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A B S T R A C T

The growing body of knowledge in biomedicine is too vast for human consumption. Hence there is a need for
automated systems able to navigate and distill the emerging wealth of information. One fundamental task to that
end is relation extraction, whereby linguistic expressions of semantic relationships between biomedical entities
are recognized and extracted. In this study, we propose a novel distant supervision approach for relation ex-
traction of binary treatment relationships such that high quality positive/negative training examples are gen-
erated from PubMed abstracts by leveraging associated MeSH subheadings. The quality of generated examples is
assessed based on the quality of supervised models they induce; that is, the mean performance of trained models
(derived via bootstrapped ensembling) on a gold standard test set is used as a proxy for data quality. We show
that our approach is preferable to traditional distant supervision for treatment relations and is closer to human
crowd annotations in terms of annotation quality. For treatment relations, our generated training data performs
at 81.38%, compared to traditional distant supervision at 64.33% and crowd-sourced annotations at 90.57% on
the model-wide PR-AUC metric. We also demonstrate that examples generated using our method can be used to
augment crowd-sourced datasets. Augmented models improve over non-augmented models by more than two
absolute points on the more established F1 metric. We lastly demonstrate that performance can be further
improved by implementing a classification loss that is resistant to label noise.

1. Introduction

The growing body of knowledge in the biomedical domain, con-
stituting over 27 million articles indexed by PubMed1 as of 2018, is too
vast for human consumption. These articles span academic journals,
books, and other resources covering a wide range of topics including
medicine, nursing, dentistry, pharmacy, biology, and healthcare. In
order to leverage this wealth of information, there has been intense
research focus on creating high precision systems for information re-
trieval and question-answering. These efforts, under the broad theme of
knowledge discovery, rely on being able to intelligently recognize and
capture semantic relations as conveyed in natural language — hence
the importance of relation extraction systems. In this study, we focus on
the binary relation extraction of treatment relations. The task of binary
relation extraction is simple: given some textual input, extract (subject,
predicate, object) triples where subject and object are entities and pre-
dicate is a class of semantic relation. For example, (insulin, treats, dia-
betes type 1) is a triple, or semantic predication, that can be extracted

from the sentence “Insulin is prescribed for the treatment of Diabetes
Type 1.” The difficult nature of this task becomes obvious when we
consider that such relationships can be expressed in a variety of com-
plex yet valid ways.

The treats predicate is an important predicate in the medical do-
main, alongside causes, and warrants special attention. In this study, we
propose a method to generate quality examples for distantly-supervised
learning of treatment relation extraction. The proposed method builds
on the concept of distant supervision originally proposed by Mintz et al.
[23] — henceforth referred to as traditional distant supervision (TDS).
TDS considers any pair of entities in the same sentence to be a positive
example so long as they participate as part of a known semantic pre-
dication in an existing knowledgebase. The proposed distant super-
vision method, referred to as MeSH Subheadings based Distant Super-
vision (MSDS), relies on MeSH indexing to approximate concept
relationships. Specifically, we look for PubMed abstracts for which
there exists both the Therapeutic Use and Therapy Medical Subject
Headings (MeSH) subheadings; these subheadings (also known as
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qualifiers) inform us respectively that there is an entity corresponding
to a drug or physical agent being used and that there is also an entity
corresponding to a disease for which a therapy is specified.

Although MeSH indexing does not provide explicit concept linkage,
the intuition is that articles with both Therapy and Therapeutic Use
subheadings are more likely to convey treatment than articles with only
one of them or without any of them. Furthermore, we use the headings
(also known as descriptors) associated with these subheadings (also
known as qualifiers) as a concept-level filter when considering candi-
date entity pairs given all mentioned entities identified by NLM's
MetaMap [3] concept identification and mapping tool. MSDS relies on
the fact that each MeSH term with a heading and subheading is asso-
ciated with a descriptor unique identifier (DUI) and a qualifier unique
identifier (QUI) respectively. For example, the MeSH term “Type 1
Diabetes Mellitus/drug therapy” is annotated with a DUI of D003922
representing Diabetes Mellitus Type 1 and QUI of Q000188 re-
presenting Drug Therapy. DUIs can be mapped to Concept Unique
Identifiers (CUIs) by referencing UMLS Metathesaurus and therefore
matched to concept mentions identified in the article by MetaMap. If
the MeSH term “Insulin/administration & dosage” is incidentally also
indexed for the same article, it is reasonable to infer that the article
discusses the treatment of diabetes type 1 through insulin administra-
tion. Therefore, sentences in the article where both entities occur to-
gether are considered positive examples for treatment.

An important appeal of distant supervision is the fact that there are
no costs in terms of money and labor. Compared to human-annotated
datasets, quality is usually compromised for quantity. MSDS is capable
of generating an abundance of training data without compromising as
much on quality when compared with TDS. In fact, the quality of ex-
amples extracted by MSDS is closer to human crowd-sourced annota-
tions than TDS. We demonstrate this by comparing models trained
using data generated by MSDS to models trained on TDS; the models are
evaluated using an adjudicated “gold standard” dataset curated by
Dumitrache et al. [7]. Moreover, we demonstrate that examples ob-
tained using MSDS can be used to augment crowd-sourced data for
improved performance at no additional cost in human annotations.
Lastly, we show that using a modified loss function resistant to noisy
labels can improve the performance of models trained on data gener-
ated by our method. As presented, MSDS is limited to treatment-type
relations while TDS is readably generalizable to other relation types; we
discuss this limitation and ways of extending MSDS to other major re-
lation types including causes, prevents, and diagnose in Section 5.

