking heuristics in a
pipeline [5]. MTI recommends MeSH terms for NLM indexers
to assist in their efforts to expedite the indexing process.

All prior efforts on MeSH term assignment can be decom-
posed into following three distinct approaches:

1) The first depends on obtaining and mapping named
entities from the input citation to MeSH concepts
using knowledge based methods [5], [6]

2) The second relies on obtaining the top k already in-
dexed nearest neighbors [3], [7] of the input instance
(k-NN approach) and uses the learning-to-rank (L2R)
approach with novel features to learn a function that
ranks the MeSH terms from these neighbors.

3) the third relies on meta-learning to train custom
binary classifiers [8] for each MeSH term and indexes
the best performing model for each label to be
applied on new citations. This is generally called the
binary relevance approach where feature selection [9]

and training data sampling [10] techniques can be
separately applied to each term’s classifier.

In general, state-of-the-art models (e.g., [11], winner of the
2014 BioASQ challenge) use a combination of all three
approaches by combining the k-NN approach with the binary
relevance approach, where candidates from a few ‘close’
neighbors are combined with top few predicted candidates
from the binary relevance approach (based on classifier scores).
This combined set of candidates is then ranked using L2R
with a variety of features for each candidate that include
neighborhood similarity scores from the k-NN approach and
classifier scores from the binary relevance approach. Named
entities and other knowledge based approaches are used as
part of the features for L2R or for individual classifiers in the
binary relevance approach. Finally, label calibration is used to
select the top few terms in the ranked candidate list as the final
set of predicted terms. Application of L2R followed by label
calibration is especially important for power law datasets like
MeSH where many labels have very few training examples.
The general framework we use in this paper is along the same
lines but we elaborate the specific details in the next section.

III. MESH INDEXING PIPELINE

As we see from the high level schematic of the multi-
label classification pipeline in Fig 1, it essentially uses binary
relevance and nearest neighbors components to come up with
a set of candidate terms that are ranked using the L2R model
following by a calibration model that picks an appropriate
number of top terms to be retained as the set of predicted
terms for the input citation. Next, we elaborate on different
options for each of the components.

A. Tokenization

This is essential for training the binary classifiers for each
MeSH term. We experiment with three different tokenizers.
First, we use the standard regular expression for tokenization
available in the Scikit-Learn [12] machine learning frame-
work: “(?u)\b\w\w+\b”. The second is the Natural Language
Toolkit [13] (NLTK) implementation of the Penn Treebank



(PTB) tokenizer, which is a more complex set of regular
expressions expected to yield better tokenization. The third
tokenizer was specifically built for biomedical text by Jiang
and Zhai [14]. For this tokenizer we use a custom imple-
mentation which applies the heuristic rules, break point set
one, and join-normalization from [14]. Table I provides sample
text fragments that typically occur in biomedical text and the
tokens obtained using each of the three different tokenization
methods. Each token from a fragment is separated by a comma
and escaped commas mean the comma is part of the token.
Note that we remove single character tokens. We note that
the biomedical tokenizer nicely groups the characters for the
“hba-1c” test and “mip-1alpha” protein as single tokens, while
the other two tokenizers split them. The PTB tokenizer retains
certain characters like hyphens and slashes as part of tokens
while the Scikit-Learn tokenizer ignores them in the tokens.

TABLE I: Sample outputs of the Scikit-Learn, NLTK Pen-
nTreebank, and biomedical tokenizers. Each token is separated
by a comma. escaped commas mean the comma is part of the
token. Note that we remove single character tokens

Fragment 1 (HbA(1c) >=6% or GO >=1.26 g/L)

Scikit-Learn hba, 1c, or, go, 26

NLTK PennTreebank hba, 1c, =6, or, go, =1.26, g/l

Biomedical Tokenizer hba1c, or, go, 1.26, gl

Fragment 2 (MIP)-1alpha, pRB/p105

Scikit-Learn mip, 1alpha, prb, p105

NLTK PennTreebank mip, -1alpha, prb/p105

Biomedical Tokenizer mip-1alpha, prbp105

Fragment 3 2’,5’-linked 3’-deoxyribonucleotides

Scikit-Learn linked, deoxyribonucleotides

NLTK PennTreebank 2’\,5’-linked, 3’-deoxyribonucleotides

Biomedical Tokenizer 2’\,5’-linked, 3’-deoxyribonucleotides

Fragment 4 (Langerhan’s cells)

