gSpan: Graph-Based Substructure Pattern Mining

Xifeng Yan and Jiawei Han

University of Illinois at Urbana-Champaign

February 3, 2017

Agenda

- What motivated the development of gSpan?
- Technical Preliminaries
- Exploring the gSpan algorithm
- Experimental Performance Evaluation

Why are we interested in mining graphs?

- Social Network Data, Electronic Transactions (Fraud Detection)
- Chemical Compounds
- Computer vision, video indexing, text retrieval

Issues with Previous Graph Mining Approaches

- Previous benchmark approaches called AGM and FGS inefficient
- Take Apriori-like, level-wise approaches
- 1) Generate huge candidate sets
- 2) Require multiple scans of database
- 3) Difficult to mine long patterns

Apriori-based algorithms suffer from:

• Costly subgraph isomorphism test

• Subgraph candidate generation complicated and expensive gSpan combats these issues by:

• Eliminating candidate generation!

- Applying Depth First instead of Breadth First search
- Introducing a new lexicographic canonical labeling system
- Combining isomorphism test and subgraph growth into one procedure

Given: A graph dataset $GS = \{G_i | i = 0, ..., n\}$, and *minsup*

- Each G_i a labeled, undirected graph (V, E, L, I)
- minsup is the minimum support

Find: All g s.t. $\sum_{G_i \in GS} \zeta(g, G_i) \ge minsup$

 $\zeta(g, G_i) = \begin{cases} 1 & \text{if } g \text{ isomorphic to a subgraph of } G, \\ 0 & \text{if } g \text{ not isomorphic to a subgraph of } G \end{cases}$

Preliminaries: Graph Isomorphism

Are these graphs isomorphic?

Preliminaries: Graph Isomorphism

Yes! An NP-complete Problem!

In class we have seen ordering used during itemset mining:

- Items in "baskets" lexicographically ordered A,B,...,F
- Systematically search for frequent itemsets
- Eliminates redundancy, improving efficiency

gSpan applies the same concept!!

- Each graph has a unique, ordered label
- Efficiently discover frequent subgraphs
- Prune the search space

э

Let
$$e_1 = (i_1, j_1)$$
, $e_2 = (i_2, j_2)$
1) $e_1 \prec_T e_2$ if $i_1 = i_2$ and $j_1 < j_2$
2) $e_1 \prec_T e_2$ if $i_1 < i_2$ and $j_1 = i_2$

	Edge	Code 1a	Code 1b	Code 1c
Graph 1c	0	(0,1,B,b,R)	(0,1,R,a,B)	(0,1,B,a,B)
. <mark>V_0</mark> .	1	(1,2,R,b,B)	(1,2,B,a,B)	(1,2,B,a,R)
v	2	(2,0,B,a,B)	(2,0,B,b,R)	(2,0,R,b,B)
	3	(2,3,B,c,G)	(2,3,B,c,G)	(2,3,R,d,G)
	4	(3,1,G,d,R)	(3,0,G,b,R)	(3,0,G,c,B)
· 🛃 🛛 🛂	5	(1,4,R,d,G)	(0,4,R,d,G)	(2,4,R,d,G)

We have several DFS codes for the same graph!

- Fortunately, an ordering on DFS codes too!
- Specified by DFS Lexicographic Order
- In our case, Graph 1c \prec Graph 1b \prec Graph 1a

Graph 1c the Minimum DFS Code of Graph 1

• This is the unique, canonical label of Graph 1

Theorem 1

Given two graphs G and G', G is isomorphic to G' if and only if min(G) = min(G').

$$\begin{array}{ll} (i) & for \ some \ t, 0 \leqslant t \leqslant \min\{m, n\}, \ we \ have \ a_k = b_k \ for \ k < t, \ and^* \\ \\ & true \ if \ a_t \in E_{\alpha, b} \ and \ b_t \in E_{\beta, f}. \\ & true \ if \ a_t \in E_{\alpha, b}, \ b_t \in E_{\beta, b}, \ and \ j_a < j_b. \\ & true \ if \ a_t \in E_{\alpha, b}, \ b_t \in E_{\beta, b}, \ and \ l_{(i_a, j_a)} < l_{(i_b, j_b)}. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ and \ l_b < i_a. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ a_t = b_b, \ and \ l_{i_a} < l_{i_b}. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ a_t = b_b, \ and \ l_{i_a} < l_{i_b}. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ a_t = b_b, \ and \ l_{i_a} < l_{i_b}. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ a_t = b_b, \ l_{i_a} = l_{i_b}, \ and \ l_{(i_a, j_a)} < l_{(i_b, j_b)}. \\ & true \ if \ a_t \in E_{\alpha, f}, \ b_t \in E_{\beta, f}, \ i_a = i_b, \ l_{i_a} = l_{i_b}, \ and \ l_{(i_a, j_a)} = l_{(i_b, j_b)}, \ and \ l_{j_a} < l_{j_b}. \end{array}$$