2. Background

Abacha and Zweigenbaum [1] introduced the MeTAE (Medical
Texts Annotation and Exploration) platform that allows for the ex-
traction and annotation of medical entities and relationships from
medical text. The rule-based method begins with seed concept pairs
that are linked by the “may treat” relation according to the UMLS
Metathesaurus. The pair consists of a “problem” concept and a “treat-
ment” concept. For each concept pair, very focused queries are sub-
mitted to the PubMed Central database2 ; these queries target articles
where the problem concept exists as the major-focused heading of a
Therapy (TH) subheading and the treatment concept exists as an un-
bounded MeSH heading. The queries are designed according to the
following pattern: “〈problem〉/TH[MAJR] and 〈treatment〉/MH”3 . The
text of the returned articles are sentence-segmented and each con-
stituent sentence is sent to the MetaMap tool [3] for concept identifi-
cation and mapping. Only sentences containing both concepts of the
seed pair are kept for further pattern construction in the form of regular

expressions. MSDS is similar to MeTAE in that both are designed to
exploit the MeSH indexing of PubMed to pinpoint pairs of entities that
are related by a treatment semantic relation; however, there are major
differences in terms of both motivation and execution. We highlight the
differences between our method and MeTAE as follows.

• MeTAE leverages MeSH subheadings to curate sentences for manual
pattern construction; the hand-crafted patterns are later used for
rule-based relation extraction. On the other hand, MSDS leverages
MeSH subheadings to automatically generate distantly-supervised
examples, without human intervention, for the purpose of training
supervised relation extraction models.
• MSDS utilizes MeSH subheadings in a more precise manner in that
we leverage not only the Drug Therapy subheading but also the
Therapeutic Use subheading, the latter of which allows us to better
filter for entities representing a treatment or drug. To show why this
is advantageous, we offer the following example. Suppose we want
to extract positive treatment examples from the sentence “A 15-
year-old female adolescent developed drug hypersensitivity syn-
drome 4 weeks after starting minocycline therapy for acne vul-
garis.” Also, suppose the related abstract contains MeSH terms in-
cluding “Acne Vulgaris/drug therapy”, “Minocycline/therapeutic
use”, and “Drug Hypersensitivity/etiology.” If entities are only
bounded by the Drug Therapy subheading, the system would thus
extract triples (minocycline, treats, acne vulgaris) and (minocy-
cline, treats, drug hypersensitivity syndrome), the latter of which
is not only a negative example of treats but in fact an example for the
opposing causes relation (as hinted by the “etiology” subheading).
Given MSDS is bounded on both the Drug Therapy and Therapeutic
Usage subheading, we would correctly ignore (minocycline, treats,
drug hypersensitivity syndrome) as a positive example for treats.
Consequently, we reduce the possibility of introducing training ex-
amples to the supervised model that are not only incorrect but ac-
tually contradictive.

The remainder of this section is organized as follows. Section 2.1 pro-
vides a background on the CrowdTruth method and corresponding
crowd-sourced dataset. Section 2.2 serves as an overview of deep
learning architectures while Section 2.3 discusses relation extraction
techniques suited for the biomedical domain. In Section 2.4, we discuss
an advanced approach for learning on noisy labels.

2.1. CrowdTruth

Dumitrache et al. [7] showed that, at least in the medical domain,
crowd-sourced annotations are of similar or better quality when com-
pared with expert annotations. A method was proposed, referred to as
CrowdTruth, to obtain a sentence-relation score in [0, 1] by measuring
disagreement between multiple crowd-sourced annotations; this score,
when thresholded, can be used to determine whether an example (that
is, a subject/object pair and its textual context) is positive or negative
with respect to a particular type of relation. The dataset used in ex-
periments consisted of 3,984 sentences from PubMed that were ori-
ginally collected by Wang and Fan [41] and re-annotated via the
CrowdTruth method. Herein, we refer to the aforementioned dataset as
the CrowdTruth dataset. Dumitrache et al. [7] demonstrated that, with
enough crowd-sourced annotations for a particular example (specifi-
cally 15), the quality is on-par or better compared with using a single
expert annotator — at least for the treats and causes predicates. This is
accomplished by comparing the performance of models trained on
different methods of annotation and evaluated on a common held-out
adjudicated subset amounting to 975 sentences with “gold standard”
annotations.

While the CrowdTruth dataset covers causes and treats, we focus
specifically on treats for which there are 606 sentences with adjudicated
“gold standard” annotations (simply referred to as GOLD labels) that

2 https://www.ncbi.nlm.nih.gov/pmc/
3 Note that 〈problem〉 and 〈treatment〉 are placeholders for the queried

concept pair
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can be used as a basis for direct model comparison. The remaining 3378
sentences are annotated with TDS and CROWD labels; the former refers
to labels obtained via TDS while the latter refers to the crowd-sourced
annotations obtained via CrowdTruth. The GOLD labels are well-ba-
lanced such that there is approximately a 1:1 positive-negative ratio,
while TDS and CROWD exhibit more imbalanced ratios of 1:4 and 1:2
respectively. The exact distributions are recorded in Table 1. It is noted
that while the same dataset is used, our experimental results are not
directly comparable to those in the original study [7] given that the
authors conducted experiments using 5-fold cross-validation over the
test partition; that is, examples not in a test fold are used for training
with the corresponding TDS or CROWD labels. In this study, we reserve
the 606 sentences with gold annotations strictly for testing while opting
for a bootstrapped model averaging setup (more in Section 4.1) as in a
prior work [17] to obtain mean model performance.