Scikit-Learn langerhan, cells

NLTK PennTreebank langerhan, ’s, cells

Biomedical Tokenizer langerhan, cells

B. Candidate MeSH Terms Generation

We take advantage of three different classifiers including a
linear support vector machine (SVM), k-NN using the BM25
model [15, Chapter 11.4], and k-NN using PubMed Related
Citations (PRC2 [16]). It is well known that linear SVMs are
one of the top performing algorithms for text classification.
To use the SVM classifier we use the binary relevance trans-
formation. Let T be the set of labels and let q = |T |. Binary
relevance learns q binary classifiers, one for each label in T . It
transforms the dataset into q separate datasets. For each label
Tj , we obtain the dataset for the corresponding binary classifier
by considering each document–label-set pair (Di,Yi) and
generating the document-label pair (Di, Tj) when Tj ∈ Yi

and generating the pair (Di,¬Tj) when Tj 6∈ Yi. It is standard

2Although PRC is not a traditional information retrieval based k-NN
implementation, at a high level it essentially obtains closely related neighbors.

practice to make predictions based on the output of the SVM
if the confidence score returned is greater than zero. However,
because of the extreme class imbalance scenarios we face
with MeSH terms, this simply does not work; for most low
frequency terms the simpler approach would lead to many false
negatives. So when predicting in this situation, the labels are
ranked based on their score output by the corresponding binary
classifiers and the top m labels are considered as the predicted
set for a suitably chosen m (more later).

In the k-NN approach, we first fetch k instances Di,
i = 1 . . . k, in the training dataset that are content-wise most
similar to the test instance I . Hence, we assume that most
correct labels for I are going to be in the neighborhood

Nk(I) =

k⋃
i=1

G(Di), (1)

where Di, . . . , Dk are the k nearest neighbors and G(Di) is
the set of correct labels for the training instance Di. However,
Nk(I) may be very large compared with the number of labels
assigned per instance (which is in the range of 13-15 MeSH
terms for our current problem). Hence, a ranking on labels in
Nk(I) is imposed based on the document similarity scores of
I with each Di. Subsequently, just like the binary relevance
approach the top m labels are retained as the predicted set for
a suitably chosen m. In this study, we explore two different
approaches to obtained nearest approaches, the first using the
BM25 model implemented in the Whoosh3 Python framework
and the second using NLM’s PRC model.

As shown in Fig 1 we actually combine the candidates
generated by both the binary relevance approach and the k-NN
approaches. Specifically, we select the top 100 terms from the
binary relevance approach based on SVM classifier scores. The
final candidate set is generated by combining (set union) these
100 terms with the set of terms from the top 10 training set
neighbors with the BM25 model and top 25 related citations
with the PRC model.

C. Ensemble Modeling through Learning-to-Rank

L2R [17] was originally introduced for information re-
trieval to rank a set of documents for an input search query
based on various features that measure relevance of the doc-
ument to a given query. Here we adapt this approach to
rank MeSH terms generated in Section III-B. L2R follows a
supervised approach and in its training phase, takes as input
a training dataset of PubMed citations and the corresponding
ranked lists of MeSH terms:

{(Di,R(Ti)) : i = 1, . . . , n}, (2)

where Di is an input citation, Ti is the set of candidate MeSH
terms associated with Di (generated as in Section III-B),R(Ti)
is the ground truth ranking on the terms for Di, and n is the
size of the training dataset. We essentially rank all correct
terms above all other irrelevant terms to generate R for train-
ing. The algorithm then learns a ranking model that minimizes
an appropriate loss function that pertains to the ranking. We
note that the training process extracts features fj(T r

