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Preface

This book is an outgrowth of data mining courses at Rensselaer Polytechnic Institute

(RPI) and Universidade Federal de Minas Gerais (UFMG); the RPI course has been

offered every Fall since 1998, whereas the UFMG course has been offered since

2002. Although there are several good books on data mining and related topics, we

felt that many of them are either too high-level or too advanced. Our goal was to

write an introductory text that focuses on the fundamental algorithms in data mining

and analysis. It lays the mathematical foundations for the core data mining methods,

with key concepts explained when first encountered; the book also tries to build the

intuition behind the formulas to aid understanding.

The main parts of the book include exploratory data analysis, frequent pattern

mining, clustering, and classification. The book lays the basic foundations of these

tasks, and it also covers cutting-edge topics such as kernel methods, high-dimensional

data analysis, and complex graphs and networks. It integrates concepts from related

disciplines such as machine learning and statistics and is also ideal for a course on data

analysis. Most of the prerequisite material is covered in the text, especially on linear

algebra, and probability and statistics.

The book includes many examples to illustrate the main technical concepts. It also

has end-of-chapter exercises, which have been used in class. All of the algorithms in the

book have been implemented by the authors. We suggest that readers use their favorite

data analysis and mining software to work through our examples and to implement the

algorithms we describe in text; we recommend the R software or the Python language

with its NumPy package. The datasets used and other supplementary material such

as project ideas and slides are available online at the book’s companion site and its

mirrors at RPI and UFMG:

• http://dataminingbook.info

• http://www.cs.rpi.edu/~zaki/dataminingbook

• http://www.dcc.ufmg.br/dataminingbook

Having understood the basic principles and algorithms in data mining and data

analysis, readers will be well equipped to develop their own methods or use more

advanced techniques.

ix



x Preface

1

2

14 6 7 15 5

13

17

16 20

22

21

4 19

3

18 8

11

12

9 10

Figure 0.1. Chapter dependencies

Suggested Roadmaps

The chapter dependency graph is shown in Figure 0.1. We suggest some typical

roadmaps for courses and readings based on this book. For an undergraduate-level

course, we suggest the following chapters: 1–3, 8, 10, 12–15, 17–19, and 21–22. For an

undergraduate course without exploratory data analysis, we recommend Chapters 1,

8–15, 17–19, and 21–22. For a graduate course, one possibility is to quickly go over the

material in Part I or to assume it as background reading and to directly cover Chapters

9–22; the other parts of the book, namely frequent pattern mining (Part II), clustering

(Part III), and classification (Part IV), can be covered in any order. For a course on

data analysis the chapters covered must include 1–7, 13–14, 15 (Section 2), and 20.

Finally, for a course with an emphasis on graphs and kernels we suggest Chapters 4, 5,

7 (Sections 1–3), 11–12, 13 (Sections 1–2), 16–17, and 20–22.
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CHAPTER 1 Data Mining and Analysis

Data mining is the process of discovering insightful, interesting, and novel patterns, as

well as descriptive, understandable, and predictive models from large-scale data. We

begin this chapter by looking at basic properties of data modeled as a data matrix. We

emphasize the geometric and algebraic views, as well as the probabilistic interpretation

of data. We then discuss the main data mining tasks, which span exploratory data

analysis, frequent pattern mining, clustering, and classification, laying out the roadmap

for the book.

1.1 DATA MATRIX

Data can often be represented or abstracted as an n× d data matrix, with n rows and

d columns, where rows correspond to entities in the dataset, and columns represent

attributes or properties of interest. Each row in the data matrix records the observed

attribute values for a given entity. The n× d data matrix is given as

D=




X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd




where xi denotes the ith row, which is a d-tuple given as

xi = (xi1,xi2, . . . ,xid)

and Xj denotes the j th column, which is an n-tuple given as

Xj = (x1j ,x2j , . . . ,xnj )

Depending on the application domain, rows may also be referred to as entities,

instances, examples, records, transactions, objects, points, feature-vectors, tuples, and so

on. Likewise, columns may also be called attributes, properties, features, dimensions,

variables, fields, and so on. The number of instances n is referred to as the size of

1



2 Data Mining and Analysis

Table 1.1. Extract from the Iris dataset



Sepal Sepal Petal Petal
Class

length width length width

X1 X2 X3 X4 X5

x1 5.9 3.0 4.2 1.5 Iris-versicolor

x2 6.9 3.1 4.9 1.5 Iris-versicolor

x3 6.6 2.9 4.6 1.3 Iris-versicolor

x4 4.6 3.2 1.4 0.2 Iris-setosa

x5 6.0 2.2 4.0 1.0 Iris-versicolor

x6 4.7 3.2 1.3 0.2 Iris-setosa

x7 6.5 3.0 5.8 2.2 Iris-virginica

x8 5.8 2.7 5.1 1.9 Iris-virginica
..
.

..

.
..
.

..

.
..
.

..

.

x149 7.7 3.8 6.7 2.2 Iris-virginica

x150 5.1 3.4 1.5 0.2 Iris-setosa




the data, whereas the number of attributes d is called the dimensionality of the data.

The analysis of a single attribute is referred to as univariate analysis, whereas the

simultaneous analysis of two attributes is called bivariate analysis and the simultaneous

analysis of more than two attributes is called multivariate analysis.

Example 1.1. Table 1.1 shows an extract of the Iris dataset; the complete data forms

a 150× 5 data matrix. Each entity is an Iris flower, and the attributes include sepal

length, sepal width, petal length, and petal width in centimeters, and the type

or class of the Iris flower. The first row is given as the 5-tuple

x1 = (5.9,3.0,4.2,1.5,Iris-versicolor)

Not all datasets are in the form of a data matrix. For instance, more complex

datasets can be in the form of sequences (e.g., DNA and protein sequences), text,

time-series, images, audio, video, and so on, which may need special techniques for

analysis. However, in many cases even if the raw data is not a data matrix it can

usually be transformed into that form via feature extraction. For example, given a

database of images, we can create a data matrix in which rows represent images and

columns correspond to image features such as color, texture, and so on. Sometimes,

certain attributes may have special semantics associated with them requiring special

treatment. For instance, temporal or spatial attributes are often treated differently.