2.2. Deep learning and bi-directional LSTMs

The recent state-of-the-art performance in natural language tasks
such as text classification, relation extraction, named entity recogni-
tion, and machine translation are typically achieved with deep learning
approaches such as convolutional neural networks (CNNs) or recurrent
neural networks (RNNs) [4,5,15,17,38]. These deep learning models are
neural networks designed with many hidden layers that compose
meaningful intermediate representations. High performance is ad-
ditionally owed to use of neural word embeddings [19,38,40]. RNNs
are particularly adept at modeling sequences which makes them sui-
table for natural language tasks. Long Short-Term Memory (LSTM)
[11,14] networks in particular are a type of RNN that feature a complex
mechanism for memory management such that it is able to overcome
issues such as the vanishing gradients [33] problem. We encourage
readers to refer to Graves [13,Chapter 4] and Goldberg [12,Section 11]
for thorough details of LSTMs and the corresponding derivations of
gradients. Regular LSTMs model sequences accumulating at the last
element, while bi-directional LSTMs (BiLSTMs) model a sequence
jointly from both directions. The latter architecture has been shown to
perform competitively especially for relation extraction tasks. With this
model, words are fed as input to the network in the form of word
embedding vectors. These word vectors are processed by a bi-direc-
tional LSTM, the output of which is max-pooled over the time-step di-
mension to produce a final feature vector. The feature vector is fully-
connected to a softmax output layer with two units corresponding to a
binary Yes/No output indicating whether or not there is a treats relation
being conveyed. The additional use of position vectors may further en-
hance the performance of relation extraction models in our experience.
These are learnable embedding vectors that represent the offset of a
word to either entity.

2.3. Relation extraction in the biomedical domain

Relation extraction approaches in the biomedical domain typically
operate by exploiting the shortest dependency path between candidate
entities according to a preprocessed dependency parse tree
[2,10,20,21,37]. The concept of network centrality has also been ex-
plored [32] while other studies, including Frunza et al. [9], rely on
more traditional linear methods that focus on syntactic and lexical
features. More recent studies on relation extraction approaches are

based on exploring meaningful deep learning architectures [17,21,36],
including Segment-CNNs [22] and Graph-LSTMs [35]. Meanwhile,
there is ongoing research effort to explore end-to-end relation extraction
by jointly modeling entity recognition and relation detection to exploit
inter-task correlations [16,24,42].

2.4. Dealing with noisy labels

A short-coming of utilizing annotations from distant supervision is
noise arising from erroneously including examples as positive cases
even when there is no relationship conveyed. Conversely, there will be
examples that are included as negative cases even when there is evi-
dence to the contrary. These sources of noise are a primary contributing
factor to the quality of the training data and derived models. Supervised
learning on data with noisy labels has been studied extensively [8]. One
popular technique is to modify the loss function such that it is more
robust to noisy labels [25,34]. Natarajan et al. [25] established that it is
possible to modify the original loss ℓ to a noise-resistant loss ˆ such that
training with ˆ on noisy data is equivalent to training with ℓ on clean
data — provided the noise rates are known a priori. Alternatively, it is
possible to directly correct test predictions [39] without changing the
architecture. Generally, the former is known as backward correction
while the latter is known as forward correction. Patrini et al. [34] ap-
plied these ideas to the deep neural network setting and formalized an
end-to-end, architecture-independent procedure to effectively train on
data with noisy labels. Moreover, they propose a method for approx-
imating the noise rates in case it is not known a priori. We discuss the
modification of the loss function to deal with noisy labels (referred to as
noisy-label loss) in our experiments in Section 4.1.

3. Methodology

In this section, we formalize MSDS as a method for generating
distantly-supervised examples for treatment relation extraction. Section
3.1 describes the article pruning process; not unlike document triage,
the goal is to identify articles that contain expressions of treatment
relationships and prune articles that do not. In Sections 3.2 and 3.3, we
describe the formal process for generating positive and negative ex-
amples respectively.

3.1. Article pruning

MSDS processes articles according to a list of PubMed Identifiers
(PMIDs) and generates examples in the sequential order that they ap-
pear. We specifically extract examples from the title and the abstract (in
that order) of the articles associated with each PMID. Clearly, it is
prudent to avoid processing the entire PubMed database as this would
be very time consuming with little return because the vast majority of
articles do not pertain to medical treatment. It is ideal to target only the
subset of articles that are very likely discussing illnesses and related
therapeutic agents or procedures. To that end, a list of candidate PMIDs
is generated by performing a Boolean search on PubMed with the fol-
lowing query: “therapy[sh] AND (therapeutic use[sh:noexp] OR ad-
ministration and dosage[sh])”. This query returns a list of approxi-
mately 2.18 million articles that contain both the Therapy and
Therapeutic Use subheadings. As an aside, MeSH subheadings take upon
a tree structure such that a parent subheading is only applied if the
article does not fit into one of the more specific child subheadings.
Searching for a particular subheading by default also includes articles
with its child subheadings. In the case of the Therapy subheading, by
excluding the noexp (no expansion) option, we consequently allow for
all articles with child subheadings to be included; specifically, we allow
for Diet Therapy, Drug Therapy, Nursing, Prevention & Control,
Radiotherapy, Rehabilitation, Surgery, and Transplantation. In the case of
Therapeutic Use, there are three child subheadings to consider:
Administration & Dosage, Adverse Effects, and Poisoning. Here, we allow

Table 1
Counts of positive/negative examples for each set of annotations for treats.

Annotation Positives Negatives Total

TDS 683 2695 3378
CROWD 1127 2251 3378
GOLD 291 315 606
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for Administration & Dosage while disallowing Adverse Effects and
Poisoning which would otherwise be counterproductive with respect to
the original objective. Henceforth, when mentioning Therapy or
Therapeutic Use, we implicitly refer to the subheading itself and all child
subheadings except the ones deemed “counterproductive.”