i ), where
r = 1, . . . , l(i), for each term T r

i ∈ Ti where l(i) is the number

3https://bitbucket.org/mchaput/whoosh

https://bitbucket.org/mchaput/whoosh


of terms provided to the i-th citation instance for training and
j is the feature index. The features for the MeSH terms are
heavily based on the specific input citation to tightly constrain
the ranking based on information available in it. Finally, given
a new test citation and a set of candidate terms as input,
the learned model imposes a ranking on the terms based on
citation specific MeSH term features. For our effort, L2R can
be thought of as an ensemble modeling approach similar to
stacking. This means that the features used for learning-to-rank
are the scores obtained by the individual classifiers described
in Section III-B and additionally the MTI output for the input
instance. We used the LambdaMART [18] method for L2R and
maximized the expected reciprocal rank [19] function. Next,
we describe the features used for each candidate MeSH term.

The first feature we use is based on the classifier score
returned by the SVMs trained for each term. Specifically, it is

fC(t, I) =
1

1 + e−H(t,I)
,

where H(t, I) is the score returned on input citation I by the
SVM trained for MeSH term t. We use the sigmoid function
to normalize the scores to a [0, 1] range, a standard practice
when dealing with SVMs and is important depending on the
specific L2R algorithm used.

For both of the k-NN methods we create neighborhood
features. For each citation neighbor Dj for a test instance I , we
also have the corresponding similarity score S(Dj , I), which
is essential to find the nearest neighbors in the first place (using
either BM25 or NLM’s PRC). Using these similarities, for a
given candidate term t ∈ Nk(I), we compute the neighborhood
feature as the sum

fNk (t, I) =
1

Z(I)

∑
Dj :t∈G(Dj)

S(Dj , I),

where D1, . . . , Dk are the nearest neighbors of I and G(Dj)
are the correct MeSH terms for training citation Dj as in
Equation 1 and Z(I) is the normalization constant

Z(I) =
∑

t∈Nk(I)

∑
Dj :t∈G(Dj)

S(Dj , I).

From MTI we don’t have a score, rather we have a binary
indicator variable representing if a given label was predicted
by MTI. Let M(I) be the set of MeSH terms predicted by
MTI for citation I . We use the binary feature

fM (t, I) =

{
1, if t ∈M(I);

0, otherwise.

D. Label Calibration

We transform the multi-label classification problem to an
L2R problem and end up with a ranking based on the scores
of the final output of the methods discussed in Sections III-B
and III-C. In order to predict an appropriate small set of labels
from among all candidates for each input citation, our goal is to
pick the top m labels in the final L2R ranking for each citation
so that we can optimize the micro F-score used for our final
evaluation. In this section, we outline label calibration methods
we used for this purpose.

We experiment with four methods: RCut [20], MetaLa-
beler [21], OneThreshold [22], and finally we try a combina-
tion of MetaLabeler and OneThreshold approaches. Before we
proceed, let P(I) be the ranked list of candidates output by
L2R for input instance I , Pm(I) be the set of top m terms
in P(I), and F(I) be the finalized list of candidates predicted
for I based on label calibration. Thus F(I) is set used in
computing performance measures for the entire pipeline.

The finalized predications using rank based cut (RCut) for
an instance I is F(I) = Pm(I), where m > 0 is fixed global
value chosen such that it maximizes the micro F-score based
on a validation dataset. This means every instance I will have
exactly m labels in the final prediction.

OneThreshold builds on RCut by making it possible to have
a different number of labels for each instance depending on
the scores returned by the L2R method. For each instance I ,
we have

F(I) = {x ∈ P(I) : λ(x, I) ≥ p}, (3)

where p is a threshold value optimized over a validation dataset
to get the best micro F-score and λ(x, I) is the L2R score of
the candidate MeSH term x for I .

The third method we experiment with is the use of a
MetaLabeler where we learn a regression model with the same
n-gram features used to train the SVM. However, instead of
trying to predict a MeSH term for a given instance, a linear
regression model f predicts the appropriate number of labels
for I . Thus we have

F(I) = {x ∈ Pf(I)(I)}. (4)

It is straightforward to see that RCut is very restrictive in
simply selecting a fixed global number of terms given in reality
the number of terms varies with each citation. Both MetaLa-
beler and OneThreshold counter this weakness by dynamically
selecting the number of terms based on the input instance
using different approaches. Although MetaLabeler adapts the
number of terms to each instance, it might inadvertently also
select those that have extremely low L2R scores leading to
false positives. Hence we also experiment with a combination
of both these approaches and select

F(I) = {x ∈ Pf(I)(I) : λ(x, I) ≥ p},

where definitions of p, f(), and λ() are those used earlier in
equations 3 and 4.