It is also worth noting that traditional data analysis assumes that each entity or

instance is independent. However, given the interconnected nature of the world

we live in, this assumption may not always hold. Instances may be connected to

other instances via various kinds of relationships, giving rise to a data graph, where

a node represents an entity and an edge represents the relationship between two

entities.
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1.2 ATTRIBUTES

Attributes may be classified into two main types depending on their domain, that is,

depending on the types of values they take on.

Numeric Attributes

A numeric attribute is one that has a real-valued or integer-valued domain. For

example, Age with domain(Age) = N, where N denotes the set of natural numbers

(non-negative integers), is numeric, and so is petal length in Table 1.1, with

domain(petal length)=R
+ (the set of all positive real numbers). Numeric attributes

that take on a finite or countably infinite set of values are called discrete, whereas those

that can take on any real value are called continuous. As a special case of discrete, if

an attribute has as its domain the set {0,1}, it is called a binary attribute. Numeric

attributes can be classified further into two types:

• Interval-scaled: For these kinds of attributes only differences (addition or subtraction)

make sense. For example, attribute temperature measured in ◦C or ◦F is interval-scaled.

If it is 20 ◦C on one day and 10 ◦C on the following day, it is meaningful to talk about a

temperature drop of 10 ◦C, but it is not meaningful to say that it is twice as cold as the

previous day.

• Ratio-scaled: Here one can compute both differences as well as ratios between values.

For example, for attribute Age, we can say that someone who is 20 years old is twice as

old as someone who is 10 years old.

Categorical Attributes

A categorical attribute is one that has a set-valued domain composed of a set of

symbols. For example, Sex and Education could be categorical attributes with their

domains given as

domain(Sex)= {M,F}
domain(Education)= {HighSchool,BS,MS,PhD}

Categorical attributes may be of two types:

• Nominal: The attribute values in the domain are unordered, and thus only equality

comparisons are meaningful. That is, we can check only whether the value of the

attribute for two given instances is the same or not. For example, Sex is a nominal

attribute. Also class in Table 1.1 is a nominal attribute with domain(class) =
{iris-setosa,iris-versicolor,iris-virginica}.

• Ordinal: The attribute values are ordered, and thus both equality comparisons (is one

value equal to another?) and inequality comparisons (is one value less than or greater

than another?) are allowed, though it may not be possible to quantify the difference

between values. For example, Education is an ordinal attribute because its domain

values are ordered by increasing educational qualification.
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1.3 DATA: ALGEBRAIC AND GEOMETRIC VIEW

If the d attributes or dimensions in the data matrix D are all numeric, then each row

can be considered as a d-dimensional point:

xi = (xi1,xi2, . . . ,xid) ∈Rd

or equivalently, each row may be considered as a d-dimensional column vector (all

vectors are assumed to be column vectors by default):

xi =




xi1

xi2

...

xid


=

(
xi1 xi2 · · · xid

)T ∈Rd

where T is the matrix transpose operator.

The d-dimensional Cartesian coordinate space is specified via the d unit vectors,

called the standard basis vectors, along each of the axes. The j th standard basis vector

ej is the d-dimensional unit vector whose j th component is 1 and the rest of the

components are 0

ej = (0, . . . ,1j , . . . ,0)T

Any other vector in R
d can be written as linear combination of the standard basis

vectors. For example, each of the points xi can be written as the linear combination

xi = xi1e1+ xi2e2+ ·· ·+ xided =
d∑

j=1

xijej

where the scalar value xij is the coordinate value along the j th axis or attribute.

Example 1.2. Consider the Iris data in Table 1.1. If we project the entire data

onto the first two attributes, then each row can be considered as a point or

a vector in 2-dimensional space. For example, the projection of the 5-tuple

x1 = (5.9,3.0,4.2,1.5,Iris-versicolor) on the first two attributes is shown in

Figure 1.1a. Figure 1.2 shows the scatterplot of all the n = 150 points in the

2-dimensional space spanned by the first two attributes. Likewise, Figure 1.1b shows

x1 as a point and vector in 3-dimensional space, by projecting the data onto the first

three attributes. The point (5.9,3.0,4.2) can be seen as specifying the coefficients in

the linear combination of the standard basis vectors in R
3:

x1 = 5.9e1+ 3.0e2+ 4.2e3= 5.9




1

0

0


+ 3.0




0

1

0


+ 4.2




0

0

1


=




5.9

3.0

4.2



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Figure 1.2. Scatterplot: sepal length versus sepal width. The solid circle shows the mean point.

Each numeric column or attribute can also be treated as a vector in an

n-dimensional space R
n:

Xj =




x1j

x2j

...

xnj



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If all attributes are numeric, then the data matrix D is in fact an n× d matrix, also

written as D ∈Rn×d , given as

D=




x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd


=




— xT
1 —

— xT
2 —

...

— xT
n —



=



| | |

X1 X2 · · · Xd

| | |




As we can see, we can consider the entire dataset as an n×d matrix, or equivalently as

a set of n row vectors xT
i ∈Rd or as a set of d column vectors Xj ∈Rn.

1.3.1 Distance and Angle

Treating data instances and attributes as vectors, and the entire dataset as a matrix,

enables one to apply both geometric and algebraic methods to aid in the data mining

and analysis tasks.

Let a,b ∈Rm be two m-dimensional vectors given as

a=




a1

a2

...

am


 b=




b1

b2

...

bm




Dot Product

The dot product between a and b is defined as the scalar value

aTb=
(
a1 a2 · · · am

)
×




b1

b2

...

bm




= a1b1+ a2b2+ ·· ·+ ambm

=
m∑

i=1

aibi

Length

The Euclidean norm or length of a vector a ∈Rm is defined as

‖a‖ =
√

aTa=
√

a2
1 + a2

2+ ·· ·+ a2
m =

√√√√
m∑

i=1

a2
i

The unit vector in the direction of a is given as

u= a

‖a‖ =
(

1

‖a‖

)
a
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By definition u has length ‖u‖ = 1, and it is also called a normalized vector, which can

be used in lieu of a in some analysis tasks.

The Euclidean norm is a special case of a general class of norms, known as

Lp-norm, defined as

‖a‖p =
(
|a1|p+|a2|p+ ·· ·+ |am|p

) 1
p =

( m∑

i=1

|ai|p
) 1

p

for any p 6= 0. Thus, the Euclidean norm corresponds to the case when p = 2.