3.2. Positive examples

Before processing each article, we randomly shuffle the list of PMIDs
according to a seed value. This allows us to extract examples uniformly
such that the distribution of the resulting data is not biased toward any
subheadings or publication period. We re-use the same seed value to
naturally generate negative examples via the procedure described later
in Section 3.3. In order to generate positive examples, we apply the
following procedure to each article in the shuffled list denoted as a
sequence x1, …, xn.

Allowable subject and object entities for xi are identified by
gleaming the document's MeSH terms. Recall from Section 1 that a
heading/descriptor is associated with a DUI and a subheading/qualifier
is associated with a QUI. Generally, the former identifies a concept and
the latter describes a qualifier with respect to the concept. Let ¯ i be the
set of concepts (DUIs mapped to CUIs via the UMLS [29] database)
associated with the Therapeutic Use (Q000627) and Administration &
Dosage (Q000008) subheadings; ¯ i intuitively serves as the set of al-
lowable subject concepts for the treatment relation. For candidate object
concepts, we denote Y¯i as the set of all concepts (mapped to CUIs)
associated with the following subheadings: Therapy (Q000628), Diet
Therapy (Q000178), Drug Therapy (Q000188), Nursing (Q000451),
Radiotherapy (Q000532), Rehabilitation (Q000534), Surgery (Q000601),
and Transplantation (Q000637). Prevention & Control are excluded as
they would be more appropriate for the prevents predicate despite the
potential for overlap.

Next, we perform sentence splitting on xi to obtain a list of mi

sentences …s s, ,i i
m1 i. This step is important as we are only concerned

with intra-sentence relations. Let be the set of all possible CUIs. We
apply the following procedure for each sentence sj

i:

1 The MetaMap tool is used to annotate sj
i with a set of conceptsM j

i;
here, each concept is defined as a triple (α, β, c) where is the
beginning character offset, is the ending character offset, and
c is the CUI of the concept. When utilizing MetaMap, we disable
the Word Sense Disambiguation (WSD) option4 and we ignore
concepts with mentions that are non-contiguous5 .

2 The set of candidate subject concepts j
i for sentence sj

i is obtained by
computing the intersection of concepts identified by MetaMap and
allowable subject concepts as informed by the MeSH indexing for
document i. Formally, we define this set as

M= c c c{( , , ): ( , , ) ¯ } .j
i

j
i i

Similarly,Y j
i is the list of candidate object concepts, defined as

Y M Y= c c c{( , , ): ( , , ) ¯ } .j
i

j
i i

3 The set of positive examples +[ ] j
i to be extracted from sentence j of

article i is obtained by considering all pairs of candidate subject and
object concepts with non-overlapping mentions. Concretely,

Z

Y

=

< < < > > >

+ c c
c

c

[ ] {(( , , ), ( , , )):
( , , )

( , , )
(( ) ( ))} .

j
i

j
i

j
i

Here, each extracted example is a pair of concepts along with their
mention offsets.

The sentence and character offsets of each entity mention are ne-
cessarily recorded if they are to serve as training examples. Since it is
possible for a single CUI to map to multiple mentions (corresponding to
multiple start/end offset pairs), we consider each mention to be a dis-
tinct entity so that the examples are consistent with respect to linguistic
considerations. Retaining this nuance allows more flexibility in future
work which may involve identifying and purging “positive” examples
that are not semantically sound. For example, consider the sentence,
“Blood sugar levels are regulated by the hormone insulin1; man-made
insulin2 is used to treat diabetes.” Here, both (insulin1,diabetes) and
(insulin2,diabetes) will be extracted as positive examples, but we only
consider (insulin2,diabetes) to be semantically sound given the lin-
guistic context. Once each sentence is processed and all predications are
extracted from the article abstract, we proceed to the next article in the
sequence. An example illustrating the procedure is shown in Fig. 1.

3.3. Negative examples

Discriminative models require negative examples in addition to
positive examples. Herein, we describe a complementary method to
generate negative examples. The process is similar to positive example
generation; however, external knowledge is leveraged to ensure that we
only extract non-trivial examples and that we only extract examples
likely to be negative. That is, we wish to avoid extracting an excessive
number of false negatives while retaining the more nuanced or bor-
derline cases. The proposed method heavily relies on the UMLS
Semantic Network [26] (SemNet) which categorizes concepts and re-
lationships in a hierarchical taxonomy. SemNet assigns broad cate-
gories to concepts (that is, CUIs) in the form of Semantic Types [28]
(SemTypes). Moreover, the so called Semantic Relations [27] (such as
affects, causes, uses, and treats) are associated with a set of SemType
pairs serving as plausible entity types for that particular relationship.
Intuitively, the SemNet constraints for treats provides a basis for
choosing negative examples that are likewise plausible and therefore
more nuanced. A training example in which a drug “treats” another
drug is clearly a negative case, but its utility is limited if the goal is to
train a robust classifier. Hence, as a rule, only negative examples with
subject/object concepts that are consistent with SemNet constraints for
the treats relation in SemNet are extracted. Let denote the set of all
SemTypes defined by UMLS. As a preliminary step, we compute

× as the set of subject-object SemType pairs valid for the treats
relation according to SemNet.