IV. EXPERIMENTS AND RESULTS

We conducted separate experiments to analyze the impact
of choices made in various components of the pipeline. We
used a dataset of 1.2 million4 biomedical citations for training
the SVM classifiers and indexed around 11 million citations for
obtaining the BM25 neighbors. The testing for each component
is done on the combined set of citations from all five weeks
of the batch three of the 2014 BioASQ challenge. We ensured
that training and validation sets used for the SVM, k-NN,
and MetaLabeler are mutually exclusive from the training and

4The challenge does not impose any constraints on the number of training
examples to be used. Given one needs to train over 27,000 classifiers, for
practical reasons most teams including ours chose about a million.



validation datasets used for L2R. There is also no overlap
between the test set and all the training and validation datasets
used in the pipeline given our training datasets were subsets
of the already index 2014 PubMed baseline data (released in
Dec 2013) and the challenge was exclusively on citations that
are not already indexed in PubMed.

For evaluation we use the popular micro F-score which was
the main scoring measure in the challenge. The label-based
micro precision, recall, and F-score are defined as

Pmic =

∑|T |
j=1 TPj∑|T |

j=1(TPj + FPj)
, Rmic =

∑|T |
j=1 TPj∑|T |

j=1(TPj + FNj)
,

and Micro-F =
2Pmic ·Rmic

Pmic +Rmic
,

where TPj , FPj , and FNj are true positives, false positives,
and false negatives, respectively, of label Tj . It is important
to note that micro F-score inherently weights more frequent
terms higher than infrequent terms. So if frequently occurring
terms are predicted with high accuracy, we will end up with a
better micro F-score even if the performance is not very high
for several infrequent labels.

A. Tokenization Comparison

Table II presents our results with the three tokenizers
discussed in Section III-A. These are obtained by first us-
ing the binary relevance approach and training SVMs with
the tokenized citations and using the LibLinear [23] SVM
implementation from Scikit-Learn [12]. MetaLabeler is then
applied to obtain the final predictions in the test set. The
classifiers were trained using both unigrams and bigrams re-
moving infrequent n-grams that occurred fewer than six times.
As can be noticed from the table, the simpler Scikit-Learn
tokenizer performed much better than the biomedical tokenizer
or the PTB tokenizer. This was counterintuitive to us given the
biomedical tokenizer seemed to collapse similar looking tokens
that are semantically equivalent in the domain. Although it
might be more useful for NER, for text classification simpler
approaches seemed to work better. This may be because
simpler approaches like the Scikit-Learn tokenizer tend to
prefer smaller but, nevertheless, meaningful tokens (e.g., see
fragment 2 in Table I) that are more common, than longer and
rare tokens that can lead to major sparsity issues in the feature
space. The main takeaway for us was that the choice of the
tokenizers can greatly influence the performance of multi-label
text classification pipelines.

TABLE II: Tokenizer performance comparison

Tokenizer Pmic Rmic Micro-F

Scikit-Learn 0.6037 0.5985 0.6011
NLTK PennTreebank 0.5508 0.5689 0.5597

Biomedical Tokenizer 0.5510 0.5691 0.5599

B. Individual Classifier Comparison

In this section we compare the individual classifier per-
formances for SVMs, k-NN (BM25 and PRC), and default

MTI. Both the k-NN and SVM methods use MetaLabeler
for obtaining the final predictions. The SVM classifiers were
trained as discussed in Section III-A. The NLM PRC neighbors
and scores were gathered using the NLM Entrez programming
Utilities implemented in Biopython [24]. The default MTI
scores are obtained using the MTI predictions made available
on the BioASQ challenge website. We used the default param-
eters of b = 0.75 and k1 = 1.2 (see [15, Chapter 11.4.3]) for
the BM25 approach.