Distance

From the Euclidean norm we can define the Euclidean distance between a and b, as

follows

δ(a,b)= ‖a−b‖ =
√

(a−b)T(a−b)=

√√√√
m∑

i=1

(ai − bi)2 (1.1)

Thus, the length of a vector is simply its distance from the zero vector 0, all of whose

elements are 0, that is, ‖a‖ = ‖a− 0‖= δ(a,0).

From the general Lp-norm we can define the corresponding Lp-distance function,

given as follows

δp(a,b)= ‖a−b‖p (1.2)

If p is unspecified, as in Eq. (1.1), it is assumed to be p = 2 by default.

Angle

The cosine of the smallest angle between vectors a and b, also called the cosine

similarity, is given as

cosθ = aTb

‖a‖‖b‖ =
(

a

‖a‖

)T(
b

‖b‖

)
(1.3)

Thus, the cosine of the angle between a and b is given as the dot product of the unit

vectors a
‖a‖ and b

‖b‖ .

The Cauchy–Schwartz inequality states that for any vectors a and b in R
m

|aTb| ≤ ‖a‖ · ‖b‖

It follows immediately from the Cauchy–Schwartz inequality that

−1≤ cosθ ≤ 1
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0

1

2

3

4

0 1 2 3 4 5

X1

X2

bc (5,3)

bc(1,4)

ab

a−b

θ

Figure 1.3. Distance and angle. Unit vectors are shown in gray.

Because the smallest angle θ ∈ [0◦,180◦] and because cosθ ∈ [−1,1], the cosine

similarity value ranges from +1, corresponding to an angle of 0◦, to −1, corresponding

to an angle of 180◦ (or π radians).

Orthogonality

Two vectors a and b are said to be orthogonal if and only if aTb = 0, which in turn

implies that cosθ = 0, that is, the angle between them is 90◦ or π

2
radians. In this case,

we say that they have no similarity.

Example 1.3 (Distance and Angle). Figure 1.3 shows the two vectors

a=
(

5

3

)
and b=

(
1

4

)

Using Eq. (1.1), the Euclidean distance between them is given as

δ(a,b)=
√

(5− 1)2+ (3− 4)2=
√

16+ 1=
√

17= 4.12

The distance can also be computed as the magnitude of the vector:

a−b=
(

5

3

)
−
(

1

4

)
=
(

4

−1

)

because ‖a−b‖ =
√

42+ (−1)2 =
√

17= 4.12.

The unit vector in the direction of a is given as

ua =
a

‖a‖ =
1√

52+ 32

(
5

3

)
= 1√

34

(
5

3

)
=
(

0.86

0.51

)
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The unit vector in the direction of b can be computed similarly:

ub =
(

0.24

0.97

)

These unit vectors are also shown in gray in Figure 1.3.

By Eq. (1.3) the cosine of the angle between a and b is given as

cosθ =

(
5

3

)T(
1

4

)

√
52+ 32

√
12+ 42

= 17√
34× 17

= 1√
2

We can get the angle by computing the inverse of the cosine:

θ = cos−1
(
1/
√

2
)
= 45◦

Let us consider the Lp-norm for a with p= 3; we get

‖a‖3 =
(
53+ 33

)1/3 = (153)1/3= 5.34

The distance between a and b using Eq. (1.2) for the Lp-norm with p = 3 is given as

‖a−b‖3 =
∥∥(4,−1)T

∥∥
3
=
(
43+ (−1)3

)1/3 = (63)1/3 = 3.98

1.3.2 Mean and Total Variance

Mean

The mean of the data matrix D is the vector obtained as the average of all the

points:

mean(D)=µ= 1

n

n∑

i=1

xi

Total Variance

The total variance of the data matrix D is the average squared distance of each point

from the mean:

var(D)= 1

n

n∑

i=1

δ(xi,µ)2 = 1

n

n∑

i=1

‖xi −µ‖2 (1.4)

Simplifying Eq. (1.4) we obtain

var(D)= 1

n

n∑

i=1

(
‖xi‖2− 2xT

i µ+‖µ‖2
)

= 1

n

(
n∑

i=1

‖xi‖2− 2nµT

(
1

n

n∑

i=1

xi

)
+n‖µ‖2

)
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= 1

n

(
n∑

i=1

‖xi‖2− 2nµTµ+n‖µ‖2
)

= 1

n

(
n∑

i=1

‖xi‖2
)
−‖µ‖2

The total variance is thus the difference between the average of the squared magnitude

of the data points and the squared magnitude of the mean (average of the points).

Centered Data Matrix

Often we need to center the data matrix by making the mean coincide with the origin

of the data space. The centered data matrix is obtained by subtracting the mean from

all the points:

Z=D− 1 ·µT =




xT
1

xT
2

...

xT
n



−




µT

µT

...

µT



=




xT
1 −µT

xT
2 −µT

...

xT
n −µT



=




zT
1

zT
2

...

zT
n




(1.5)

where zi = xi −µ represents the centered point corresponding to xi , and 1 ∈ Rn is the

n-dimensional vector all of whose elements have value 1. The mean of the centered

data matrix Z is 0 ∈Rd , because we have subtracted the mean µ from all the points xi .

1.3.3 Orthogonal Projection

Often in data mining we need to project a point or vector onto another vector, for

example, to obtain a new point after a change of the basis vectors. Let a,b ∈Rm be two

m-dimensional vectors. An orthogonal decomposition of the vector b in the direction

0

1

2

3

4

0 1 2 3 4 5

X1

X2

a

b

r=
b⊥

p=
b‖

Figure 1.4. Orthogonal projection.
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of another vector a, illustrated in Figure 1.4, is given as

b= b‖+b⊥ = p+ r (1.6)

where p= b‖ is parallel to a, and r= b⊥ is perpendicular or orthogonal to a. The vector

p is called the orthogonal projection or simply projection of b on the vector a. Note

that the point p ∈ Rm is the point closest to b on the line passing through a. Thus, the

magnitude of the vector r = b− p gives the perpendicular distance between b and a,

which is often interpreted as the residual or error vector between the points b and p.