SemMedDB [18,31], a repository of semantic predications extracted
by the rule-based relation extraction tool SemRep [30], serves as an-
other knowledge source that is used to filter out potential false nega-
tives. Specifically, if a semantic predication appears in SemMedDB with
the treats relation, then it is disregarded it as a candidate negative ex-
ample. Essentially, recall is sacrificed in order to limit the introduction
of false negatives (and therefore noise). With that in mind, we define

× as the set of subject-object CUI pairs that appears in Sem-
MedDB at least once for the treats relation.

A feature of this approach is that it is capable of naturally gen-
erating negative examples alongside positive examples from the same
list of abstracts. Consequently, the positive-negative imbalance natu-
rally reflects the imbalance observed in a real-world setting. Here, po-
sitive examples are generated first via the method in Section 3.2 and
then used as a filter when generating negative examples. Intuitively, a

4 The WSD option determines the best concept given context if there are
multiple potentially valid CUIs for a particular mention. Since we are matching
identified concepts directly to MeSH headings, irrelevant CUIs will naturally be
ignored and enabling WSD as a premature filtering step will only hurt recall.
5 To clarify, we ignore mentions that have multiple pairs of starting and

ending offsets each corresponding to a different segment of the full mention. In
cases where there are multiple contiguous mentions of the same concept, we
treat each mention as a separate entity.
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unique predication that has already been extracted as a positive ex-
ample should not be extracted again as a negative example.

Using the same notations established in Section 3.2, the following
procedure is proposed for the extraction of negative examples from
sentence sj

i:

1. As in generating positive examples, sj
i is annotated with a set of

concepts M̂ j
i using the MetaMap tool. However, WSD is enabled

such that each mention is mapped to only one of potentially many
concepts. This is necessary as it is no longer possible to rely on MeSH
subheadings to inform us of allowable subject and object concepts.

2. Next, we compute the set of predications based on the following
filtering criteria. Each subject-object pair must follow the SemType
constraints for treats, must not exist as a predication in SemMedDB,
and must not exist as a previously-extracted positive example.
Moreover, as when extracting positive examples, the entity men-
tions should likewise not overlap. Formally, the set of negative ex-
amples Z[ ] j

i extracted from article i, sentence j is defined as

Z

M

M

Z

=

< < < > > >
+

c c

c

c
c c

c c
c c

[ ] {(( , , ), ( , , )):

( , , ) ˆ

( , , ) ˆ

(type( ), type( ))
( , )
(( , , ), ( , , )) [ ]
(( ) ( ))}

j
i

j
i

j
i

j
i

where type(c) is the SemType of concept c according to UMLS.

4. Experiments and results

In order to evaluate the quality of our dataset, we trained supervised
models using TDS and CROWD labels as well as data generated by our
distant supervision method (simply referred to as MSDS). We observe
the performance of trained models as a proxy for data quality as in past
work [7]. Of the 3984 examples in the CrowdTruth dataset, 606 held-
out sentences with GOLD labels are used exclusively for testing. The
remaining 3378 examples with TDS and CROWD labels are used to train
models that are evaluated to assess data quality. We provide more de-
tail about our experimental design in Section 4.1 and discuss the cor-
responding results in Section 4.2.

4.1. Experimental setup

As deep neural networks are not guaranteed to outperform

traditional linear models for this particular task, we consider both
traditional and deep neural models in our experiments; hence, we in-
clude both a traditional machine learning model (namely, logistic re-
gression) and a deep learning model (namely, the BiLSTM as described
in Section 2.2). The BiLSTM model is implemented as described in
Kavuluru et al. [17,Section 5B]; however, the number of labels is fixed
to 2 as the target task is strictly binary classification. This particular
model is suitable as it is designed specifically for the task of relation
extraction; with this in mind, the hyper-parameters are mirrored from
[17] and fixed across all experiments to ensure a fair comparison. We
additionally include a variant of the BiLSTM model with a modified
noise-resistant loss function as describe in Section 2.4, referred to as
BiLSTM-NLL. The implementation of the noisy-label loss is based on the
backward correction procedure described in Patrini et al. [34,Section
4.1]. The matrix representing the approximated noise rates used in the
cited method is computed by following the procedure for noise rate
estimation [34,Section 4.3], where the set of “testing” instances for
noise approximation is a sample of MSDS-generated data with 3000
examples. Note that regardless of the model, we perform an entity-
binding step, wherein mentions of the subjects and objects are replaced
with generic SUBJECT and OBJECT tokens respectively, as in prior
work [17]. This implies that we are effectively evaluating models based
entirely on its ability to learn the linguistic context without regard for
subject-object pair correlations.

Bootstrapped Ensembling. The performance of each variant is mea-
sured based on the bootstrapped model averaging [17] technique
wherein average behavior is studied through building and evaluating
large numbers of ensembles. This is motivated by the fact that deep
neural networks are trained using stochastic gradient descent; the result
is that we will often find parameters corresponding to some “good
enough” local minimum as opposed to an optimal global minimum.
Different random parameter initializations of the network will converge
to different solutions corresponding to these local minima. In order to
arrive at a more stable model, it is typical to train a number of such
models (each with a different parameter initialization) as part of an
ensemble in an effort to improve both stability and accuracy. In a prior
work [17], we proposed an experimental setup in which 20 deep neural
models were trained for each architecture as part of a sampling pool.
10000 ensembles are assembled and evaluated by randomly sampling
10 models from the pool for each ensemble. With this setup, it is pos-
sible to assess mean performance and corresponding confidence inter-
vals such that conclusions are drawn based on statistical significance.
We apply the same methodology to assess the average behavior of each
variant in this study. Although intended for deep neural networks, we
apply bootstrapped model averaging to all models uniformly, including
logistic regression, to ensure a fair comparison.