The results are shown in Table III where SVM based
prediction significantly outperforms other approaches. We also
see that NLM’s PRC is a superior approach to getting related
citations whose terms are more relevant to the input instance
compared with the BM25 based model. We believe PRC’s
superior performance is mostly due to the so called “local
weights” that are assigned to common terms between two
citation texts; this was also observed in the original paper on
PRC [16]. It is not surprising to see MTI doing better than
PRC since PRC is used as a component in MTI (although the
details of how it is incorporated is not a simple neighbor term
set union).

TABLE III: Classifier performance comparison

Classifier Pmic Rmic Micro-F

SVM 0.6037 0.5985 0.6011
BM25 k-NN 0.3576 0.3545 0.3560

NLM’s PRC 0.5304 0.5295 0.5282

Default MTI 0.5923 0.5548 0.5729

C. Label Calibrator Comparison

To compare the different label calibration methods, we used
the output from the final L2R algorithm trained on all the
features discussed in Section III-C. Both RCut and OneThresh-
old were optimized using a held out validation dataset of
around 10,000 citations. The MetaLabeler was trained on
the same 1.2 million documents used for training the SVM
classifiers. From Table IV we see that RCut underperforms
significantly given each article must be labeled with the exact
same number of labels. We also see that using MetaLabeler
with OneThreshold is the best performing method for reasons
discussed in Section III-D. However, there is a clear loss of
2.5% in recall with the combined method although the gain
in precision more than makes up for it in the context of
improvement in F-score.

TABLE IV: Label calibrator performance comparison

Calibrator Pmic Rmic Micro-F

RCut 0.6150 0.6048 0.6099

OneThreshold 0.6233 0.6217 0.6225

MetaLabeler 0.6267 0.6215 0.6241

MetaLabler+OneThreshold 0.6664 0.5949 0.6286



D. Overall Results

The goal of this section is to compare our methods with
the top scorers in the 2014 BioASQ challenge. Our ensemble
is the best performing combination of different components in
the pipeline (discussed in Section III) over a validation dataset.
It includes

1) using the Scikit-Learn tokenizer,
2) combining candidates from the SVM classifiers and

the BM25 and PRC nearest neighbors,
3) using classifier scores, neighbor similarity scores, and

MTI Boolean L2R features, and finally
4) using the combination of MetaLabeler and

OneThreshold for label calibration.

Table V shows our scores along with the top two perform-
ing teams’ scores for every week of the third and final batch.
We chose the final batch given improvements are normally
made in the first two batches. We see that our ensemble
consistently outperforms other top teams. A noteworthy aspect
here is that the high level frameworks used by us and these
other teams are similar and gains seems to be coming from
variations in each of the components. This is our primary
motivation for writing this paper – to convey our experiences
in identifying and fine tuning different moving parts of the
classification pipeline and to demonstrate that this process can
lead to better performing models. In our case, we believe, the
selection of the tokenizer, the choices of features (including
number of neighbors in k-NN) for L2R, and the combination
of OneThreshold and MetaLabeler for label calibration are
responsible for performance gains. There are a total of 18,256
citations in the batch three test set (combining all five weeks).
Hence a 1% performance gain typically means ≈ 2300 more
terms are correctly handled (FPs removed or FNs recovered)
given there 13 terms on average per citation. However, it
is possible that some teams focus more on recall (which is
reasonable given this is to assist human coders) and hence
their F-score may not be as high even though they have
reasonably decent precision. Given the large test set size (over
18,000 citations), we believe our performance improvements
will persist over new citations. Building confidence intervals
using bootstrapping is prohibitive (in the context of this con-
ference paper) given the need to repeatedly train over 27,000
classifiers.