We can derive an expression for p by noting that p = ca for some scalar c, as p is

parallel to a. Thus, r= b−p= b− ca. Because p and r are orthogonal, we have

pTr= (ca)T(b− ca)= caTb− c2aTa= 0

which implies that

c= aTb

aTa
Therefore, the projection of b on a is given as

p= b‖ = ca=
(

aTb

aTa

)
a (1.7)

Example 1.4. Restricting the Iris dataset to the first two dimensions, sepal length

and sepal width, the mean point is given as

mean(D)=
(

5.843

3.054

)
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Figure 1.5. Projecting the centered data onto the line ℓ.
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which is shown as the black circle in Figure 1.2. The corresponding centered data

is shown in Figure 1.5, and the total variance is var(D) = 0.868 (centering does not

change this value).

Figure 1.5 shows the projection of each point onto the line ℓ, which is the line that

maximizes the separation between the class iris-setosa (squares) from the other

two classes, namely iris-versicolor (circles) and iris-virginica (triangles). The

line ℓ is given as the set of all the points (x1,x2)
T satisfying the constraint

(
x1

x2

)
=

c

(
−2.15

2.75

)
for all scalars c ∈R.

1.3.4 Linear Independence and Dimensionality

Given the data matrix

D=
(
x1 x2 · · · xn

)T =
(
X1 X2 · · · Xd

)

we are often interested in the linear combinations of the rows (points) or the

columns (attributes). For instance, different linear combinations of the original d

attributes yield new derived attributes, which play a key role in feature extraction and

dimensionality reduction.

Given any set of vectors v1,v2, . . . ,vk in an m-dimensional vector space R
m, their

linear combination is given as

c1v1+ c2v2+ ·· ·+ ckvk

where ci ∈ R are scalar values. The set of all possible linear combinations of the k

vectors is called the span, denoted as span(v1, . . . ,vk), which is itself a vector space

being a subspace of Rm. If span(v1, . . . ,vk)=R
m, then we say that v1, . . . ,vk is a spanning

set for Rm.

Row and Column Space

There are several interesting vector spaces associated with the data matrix D, two of

which are the column space and row space of D. The column space of D, denoted

col(D), is the set of all linear combinations of the d attributes Xj ∈Rn, that is,

col(D)= span(X1,X2, . . . ,Xd)

By definition col(D) is a subspace of Rn. The row space of D, denoted row(D), is the

set of all linear combinations of the n points xi ∈Rd , that is,

row(D)= span(x1,x2, . . . ,xn)

By definition row(D) is a subspace of R
d . Note also that the row space of D is the

column space of DT:

row(D)= col(DT)
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Linear Independence

We say that the vectors v1, . . . ,vk are linearly dependent if at least one vector can be

written as a linear combination of the others. Alternatively, the k vectors are linearly

dependent if there are scalars c1,c2, . . . ,ck , at least one of which is not zero, such that

c1v1+ c2v2+ ·· ·+ ckvk = 0

On the other hand, v1, · · · ,vk are linearly independent if and only if

c1v1+ c2v2+ ·· ·+ ckvk = 0 implies c1 = c2 = ·· · = ck = 0

Simply put, a set of vectors is linearly independent if none of them can be written as a

linear combination of the other vectors in the set.

Dimension and Rank

Let S be a subspace of Rm. A basis for S is a set of vectors in S, say v1, . . . ,vk , that are

linearly independent and they span S, that is, span(v1, . . . ,vk) = S. In fact, a basis is a

minimal spanning set. If the vectors in the basis are pairwise orthogonal, they are said

to form an orthogonal basis for S. If, in addition, they are also normalized to be unit

vectors, then they make up an orthonormal basis for S. For instance, the standard basis

for Rm is an orthonormal basis consisting of the vectors

e1 =




1

0
...

0


 e2 =




0

1
...

0


 · · · em =




0

0
...

1




Any two bases for S must have the same number of vectors, and the number of vectors

in a basis for S is called the dimension of S, denoted as dim(S). Because S is a subspace

of Rm, we must have dim(S)≤m.

It is a remarkable fact that, for any matrix, the dimension of its row and column

space is the same, and this dimension is also called the rank of the matrix. For the data

matrix D ∈ R
n×d , we have rank(D) ≤ min(n,d), which follows from the fact that the

column space can have dimension at most d , and the row space can have dimension at

most n. Thus, even though the data points are ostensibly in a d dimensional attribute

space (the extrinsic dimensionality), if rank(D) < d , then the data points reside in a

lower dimensional subspace of Rd , and in this case rank(D) gives an indication about

the intrinsic dimensionality of the data. In fact, with dimensionality reduction methods

it is often possible to approximate D ∈ R
n×d with a derived data matrix D′ ∈ R

n×k,

which has much lower dimensionality, that is, k ≪ d . In this case k may reflect the

“true” intrinsic dimensionality of the data.

Example 1.5. The line ℓ in Figure 1.5 is given as ℓ = span
((
−2.15 2.75

)T
)
, with

dim(ℓ) = 1. After normalization, we obtain the orthonormal basis for ℓ as the unit

vector
1√

12.19

(
−2.15

2.75

)
=
(
−0.615

0.788

)
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Table 1.2. Iris dataset: sepal length (in centimeters).

5.9 6.9 6.6 4.6 6.0 4.7 6.5 5.8 6.7 6.7 5.1 5.1 5.7 6.1 4.9

5.0 5.0 5.7 5.0 7.2 5.9 6.5 5.7 5.5 4.9 5.0 5.5 4.6 7.2 6.8

5.4 5.0 5.7 5.8 5.1 5.6 5.8 5.1 6.3 6.3 5.6 6.1 6.8 7.3 5.6

4.8 7.1 5.7 5.3 5.7 5.7 5.6 4.4 6.3 5.4 6.3 6.9 7.7 6.1 5.6

6.1 6.4 5.0 5.1 5.6 5.4 5.8 4.9 4.6 5.2 7.9 7.7 6.1 5.5 4.6

4.7 4.4 6.2 4.8 6.0 6.2 5.0 6.4 6.3 6.7 5.0 5.9 6.7 5.4 6.3

4.8 4.4 6.4 6.2 6.0 7.4 4.9 7.0 5.5 6.3 6.8 6.1 6.5 6.7 6.7

4.8 4.9 6.9 4.5 4.3 5.2 5.0 6.4 5.2 5.8 5.5 7.6 6.3 6.4 6.3

5.8 5.0 6.7 6.0 5.1 4.8 5.7 5.1 6.6 6.4 5.2 6.4 7.7 5.8 4.9

5.4 5.1 6.0 6.5 5.5 7.2 6.9 6.2 6.5 6.0 5.4 5.5 6.7 7.7 5.1

1.4 DATA: PROBABILISTIC VIEW

The probabilistic view of the data assumes that each numeric attribute X is a random

variable, defined as a function that assigns a real number to each outcome of an

experiment (i.e., some process of observation or measurement). Formally, X is a

function X : O→ R, where O, the domain of X, is the set of all possible outcomes

of the experiment, also called the sample space, and R, the range of X, is the set

of real numbers. If the outcomes are numeric, and represent the observed values of

the random variable, then X : O→ O is simply the identity function: X(v) = v for all

v ∈O. The distinction between the outcomes and the value of the random variable is

important, as we may want to treat the observed values differently depending on the

context, as seen in Example 1.6.