Fig. 1. A simple example illustrating how a positive instance for the treats relation is extracted from a sentence appearing in the PubMed abstract with PMID
21148442.
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4.1.1. Assessing MSDS data quality
We measure performance as a proxy for label quality using the

Precision-Recall Area Under the Curve [6] (PR-AUC) metric instead of
the more popular F1 metric. Our rationale for this decision is as follows.
The difference in label distribution (even when binary) can serve as a
misleading factor when comparing the quality of datasets. A model
trained on a training dataset having a similar label distribution to that
of the test set is at a significant advantage regardless of the quality of
individual examples; this is especially the case when the F1 metric is
considered given performance is dependent on predictions made at
some probability estimate threshold (typically 50%). A model-wide
evaluation method such as PR-AUC is more suitable when evaluating
with an imbalanced dataset since it is not anchored at a specific
threshold. Recall that the GOLD labels have a positive-negative ratio of
1:1 while TDS and CROWD labels have a ratio of 1:4 and 1:2 respec-
tively. Given this imbalance, we measure data quality using PR-AUC as
the primary evaluation metric so that imbalance-insensitive compar-
isons can be made between CROWD/MSDS and TDS labels. We report
the results of this experiment in Table 2 for all three methods.

4.1.2. Augmenting crowd-sourced labels with MSDS
In addition to assessing data quality of MSDS labels, we also de-

signed an experiment to assess performance gains from augmenting the
crowd-sourced examples (expensive to produce) with examples gener-
ated via MSDS (free and abundant). Here, we use mean F1 as the pri-
mary evaluation metric as we can overcome any imbalance issues by
simply generating an MSDS based dataset such that there is positive-
negative label ratio of 1:2 to match that of the CROWD labels.
Moreover, we contend that F1 is more important for user-end applica-
tions since it is based on evaluating concrete label predictions.

Henceforth, we refer to models trained on data having a shared
annotation method (or some combination thereof, more later) as being
in the same “class” of models. For example, we refer to models trained
on TDS/CROWD labels as simply being in the TDS/CROWD class of
models. For the MSDS class of models, we generated three times as
many examples as available in the crowd-sourced training set
amounting to a total of 10,134 examples with the same label distribu-
tion. For the experiment, the exact number of examples generated by
MSDS is immaterial as long as it is at least 9000.

To assess gains from augmenting crowd-sourced examples with
MSDS, we include the following additional classes of models: 1:1
CROWD/MSDS, 1:2 CROWD/MSDS, and 1:3 CROWD/MSDS. Each of
these classes are named based on the ratio of crowd-sourced examples
to MSDS-based examples used to train the model. We evaluated each
class of models at fixed dataset sizes6 of N∈ {3000, 6000, 9000,
12000}.The purpose of evaluating at large values of N is to observe the
scalability of model performance where crowd-sourced data is aug-
mented with MSDS data. Herein, we refer to a particular N and class of
model combination as a “variant”. Note that when N is smaller than the
total number of examples we have for a particular class of models, we

simply sample N random examples from the pool of data available. For
example, the models in the pool for CROWD at N=3000 will each be
trained using a different random sample of the 3378 available. Note
that if we have less data than available for some N and some class of
models, we ignore that corresponding variant. For example, we can
evaluate CROWD at 3000 but not 6000, 9000, and 12000 since we only
have 3378 examples total. Moreover, we can evaluate 1:1 CROWD/
MSDS at 3000 and 6000 but not 9000 and 12000 for similar reasons.
We report these results in Table 3.

4.2. Results and discussion

Table 2 displays results from our experiments to assess the quality of
examples. Here, we observe that CROWD and TDS achieve roughly 90%
and 65% PR-AUC respectively, whileMSDS achieves a “middle-ground”
of 80% PR-AUC across the three methods. Clearly, automatically-cu-
rated examples are incapable of competing against human annotations
with respect to raw quality. However, we argue that there is value in
being able to achieve approximately 80% in mean PR-AUC with MSDS
when crowd-curated annotations achieve approximately 90% mean PR-
AUC. This is especially the case when we consider that CROWD sen-
tences and the test set sentences used to evaluate both CROWD and
MSDS examples were collectively obtained via the same curation
method (using the same seed articles and relations). Therefore, CROWD
examples have a natural distributional advantage over MSDS examples
within our evaluation framework.MSDS is thereforecloser to CROWD in
terms of performance compared with TDS. These results show that
MSDS-generated examples are higher in quality compared to those
obtained via traditional distant supervision examples and are actually
closer in quality to crowd-sourced annotations.

Next, we examine the potential for using MSDS to augment crowd-
sourced labels. As observed in Table 3, logistic regression achieves
78.47% mean F1 compared to 80.84% mean F1 by BiLSTM on CROWD
at N=3000. As the 95% confidence intervals do not overlap, the im-
provements are statistically significant. This indicates that deep
learning may be more suitable than logistic regression for this parti-
cular task. We note that the deep neural model with noisy-label loss also
exhibits better performance than without in most cases when MSDS
labels are added. More importantly, we observe that regardless of
method – but more so for deep learning models – there is an advantage
in augmenting CROWD examples with instances generated by MSDS.
And we can also observe that more data is not necessarily better, as
performance peaks at certain proportions and tend to decrease when
more noisy data is added. With BiLSTM, there is an approximate gain of
one F1 point arriving at 81.79% when augmenting the 3000 CROWD
examples with an additional 3000 MSDS examples. We see a slightly
higher increase at 82.02% for the BiLSTM-NLL model. These improve-
ments are statistically significant at the 95% level based on comparing
confidence intervals.