TABLE V: Comparison of our micro-F with the top two teams’
scores in the 2014 BioASQ challenge

Team week 1 week 2 week 3 week 4 week 5

Fudan 0.6001 0.6079 0.6302 0.6317 0.6221

NCBI 0.5885 0.5992 0.6255 0.6192 0.6077

UKY 0.6181 0.6213 0.6366 0.6397 0.6304

In Table VI we show ablation results after removing an
L2R feature or a component of our label calibration method.
We can see that removing the SVM score feature results in
the most significant performance drop. This is not unexpected
since SVM outputs give the most accurate ranking over all
labels (first row of Table III). It is well established that L2R

TABLE VI: Analysis of Ablation of Different Features (L2R
and Label Calibration)

Pmic Rmic Micro-F

ALL 0.6664 0.5949 0.6286

– SVM 0.6045 0.4796 0.5348

– BM25 k-NN 0.6645 0.5909 0.6255

– NLM’s PRC 0.6472 0.5789 0.6112

– Default MTI 0.6589 0.6046 0.6306
– OneThreshold 0.6267 0.6215 0.6241

– MetaLabeler 0.6233 0.6217 0.6225

features should be not only informative but also diverse in how
they rank terms. In this case, the PRC neighbors cause the next
biggest drop in performance and the BM25 neighbors cause
a negligible drop and might not be contributing significant
complementary information in the presence of SVM and PRC
based candidates with their corresponding scores. From the
table we notice that the impact of a classifier in the full model
aligns with its performance in isolation except for the default
MTI inputs. There are two possible explanations for the slight
increase in performance after removing it. First, it is possible
that everything it gets correct is covered by the SVMs and the
rest is noise. However, a more likely explanation may have
to do with the nature of it being a binary feature. While the
other features/classifiers give a ranking over the labels based
on their confidence in predicting a certain MeSH term, MTI
treats everything equally, and hence a sense of gradation is lost
when it is used as an L2R feature. In our validation dataset
experiments, however, MTI inclusion gave the best micro-F,
and hence we included it in the final ensemble.

V. CONCLUSION

Large scale multi-label text classification with thousands
of labels and label distributions following a power law is a
challenging problem. Indexing biomedical articles with MeSH
terms is one such problem with important practical conse-
quences, specifically to expedite and improve consistency in
indexing tasks at the NLM. Started in 2013, the BioASQ
challenge presents an excellent format to go beyond smaller
subsets of MeSH and focus on system level analysis of
automated MeSH term assignment to biomedical citations. The
top performer in the 2013 challenge had a micro F-score of
0.58, which improved to 0.63 in 2014, and as of now is at
0.65 (for some weeks) in 2015.

We conducted several experiments to prepare for competing
in the BioASQ challenge having had prior results in automated
MeSH term assignment [3], [6] on smaller datasets. We learned
that significant fine tuning and ensembling is needed to scale
to larger test datasets and improve performance. In this paper,
we present the results of our experiments in analyzing various
components of the full pipeline to predict MeSH terms. We
found that choosing a good tokenizer is critical to build effec-
tive binary classifiers whose scores form a critical feature type
in learning a good L2R model. NLM’s PRC citations also form



a critical component in identifying similar, already indexed
citations that generate candidate terms and effective relatedness
scores that are effective L2R features. We also learned that
trading off recall with label calibration can improve precision
to an extent that can result in an overall increase in micro F-
score. We believe our results are also applicable, at a general
level, to other large scale multi-label learning problems such
as assigning diagnosis codes to electronic medical records and
international patent classification (IPC) codes to patents.

An important area of potential improvements that has not
received much attention in the BioASQ challenge so far is
to exploit label correlations among MeSH terms. Intuitively,
similar themes in articles naturally need to be tagged with
related groups of MeSH terms. Besides the MeSH hierarchy,
we also have MeSH terms participating in non-hierarchical
associative relations when they are mapped to unified medical
language system (UMLS) concepts in the UMLS Metathe-
saurus5. Existing methods [25] that take advantage of the
structure among labels for multi-label datasets are yet to be
extended to MeSH. Distributional correlations between MeSH
terms can also be observed in the output term sets of millions
of citations in the training dataset. Modeling label correlations
have been shown to improve classifier performance [26];
however the large vocabulary size and the power law nature of
MeSH indexing makes it much harder to exploit correlations
when compared with other datasets. It is, nevertheless, a ripe
area of research to scale classification methods that leverage
label correlations to large label spaces.
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