A random variable X is called a discrete random variable if it takes on only a finite

or countably infinite number of values in its range, whereas X is called a continuous

random variable if it can take on any value in its range.

Example 1.6. Consider the sepal length attribute (X1) for the Iris dataset in

Table 1.1. All n = 150 values of this attribute are shown in Table 1.2, which lie in

the range [4.3,7.9], with centimeters as the unit of measurement. Let us assume that

these constitute the set of all possible outcomes O.

By default, we can consider the attribute X1 to be a continuous random variable,

given as the identity function X1(v)= v, because the outcomes (sepal length values)

are all numeric.

On the other hand, if we want to distinguish between Iris flowers with short and

long sepal lengths, with long being, say, a length of 7 cm or more, we can define a

discrete random variable A as follows:

A(v)=
{

0 if v < 7

1 if v ≥ 7

In this case the domain of A is [4.3,7.9], and its range is {0,1}. Thus, A assumes

nonzero probability only at the discrete values 0 and 1.
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Probability Mass Function

If X is discrete, the probability mass function of X is defined as

f (x)= P(X= x) for all x ∈R

In other words, the function f gives the probability P(X= x) that the random variable

X has the exact value x. The name “probability mass function” intuitively conveys the

fact that the probability is concentrated or massed at only discrete values in the range

of X, and is zero for all other values. f must also obey the basic rules of probability.

That is, f must be non-negative:

f (x)≥ 0

and the sum of all probabilities should add to 1:
∑

x

f (x)= 1

Example 1.7 (Bernoulli and Binomial Distribution). In Example 1.6, A was defined

as a discrete random variable representing long sepal length. From the sepal length

data in Table 1.2 we find that only 13 Irises have sepal length of at least 7 cm. We can

thus estimate the probability mass function of A as follows:

f (1)= P(A= 1)= 13

150
= 0.087= p

and

f (0)= P(A= 0)= 137

150
= 0.913= 1−p

In this case we say that A has a Bernoulli distribution with parameter p ∈ [0,1], which

denotes the probability of a success, that is, the probability of picking an Iris with a

long sepal length at random from the set of all points. On the other hand, 1−p is the

probability of a failure, that is, of not picking an Iris with long sepal length.

Let us consider another discrete random variable B, denoting the number of

Irises with long sepal length in m independent Bernoulli trials with probability of

success p. In this case, B takes on the discrete values [0,m], and its probability mass

function is given by the Binomial distribution

f (k)= P(B= k)=
(

m

k

)
pk(1−p)m−k

The formula can be understood as follows. There are
(
m

k

)
ways of picking k long sepal

length Irises out of the m trials. For each selection of k long sepal length Irises, the

total probability of the k successes is pk , and the total probability of m− k failures is

(1−p)m−k. For example, because p = 0.087 from above, the probability of observing

exactly k = 2 Irises with long sepal length in m= 10 trials is given as

f (2)= P(B= 2)=
(

10

2

)
(0.087)2(0.913)8= 0.164

Figure 1.6 shows the full probability mass function for different values of k for m= 10.

Because p is quite small, the probability of k successes in so few a trials falls off

rapidly as k increases, becoming practically zero for values of k ≥ 6.
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Figure 1.6. Binomial distribution: probability mass function (m= 10, p= 0.087).

Probability Density Function

If X is continuous, its range is the entire set of real numbers R. The probability of any

specific value x is only one out of the infinitely many possible values in the range of

X, which means that P(X = x) = 0 for all x ∈ R. However, this does not mean that

the value x is impossible, because in that case we would conclude that all values are

impossible! What it means is that the probability mass is spread so thinly over the range

of values that it can be measured only over intervals [a,b]⊂ R, rather than at specific

points. Thus, instead of the probability mass function, we define the probability density

function, which specifies the probability that the variable X takes on values in any

interval [a,b]⊂R:

P
(
X ∈ [a,b]

)
=

b∫

a

f (x) dx

As before, the density function f must satisfy the basic laws of probability:

f (x)≥ 0, for all x ∈R

and
∞∫

−∞

f (x) dx = 1

We can get an intuitive understanding of the density function f by considering

the probability density over a small interval of width 2ǫ > 0, centered at x, namely
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[x− ǫ,x+ ǫ]:

P
(
X ∈ [x− ǫ,x+ ǫ]

)
=

x+ǫ∫

x−ǫ

f (x) dx ≃ 2ǫ ·f (x)

f (x)≃
P
(
X ∈ [x− ǫ,x+ ǫ]

)

2ǫ
(1.8)

f (x) thus gives the probability density at x, given as the ratio of the probability mass

to the width of the interval, that is, the probability mass per unit distance. Thus, it is

important to note that P(X= x) 6= f (x).

Even though the probability density function f (x) does not specify the probability

P(X= x), it can be used to obtain the relative probability of one value x1 over another

x2 because for a given ǫ > 0, by Eq. (1.8), we have

P(X ∈ [x1− ǫ,x1+ ǫ])

P (X ∈ [x2− ǫ,x2+ ǫ])
≃ 2ǫ ·f (x1)

2ǫ ·f (x2)
= f (x1)

f (x2)
(1.9)

Thus, if f (x1) is larger than f (x2), then values of X close to x1 are more probable than

values close to x2, and vice versa.