Based on results from Table 3, augmenting crowd-based examples
with high quantities of MSDS is not necessarily better. As such, we
perform an auxiliary experiment to determine an optimal balance be-
tween CROWD and MSDS examples, focusing on the case where there
are fewer MSDS examples than CROWD examples. We find that by
augmenting 3000 CROWD examples with only an additional 1500
(+50%)MSDS examples, the resulting model achieves 81.92% mean F1
with BiLSTM-NLL. The result is as high as 83.22% mean F1 when
evaluating on 3000 CROWD examples augmented with 750 (+25%)
MSDS examples. Based on these results, we can see that there is an
optimal ratio of 4:1 between CROWD and MSDS examples where peak
performance is observed. This trend is visualized in Fig. 2; we note that
the shaded area in this case represents standard deviation.

4.3. Error analysis

In this section, we perform error analysis by assessing performance

Table 2
Results comparing quality between traditional distant supervision (TDS), Mesh
Subheadings based Distant Supervision (MSDS), and crowd-sourced (CROWD)
labels. We report the 95% confidence interval around mean PR-AUC over
10,000 ensembles across linear and deep neural methods.

Method TDS MSDS CROWD

Logistic Regression 64.57 ± 0.00646 82.86 ± 0.00889 90.46 ± 0.00187
BiLSTM 63.59 ± 0.02015 81.18 ± 0.01334 90.82 ± 0.00504
BiLSTM-NLL 64.33 ± 0.01708 81.38 ± 0.01371 90.57 ± 0.00441

6 Each example in the dataset constitutes a pair of concepts, the sentence in
which the pair is observed, and a Yes/No label indicating whether or not the
pair is positive for the treats relation.

T. Tran and R. Kavuluru Artificial Intelligence In Medicine 98 (2019) 18–26

23

Downloaded for Anonymous User (n/a) at University of Kentucky from ClinicalKey.com by Elsevier on July 19, 2019.
For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.



based on pairs of subject/object semantic types to identify cases that are
difficult for a model trained on MSDS generated examples. In Table 4,
we examine evaluation results on the test set by BiLSTM-NLL trained on
MSDS at N=3000 partitioned by pairs of subject/object SemTypes. We
only include results for cases where there are at least 10 examples. An
interesting aspect of the test set (with GOLD labels) is that there are
many SemType pairs for which there are no positive examples; these
pairs can be identified by rows where both true positives (TPs) and false
negatives (FNs) rates are zero. Of course, this leads to an F1 of 0 which
can be misleading at first glance; accuracy is more informative in this
case. An example of this phenomenon exists when “Disease or Syn-
drome” occur as the SemType for both the subject and object — there
are 50 such examples in the test set. These are all negative cases for

treats which is consistent with reality given it is atypical for a disease to
treat another disease. This phenomenon is problematic for models
trained on MSDS as the corresponding examples are bounded by Se-
mantic Network constraints; hence, there are no MSDS examples gen-
erated where both the subject and object are diseases. In other words,
MSDS-based models are not trained on trivially negative examples (e.g.,
a disease treating another disease) and may have difficulties dealing
with trivially negative cases at test time. It is possible to overcome this
issue by introducing a filtering step in which we predict as negative all
test examples that fail to adhere to SemNet constraints. However, this
may adversely impact recall given there exists examples of treatment
relations (in the wild) where the subject/object do not necessarily ad-
here to SemNet constraints.

One interesting case stems from the SemType pair “Neoplastic
Process” (subject) and “Disease or Syndrome” (object) in which there is
exactly one positive case in the groundtruth corresponding to a single
false negative by the MSDS-based model. The example is as follows,
with the subject and object underlined: “In patients with rapidly ad-
vancing disease characterized by B symptoms, massive lymphadeno-
pathy and hepatosplenomegaly, consider CLL transformation (see dis-
ease specific drug treatment in patients with transformed CLL).” CLL as
the subject refers to chronic lymphocytic leukaemia. From inspection,
the linguistic phrasing in this case is understandably difficult for a
machine learning system; the connecting word here is “consider”,
which is not as strong of an indicator as “treats” or “cures”. There are
subtle, logical inferences to be made that makes this and similar ex-
amples difficult for machine learning models. Moreover, CLL as a
neoplastic process is more likely to be the object of a treats relation and
the fact that it occurs as the subject in this case could be a puzzling
factor. This is a stronger positive example and more semantically con-
sistent if we consider the full mention “CLL transformation” to be the
subject; that is, we suspect a minor error in the entity annotation that

Table 3
Results showing change in mean F1 with respect to varying training set size and proportion of CROWD to MSDS examples. We report the 95% confidence interval
around mean F1 over 10,000 ensembles across linear and deep neural methods.

N CROWD 1:1 CROWD/MSDS 1:2 CROWD/MSDS 1:3 CROWD/MSDS

Logistic Regression 3000 78.47 ± 0.00779 73.33 ± 0.01306 70.25 ± 0.01469 69.54 ± 0.01790
6000 - 77.81 ± 0.00971 75.99 ± 0.01326 74.81 ± 0.01559
9000 - - 78.60 ± 0.00781 76.30 ± 0.00905
12000 - - - 77.32 ± 0.00570

BiLSTM 3000 80.84 ± 0.01499 79.22 ± 0.01917 78.08 ± 0.01681 77.08 ± 0.01839
6000 - 81.79 ± 0.01361 80.12 ± 0.01269 79.32 ± 0.01529
9000 - - 80.56 ± 0.01117 79.56 ± 0.01259
12000 - - - 79.34 ± 0.01263

BiLSTM-NLL 3000 80.86 ± 0.01324 80.82 ± 0.01808 78.64 ± 0.01798 76.32 ± 0.02145
6000 - 82.02 ± 0.01572 80.11 ± 0.01109 79.40 ± 0.01447
9000 - - 80.83 ± 0.01188 79.75 ± 0.01259
12000 - - - 79.17 ± 0.01181

Fig. 2. Change in mean F1 w.r.t. amount of examples added from MSDS to
CROWD, indicated as a proportion of CROWD dataset size, for the BiLSTM-NLL
model.

