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Introduction

I Apriori: uses a generate-and-test approach � generates
candidate itemsets and tests if they are frequent

I Generation of candidate itemsets is expensive (in both space
and time)

I Support counting is expensive

I Subset checking (computationally expensive)
I Multiple Database scans (I/O)

I FP-Growth: allows frequent itemset discovery without
candidate itemset generation. Two step approach:

I Step 1: Build a compact data structure called the FP-tree

I Built using 2 passes over the data-set.

I Step 2: Extracts frequent itemsets directly from the FP-tree

I Traversal through FP-Tree

Core Data Structure: FP-Tree

I Nodes correspond to items and have a
counter

I FP-Growth reads 1 transaction at a
time and maps it to a path

I Fixed order is used, so paths can
overlap when transactions share items
(when they have the same pre�x ).

I In this case, counters are incremented

I Pointers are maintained between
nodes containing the same item,
creating singly linked lists (dotted
lines)

I The more paths that overlap, the
higher the compression. FP-tree may
�t in memory.

I Frequent itemsets extracted from the
FP-Tree.



Step 1: FP-Tree Construction (Example)

FP-Tree is constructed using 2 passes over the data-set:

I Pass 1:

I Scan data and �nd support for each item.
I Discard infrequent items.
I Sort frequent items in decreasing order based on their support.

I For our example: a, b, c, d , e
I Use this order when building the FP-Tree, so common pre�xes

can be shared.

Step 1: FP-Tree Construction (Example)

I Pass 2: construct the FP-Tree (see diagram on next slide)

I Read transaction 1: {a, b}
I Create 2 nodes a and b and the path null → a→ b. Set

counts of a and b to 1.

I Read transaction 2: {b, c, d}
I Create 3 nodes for b, c and d and the path

null → b → c → d . Set counts to 1.
I Note that although transaction 1 and 2 share b, the paths are

disjoint as they don't share a common pre�x. Add the link
between the b's.

I Read transaction 3: {a, c, d , e}
I It shares common pre�x item a with transaction 1 so the path

for transaction 1 and 3 will overlap and the frequency count
for node a will be incremented by 1. Add links between the c's
and d 's.

I Continue until all transactions are mapped to a path in the
FP-tree.



Step 1: FP-Tree Construction (Example)

FP-Tree size

I The FP-Tree usually has a smaller size than the uncompressed
data � typically many transactions share items (and hence
pre�xes).

I Best case scenario: all transactions contain the same set of
items.

I 1 path in the FP-tree

I Worst case scenario: every transaction has a unique set of
items (no items in common)

I Size of the FP-tree is at least as large as the original data.
I Storage requirements for the FP-tree are higher � need to

store the pointers between the nodes and the counters.

I The size of the FP-tree depends on how the items are ordered

I Ordering by decreasing support is typically used but it does
not always lead to the smallest tree (it's a heuristic).



Step 2: Frequent Itemset Generation

I FP-Growth extracts frequent itemsets from the FP-tree.

I Bottom-up algorithm � from the leaves towards the root

I Divide and conquer: �rst look for frequent itemsets ending in
e, then de, etc. . . then d , then cd , etc. . .

I First, extract pre�x path sub-trees ending in an item(set). (hint: use
the linked lists)

↑ Complete FP-tree
→ Example: pre�x path
sub-trees

Step 2: Frequent Itemset Generation

I Each pre�x path sub-tree is processed recursively to extract
the frequent itemsets. Solutions are then merged.

I E.g. the pre�x path sub-tree for e will be used to extract
frequent itemsets ending in e, then in de, ce, be and ae, then
in cde, bde, cde, etc.

I Divide and conquer approach

Pre�x path sub-tree ending in e.



Example
Let minSup = 2 and extract all frequent itemsets containing e.

I 1. Obtain the pre�x path sub-tree for e:

I 2. Check if e is a frequent item by adding the counts along the
linked list (dotted line). If so, extract it.

I Yes, count =3 so {e} is extracted as a frequent itemset.

I 3. As e is frequent, �nd frequent itemsets ending in e. i.e. de,
ce, be and ae.

I i.e. decompose the problem recursively.
I To do this, we must �rst to obtain the conditional FP-tree for

e.

Conditional FP-Tree

I The FP-Tree that would be built if we only consider
transactions containing a particular itemset (and then
removing that itemset from all transactions).

I Example: FP-Tree conditional on e.



Conditional FP-Tree

To obtain the conditional FP-tree for e from the pre�x sub-tree

ending in e:

I Update the support counts along the pre�x paths (from e) to
re�ect the number of transactions containing e.

I b and c should be set to 1 and a to 2.

Conditional FP-Tree

To obtain the conditional FP-tree for e from the pre�x sub-tree

ending in e:

I Remove the nodes containing e � information about node e is
no longer needed because of the previous step



Conditional FP-Tree

To obtain the conditional FP-tree for e from the pre�x sub-tree

ending in e:

I Remove infrequent items (nodes) from the pre�x paths

I E.g. b has a support of 1 (note this really means be has a
support of 1). i.e. there is only 1 transaction containing b and

e so be is infrequent � can remove b.

Question: why were c and d not removed?

Example (continued)

I 4. Use the the conditional FP-tree for e to �nd frequent
itemsets ending in de, ce and ae

I Note that be is not considered as b is not in the conditional
FP-tree for e.

I For each of them (e.g. de), �nd the pre�x paths from the
conditional tree for e, extract frequent itemsets, generate
conditional FP-tree, etc... (recursive)

I Example: e → de → ade ({d , e},{a, d , e} are found to be
frequent)



Example (continued)

I 4. Use the the conditional FP-tree for e to �nd frequent
itemsets ending in de, ce and ae

I Example: e → ce ({c, e} is found to be frequent)

I etc... (ae, then do the whole thing for b,... etc)

Result

I Frequent itemsets found (ordered by su�x and order in which
they are found):



Discussion

I Advantages of FP-Growth

I only 2 passes over data-set
I �compresses� data-set
I no candidate generation
I much faster than Apriori

I Disadvantages of FP-Growth

I FP-Tree may not �t in memory!!
I FP-Tree is expensive to build

I Trade-o�: takes time to build, but once it is built, frequent
itemsets are read o� easily.

I Time is wasted (especially if support threshold is high), as the
only pruning that can be done is on single items.

I support can only be calculated once the entire data-set is
added to the FP-Tree.
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