Example 1.8 (Normal Distribution). Consider again the sepal length values from

the Iris dataset, as shown in Table 1.2. Let us assume that these values follow a

Gaussian or normal density function, given as

f (x)= 1√
2πσ 2

exp

{−(x−µ)2

2σ 2

}

There are two parameters of the normal density distribution, namely, µ, which

represents the mean value, and σ 2, which represents the variance of the values (these

parameters are discussed in Chapter 2). Figure 1.7 shows the characteristic “bell”

shape plot of the normal distribution. The parameters, µ= 5.84 and σ 2 = 0.681, were

estimated directly from the data for sepal length in Table 1.2.

Whereas f (x = µ) = f (5.84) =
1

√
2π · 0.681

exp{0} = 0.483, we emphasize that

the probability of observing X = µ is zero, that is, P(X = µ) = 0. Thus, P(X = x)

is not given by f (x), rather, P(X = x) is given as the area under the curve for

an infinitesimally small interval [x − ǫ,x + ǫ] centered at x, with ǫ > 0. Figure 1.7

illustrates this with the shaded region centered at µ= 5.84. From Eq. (1.8), we have

P(X= µ)≃ 2ǫ ·f (µ)= 2ǫ · 0.483= 0.967ǫ

As ǫ→ 0, we get P(X= µ)→ 0. However, based on Eq. (1.9) we can claim that the

probability of observing values close to the mean value µ = 5.84 is 2.69 times the

probability of observing values close to x = 7, as

f (5.84)

f (7)
= 0.483

0.18
= 2.69
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Figure 1.7. Normal distribution: probability density function (µ= 5.84, σ 2 = 0.681).

Cumulative Distribution Function

For any random variable X, whether discrete or continuous, we can define the

cumulative distribution function (CDF) F : R→ [0,1], which gives the probability of

observing a value at most some given value x:

F(x)= P(X≤ x) for all −∞< x <∞

When X is discrete, F is given as

F(x)= P(X≤ x)=
∑

u≤x

f (u)

and when X is continuous, F is given as

F(x)= P(X≤ x)=
x∫

−∞

f (u) du

Example 1.9 (Cumulative Distribution Function). Figure 1.8 shows the cumulative

distribution function for the binomial distribution in Figure 1.6. It has the

characteristic step shape (right continuous, non-decreasing), as expected for a

discrete random variable. F(x) has the same value F(k) for all x ∈ [k,k + 1) with

0 ≤ k < m, where m is the number of trials and k is the number of successes. The

closed (filled) and open circles demarcate the corresponding closed and open interval

[k,k+ 1). For instance, F(x)= 0.404= F(0) for all x ∈ [0,1).

Figure 1.9 shows the cumulative distribution function for the normal density

function shown in Figure 1.7. As expected, for a continuous random variable, the

CDF is also continuous, and non-decreasing. Because the normal distribution is

symmetric about the mean, we have F(µ)= P(X≤µ)= 0.5.
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Figure 1.8. Cumulative distribution function for the binomial distribution.
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Figure 1.9. Cumulative distribution function for the normal distribution.

1.4.1 Bivariate Random Variables

Instead of considering each attribute as a random variable, we can also perform

pair-wise analysis by considering a pair of attributes, X1 and X2, as a bivariate random

variable:

X=
(

X1

X2

)

X : O→ R
2 is a function that assigns to each outcome in the sample space, a pair of

real numbers, that is, a 2-dimensional vector

(
x1

x2

)
∈ R

2. As in the univariate case,
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if the outcomes are numeric, then the default is to assume X to be the identity

function.

Joint Probability Mass Function

If X1 and X2 are both discrete random variables then X has a joint probability mass

function given as follows:

f (x)= f (x1,x2)= P(X1 = x1,X2 = x2)= P(X= x)

f must satisfy the following two conditions:

f (x)= f (x1,x2)≥ 0 for all −∞< x1,x2 <∞
∑

x

f (x)=
∑

x1

∑

x2

f (x1,x2)= 1

Joint Probability Density Function

If X1 and X2 are both continuous random variables then X has a joint probability

density function f given as follows:

P(X ∈W)=
∫ ∫

x∈W

f (x) dx=
∫ ∫

(x1,x2)T∈W

f (x1,x2) dx1 dx2

where W ⊂ R
2 is some subset of the 2-dimensional space of reals. f must also satisfy

the following two conditions:

f (x)= f (x1,x2)≥ 0 for all −∞< x1,x2 <∞
∫

R2

f (x) dx=
∞∫

−∞

∞∫

−∞

f (x1,x2) dx1 dx2 = 1

As in the univariate case, the probability mass P(x) = P
(
(x1,x2)

T
)
= 0 for any

particular point x. However, we can use f to compute the probability density at x.

Consider the square region W=
(
[x1−ǫ,x1+ǫ], [x2−ǫ,x2+ǫ]

)
, that is, a 2-dimensional

window of width 2ǫ centered at x = (x1,x2)
T. The probability density at x can be

approximated as

P(X ∈W)= P
(
X ∈

(
[x1− ǫ,x1+ ǫ], [x2− ǫ,x2+ ǫ]

))

=
x1+ǫ∫

x1−ǫ

x2+ǫ∫

x2−ǫ

f (x1,x2) dx1 dx2

≃ 2ǫ · 2ǫ ·f (x1,x2)

which implies that

f (x1,x2)=
P(X ∈W)

(2ǫ)2

The relative probability of one value (a1,a2) versus another (b1,b2) can therefore be

computed via the probability density function:

P(X ∈
(
[a1− ǫ,a1+ ǫ], [a2− ǫ,a2+ ǫ]

)
)

P (X ∈
(
[b1− ǫ,b1+ ǫ], [b2− ǫ,b2+ ǫ]

)
)
≃ (2ǫ)2 ·f (a1,a2)

(2ǫ)2 ·f (b1,b2)
= f (a1,a2)

f (b1,b2)
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Example 1.10 (Bivariate Distributions). Consider the sepal length and sepal

width attributes in the Iris dataset, plotted in Figure 1.2. Let A denote the Bernoulli

random variable corresponding to long sepal length (at least 7 cm), as defined in

Example 1.7.

Define another Bernoulli random variable B corresponding to long sepal width,

say, at least 3.5 cm. Let X =
(

A

B

)
be a discrete bivariate random variable; then the

joint probability mass function of X can be estimated from the data as follows:

f (0,0)= P(A= 0,B= 0)= 116

150
= 0.773

f (0,1)= P(A= 0,B= 1)= 21

150
= 0.140

f (1,0)= P(A= 1,B= 0)= 10

150
= 0.067

f (1,1)= P(A= 1,B= 1)= 3

150
= 0.020

Figure 1.10 shows a plot of this probability mass function.