Determining the Minimum DFS Code Lexicographically

- 4 同 6 4 日 6 4 日 6 - 日

DFS Code Tree: The "search space" of gSpan algorithm

"Growing" a tree in DFS Lexicographic Order during search

DFS Code Tree Covering

• The DFS Code Tree contains minimum DFS codes for all graphs

Frequency Antimonotone

- If graph G is frequent, any subgraph of G is frequent
- If graph G is infrequent, any graph containing G is not frequent

DFS Code Pruning

Let the DFS Codes of G be α₀, α₁, ..., α_n with α₀ being min(G). Pruning {α_i : 1 ≤ i ≤ n} preserves DFS Code Tree Covering.

• • • • • • •

Algorithm 2 GraphSet_Projection(GS,S).

- sort labels of the vertices and edges in GS by their frequency;
- 2: remove infrequent vertices and edges;
- 3: relabel the remaining vertices and edges in descending frequency;
- 4: $\mathbb{S}^1 \leftarrow$ all frequent 1-edge graphs in \mathbb{GS} ;
- sort S¹ in DFS lexicographic order;
- 6: $\mathbb{S} \leftarrow \mathbb{S}^1$;
- 7: for each edge $e \in S^1$ do
- 8: initialize s with e, set $s.GS = \{g \mid \forall g \in \mathbb{GS}, e \in E(g)\}$; (only graph ID is recorded)
- 9: Subgraph_Mining(GS, S, s);
- 10: $\mathbb{GS} \leftarrow \mathbb{GS} e;$
- 11: if $|\mathbb{GS}| < minSup$;
- 12: break;

Steps 1-2: Remove infrequent vertices and edges

- Begin pruning dataset early!
- Clearly if edge *e* or vertex *v* are *j minsup*, any graph *G* containing *e* or *v* is guaranteed to be infrequent!

Step 3: Relabel edges and vertices in descending order

- Need an ordering on labels to determine DFS Lexicographic Order on DFS Codes
- $V = \{ \text{Red, Green, Blue} \}, E = \{ X, Y, Z \}$

伺 ト イ ヨ ト イ ヨ ト

The gSpan Algorithm

order

Steps 7-9: Loop over frequent 1-edge subgraphs

- Begin with least edge in lexicographic order
- Set s.GS = $G \in GS$ where $e \in E(G)$
- Call SubgraphMining(GS, S, s);

.

Subprocedure 1 Subgraph_Mining(\mathbb{GS} , \mathbb{S} , s).

- 1: if $s \neq min(s)$
- 2: return;
- 3: $\mathbb{S} \leftarrow \mathbb{S} \cup \{s\};$
- 4: generate all s' potential children with one edge growth;[†]
- 5: Enumerate(s);
- 6: for each c, c is s' child do
- 7: if $support(c) \ge minSup$
- 8: $s \leftarrow c$;
- 9: Subgraph_Mining(CS, S, s);

< 日 > < 同 > < 三 > < 三 >

3

The gSpan Algorithm

The gSpan Algorithm

Step 11: $\mathcal{D} \leftarrow \mathcal{D} - e$

- Very important step!
- Because of Lexicographic DFS, have already mined ALL subgraphs containing edge *e*
- Remove all instances of edge e from graph dataset
- Mining process takes less time for later iterations
- Drastically improves efficiency!

Tested on synthetic and real (Chemical Compounds) datasets

- Tested against previous mining benchmark FSG algorithm
- Performs 6-45x faster on synthetic data
- Performs 15-100x better on chemical compound data

Experimental Performance Results

<ロ> (日) (日) (日) (日) (日)

Experimental Performance Results

Xifeng Yan and Jiawei Han gSpan: Graph-Based Substructure Pattern Mining

900

Experimental Performance Results

Xifeng Yan and Jiawei Han gSpan: Graph-Based Substructure Pattern Mining

gSpan sets new benchmark for mining frequent graphs

- No candidate generation! Reduce expensive false candidate testing
- Introduce DFS Lexicographic order to systematically SEARCH and PRUNE search space
- Depth-first as opposed to Breadth-first search
- Possible can fit in main memory, reduce IOs
- Shrink graph dataset with each iteration!