Table 4
Results at N=3000 for BiLSTM-NLL partitioned by subject/object semantic type.

Subject SemType Object SemType TP TN FP FN Total P (%) R (%) F (%) Acc (%)

Organic Chemical Disease or Syndrome 74 11 10 25 120 88.10 74.75 80.87 70.83
Disease or Syndrome Disease or Syndrome 0 40 10 0 50 0.00 0.00 0.00 78.43
Amino Acid, Peptide, or Protein Disease or Syndrome 20 11 2 6 39 90.91 76.92 83.33 79.49
Organic Chemical Sign or Symptom 9 4 0 9 22 100.00 50.00 66.67 59.09
Neoplastic Process Finding 0 18 3 0 21 0.00 0.00 0.00 85.71
Neoplastic Process Disease or Syndrome 0 14 4 1 19 0.00 0.00 0.00 73.68
Organic Chemical Mental or Behavioral Dysfunction 13 1 0 3 17 100.00 81.25 89.66 82.35
Organic Chemical Pathologic Function 5 3 0 8 16 100.00 38.46 55.56 50.00
Organic Chemical Neoplastic Process 11 0 0 3 14 100.00 78.57 88.00 78.57
Neoplastic Process Pathologic Function 0 8 4 0 12 0.00 0.00 0.00 66.67
Neoplastic Process Sign or Symptom 0 10 2 0 12 0.00 0.00 0.00 83.33
Bacterium Disease or Syndrome 0 6 5 0 11 0.00 0.00 0.00 54.55
Pharmacologic Substance Disease or Syndrome 2 2 0 6 10 100.00 25.00 40.00 40.00
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makes this example particularly difficult.
Another issue that leads to false negatives is the way in which en-

tities are annotated when there are multiple mentions of a unique
concept entity in the same sentence. First, we note that relation clas-
sification is performed between mentions of entities wherein the subject
and object entities are bound to generic SUBJECT/OBJECT tokens.
Hence, predictions are highly dependent on context. Consider the fol-
lowing sentence as an example, “In the trial based analysis, fondapar-
inux1 was estimated to prevent 15.1 thromboebolic events per 1000
patients at three months compared with enoxaparin; fondaparinux2
produced cost savings per patient at 30 days, 3 months, and 5 years
postdischarge.” Mentions of the relevant concepts are underlined. The
concept fondaparinux has two mentions in the sentence which are dis-
cerned via numbered subscripts. The issue, in this case, stems from the
fact that the gold treatment relation annotated for this sentence include
(fondaparinux2, treats, thromboebolic events) instead of (fondapar-
inux1, treats, thromboebolic events). Based on manual examination of
the linguistic context, the first mention of the subject (fondaparinux1) is
directly involved in a semantic relationship with the object (throm-
boebolic events), while the second mention of the subject (fondapar-
inux2) is only involved in the relationship by association with the first
mention. Hence, there is a logical inference aspect to the problem
arising from the way entities are annotated that is not handled well by
the model.

5. Extending to other relation types

Despite its potential, it is important to stress that MSDS as presented
is limited to treatment predications while TDS is more readily gen-
eralizable to other types of relations. However, we contend that it is
possible to extend MSDS to other highly-important, functional relation
types in the medical domain. For example, the Prevention & Control
subheading may be straightforwardly used in place of the Therapy
subheading, with minimal changes to the proposed method, to extract
prevents instead of treats relations. Moreover, we may consider utilizing
the Etiology subheading in combination with subheadings including
Methods and Complications to identify the candidate entities for a causes
relation. As an example, consider an abstract containing the following
sentence: “This review provides an up-to-date insight into the aetiology
of posterior shoulder dislocations; our results showed that seizures were
most commonly implicated.” The associated MeSH terms “Seizures/
complications” and “Shoulder Dislocation/etiology” can be leveraged
to extract an example for the relation triple (seizures, causes, shoulder
dislocation). Likewise, the MeSH subheading Diagnosis in conjunction
with Methods may be used to identify examples for the diagnose relation
type; e.g., the co-occurence of “Behcet Syndrome/diagnosis” and “X-
Ray Computed Tomography/methods” may indicate that Behcet's dis-
ease is diagnosable by X-Ray. Not only that, it is possible to move be-
yond binary treatment relations given MeSH indexing may include
multiple terms with the Therapeutic Use subheading for a single article.
That is, we can leverage MeSH terms to identify instances of combina-
tion therapies, wherein the treatment relation involves two or more
drugs. However promising, these research avenues require further
evaluation and analysis which is left for future work.

6. Conclusion

In this study, we introduced a distant supervision approach for re-
lation extraction of medical treatment predications by exploiting MeSH
subheadings. We demonstrated that our distant supervision method is a
desirable compromise between traditional distant supervision and
crowd-sourced annotations with the advantage that it is of reasonable
quality and can be obtained without the costs associated with human
involvement. We also showed that it is possible to use data obtained via
our proposed method to augment existing crowd-sourced data for
performance gains and this can be further improved by using a noise-

resistant loss. In future efforts, we anticipate using the proposed distant
supervision method to facilitate production of a large, high-quality
human-annotated dataset solely for medical treatment relations.
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