Treating attributes X1 and X2 in the Iris dataset (see Table 1.1) as continuous

random variables, we can define a continuous bivariate random variable X=
(

X1

X2

)
.

Assuming that X follows a bivariate normal distribution, its joint probability density

function is given as

f (x|µ,6)= 1

2π
√
|6|

exp

{
− (x−µ)T 6−1 (x−µ)

2

}

Here µ and 6 are the parameters of the bivariate normal distribution, representing

the 2-dimensional mean vector and covariance matrix, which are discussed in detail

X1
X2

f (x)

b

b

b

b

0.773

0.14

0.067

0.02

0
11

Figure 1.10. Joint probability mass function: X1 (long sepal length), X2 (long sepal width).
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Figure 1.11. Bivariate normal density: µ= (5.843,3.054)T (solid circle).

in Chapter 2. Further, |6| denotes the determinant of 6. The plot of the bivariate

normal density is given in Figure 1.11, with mean

µ= (5.843,3.054)T

and covariance matrix

6 =
(

0.681 −0.039

−0.039 0.187

)

It is important to emphasize that the function f (x) specifies only the probability

density at x, and f (x) 6= P(X= x). As before, we have P(X= x)= 0.

Joint Cumulative Distribution Function

The joint cumulative distribution function for two random variables X1 and X2 is

defined as the function F , such that for all values x1,x2 ∈ (−∞,∞),

F(x)= F(x1,x2)= P(X1 ≤ x1 and X2 ≤ x2)= P(X≤ x)

Statistical Independence

Two random variables X1 and X2 are said to be (statistically) independent if, for every

W1 ⊂R and W2 ⊂R, we have

P(X1 ∈W1 and X2 ∈W2)= P(X1 ∈W1) ·P(X2 ∈W2)

Furthermore, if X1 and X2 are independent, then the following two conditions are also

satisfied:

F(x)= F(x1,x2)= F1(x1) ·F2(x2)

f (x)= f (x1,x2)= f1(x1) ·f2(x2)
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where Fi is the cumulative distribution function, and fi is the probability mass or

density function for random variable Xi .

1.4.2 Multivariate Random Variable

A d-dimensional multivariate random variable X = (X1,X2, . . . ,Xd)
T, also called a

vector random variable, is defined as a function that assigns a vector of real numbers

to each outcome in the sample space, that is, X : O → R
d . The range of X can be

denoted as a vector x= (x1,x2, . . . ,xd)
T. In case all Xj are numeric, then X is by default

assumed to be the identity function. In other words, if all attributes are numeric, we

can treat each outcome in the sample space (i.e., each point in the data matrix) as a

vector random variable. On the other hand, if the attributes are not all numeric, then

X maps the outcomes to numeric vectors in its range.

If all Xj are discrete, then X is jointly discrete and its joint probability mass

function f is given as

f (x)= P(X= x)

f (x1,x2, . . . ,xd)= P(X1 = x1,X2 = x2, . . . ,Xd = xd)

If all Xj are continuous, then X is jointly continuous and its joint probability density

function is given as

P(X ∈W)=
∫
· · ·
∫

x∈W

f (x) dx

P
(
(X1,X2, . . . ,Xd)

T ∈W
)
=

∫
· · ·
∫

(x1,x2, ...,xd )T∈W

f (x1,x2, . . . ,xd) dx1 dx2 . . . dxd

for any d-dimensional region W⊆R
d .

The laws of probability must be obeyed as usual, that is, f (x) ≥ 0 and sum of f

over all x in the range of X must be 1. The joint cumulative distribution function of

X= (X1, . . . ,Xd)
T is given as

F(x)= P(X≤ x)

F (x1,x2, . . . ,xd)= P(X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd)

for every point x ∈Rd .

We say that X1,X2, . . . ,Xd are independent random variables if and only if, for

every region Wi ⊂R, we have

P(X1 ∈W1 and X2 ∈W2 · · · and Xd ∈Wd)

= P(X1 ∈W1) ·P(X2 ∈W2) · · · · ·P(Xd ∈Wd) (1.10)

If X1,X2, . . . ,Xd are independent then the following conditions are also satisfied

F(x)= F(x1, . . . ,xd)= F1(x1) ·F2(x2) · . . . ·Fd(xd)

f (x)= f (x1, . . . ,xd)= f1(x1) ·f2(x2) · . . . ·fd(xd) (1.11)
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where Fi is the cumulative distribution function, and fi is the probability mass or

density function for random variable Xi .

1.4.3 Random Sample and Statistics

The probability mass or density function of a random variable X may follow some

known form, or as is often the case in data analysis, it may be unknown. When the

probability function is not known, it may still be convenient to assume that the values

follow some known distribution, based on the characteristics of the data. However,

even in this case, the parameters of the distribution may still be unknown. Thus, in

general, either the parameters, or the entire distribution, may have to be estimated

from the data.

In statistics, the word population is used to refer to the set or universe of all entities

under study. Usually we are interested in certain characteristics or parameters of the

entire population (e.g., the mean age of all computer science students in the United

States). However, looking at the entire population may not be feasible or may be

too expensive. Instead, we try to make inferences about the population parameters by

drawing a random sample from the population, and by computing appropriate statistics

from the sample that give estimates of the corresponding population parameters of

interest.

Univariate Sample

Given a random variable X, a random sample of size n from X is defined as a set of n

independent and identically distributed (IID) random variables S1,S2, . . . ,Sn, that is, all

of the Si ’s are statistically independent of each other, and follow the same probability

mass or density function as X.

If we treat attribute X as a random variable, then each of the observed values of

X, namely, xi (1≤ i ≤ n), are themselves treated as identity random variables, and the

observed data is assumed to be a random sample drawn from X. That is, all xi are

considered to be mutually independent and identically distributed as X. By Eq. (1.11)

their joint probability function is given as

f (x1, . . . ,xn)=
n∏

i=1

fX(xi)

where fX is the probability mass or density function for X.

Multivariate Sample

For multivariate parameter estimation, the n data points xi (with 1≤ i ≤ n) constitute a

d-dimensional multivariate random sample drawn from the vector random variable

X = (X1,X2, . . . ,Xd). That is, xi are assumed to be independent and identically

distributed, and thus their joint distribution is given as

f (x1,x2, . . . ,xn)=
n∏

i=1

fX(xi) (1.12)

where fX is the probability mass or density function for X.
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Estimating the parameters of a multivariate joint probability distribution is

usually difficult and computationally intensive. One simplifying assumption that is

typically made is that the d attributes X1,X2, . . . ,Xd are statistically independent.

However, we do not assume that they are identically distributed, because that is

almost never justified. Under the attribute independence assumption Eq. (1.12) can be

rewritten as

f (x1,x2, . . . ,xn)=
n∏

i=1

f (xi)=
n∏

i=1

d∏

j=1

fXj
(xij)

Statistic

We can estimate a parameter of the population by defining an appropriate sample

statistic, which is defined as a function of the sample. More precisely, let {Si}mi=1

denote the random sample of size m drawn from a (multivariate) random variable

X. A statistic θ̂ is a function θ̂ : (S1,S2, . . . ,Sm)→ R. The statistic is an estimate of

the corresponding population parameter θ . As such, the statistic θ̂ is itself a random

variable. If we use the value of a statistic to estimate a population parameter, this value

is called a point estimate of the parameter, and the statistic is called an estimator of the

parameter. In Chapter 2 we will study different estimators for population parameters

that reflect the location (or centrality) and dispersion of values.

Example 1.11 (Sample Mean). Consider attribute sepal length (X1) in the Iris

dataset, whose values are shown in Table 1.2. Assume that the mean value of X1

is not known. Let us assume that the observed values {xi}ni=1 constitute a random

sample drawn from X1.

The sample mean is a statistic, defined as the average

µ̂= 1

n

n∑

i=1

xi

Plugging in values from Table 1.2, we obtain

µ̂= 1

150
(5.9+ 6.9+ ·· ·+ 7.7+ 5.1)= 876.5

150
= 5.84

The value µ̂= 5.84 is a point estimate for the unknown population parameter µ, the

(true) mean value of variable X1.

1.5 DATA MINING

Data mining comprises the core algorithms that enable one to gain fundamental

insights and knowledge from massive data. It is an interdisciplinary field merging

concepts from allied areas such as database systems, statistics, machine learning, and

pattern recognition. In fact, data mining is part of a larger knowledge discovery

process, which includes pre-processing tasks such as data extraction, data cleaning,

data fusion, data reduction and feature construction, as well as post-processing steps
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such as pattern and model interpretation, hypothesis confirmation and generation, and

so on. This knowledge discovery and data mining process tends to be highly iterative

and interactive.

The algebraic, geometric, and probabilistic viewpoints of data play a key role in

data mining. Given a dataset of n points in a d-dimensional space, the fundamental

analysis and mining tasks covered in this book include exploratory data analysis,

frequent pattern discovery, data clustering, and classification models, which are

described next.

1.5.1 Exploratory Data Analysis

Exploratory data analysis aims to explore the numeric and categorical attributes of

the data individually or jointly to extract key characteristics of the data sample via

statistics that give information about the centrality, dispersion, and so on. Moving

away from the IID assumption among the data points, it is also important to consider

the statistics that deal with the data as a graph, where the nodes denote the points

and weighted edges denote the connections between points. This enables one to

extract important topological attributes that give insights into the structure and

models of networks and graphs. Kernel methods provide a fundamental connection

between the independent pointwise view of data, and the viewpoint that deals with

pairwise similarities between points. Many of the exploratory data analysis and mining

tasks can be cast as kernel problems via the kernel trick, that is, by showing that

the operations involve only dot-products between pairs of points. However, kernel

methods also enable us to perform nonlinear analysis by using familiar linear algebraic

and statistical methods in high-dimensional spaces comprising “nonlinear” dimensions.

They further allow us to mine complex data as long as we have a way to measure

the pairwise similarity between two abstract objects. Given that data mining deals

with massive datasets with thousands of attributes and millions of points, another goal

of exploratory analysis is to reduce the amount of data to be mined. For instance,

feature selection and dimensionality reduction methods are used to select the most

important dimensions, discretization methods can be used to reduce the number of

values of an attribute, data sampling methods can be used to reduce the data size, and

so on.

Part I of this book begins with basic statistical analysis of univariate and

multivariate numeric data in Chapter 2. We describe measures of central tendency

such as mean, median, and mode, and then we consider measures of dispersion

such as range, variance, and covariance. We emphasize the dual algebraic and

probabilistic views, and highlight the geometric interpretation of the various measures.

We especially focus on the multivariate normal distribution, which is widely used as the

default parametric model for data in both classification and clustering. In Chapter 3

we show how categorical data can be modeled via the multivariate binomial and the

multinomial distributions. We describe the contingency table analysis approach to test

for dependence between categorical attributes. Next, in Chapter 4 we show how to

analyze graph data in terms of the topological structure, with special focus on various

graph centrality measures such as closeness, betweenness, prestige, PageRank, and so

on. We also study basic topological properties of real-world networks such as the small
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world property, which states that real graphs have small average path length between

pairs of nodes, the clustering effect, which indicates local clustering around nodes, and

the scale-free property, which manifests itself in a power-law degree distribution. We

describe models that can explain some of these characteristics of real-world graphs;

these include the Erdös–Rényi random graph model, the Watts–Strogatz model,

and the Barabási–Albert model. Kernel methods are then introduced in Chapter 5,

which provide new insights and connections between linear, nonlinear, graph, and

complex data mining tasks. We briefly highlight the theory behind kernel functions,

with the key concept being that a positive semidefinite kernel corresponds to a dot

product in some high-dimensional feature space, and thus we can use familiar numeric

analysis methods for nonlinear or complex object analysis provided we can compute

the pairwise kernel matrix of similarities between object instances. We describe

various kernels for numeric or vector data, as well as sequence and graph data. In

Chapter 6 we consider the peculiarities of high-dimensional space, colorfully referred

to as the curse of dimensionality. In particular, we study the scattering effect, that

is, the fact that data points lie along the surface and corners in high dimensions,

with the “center” of the space being virtually empty. We show the proliferation of

orthogonal axes and also the behavior of the multivariate normal distribution in

high dimensions. Finally, in Chapter 7 we describe the widely used dimensionality

reduction methods such as principal component analysis (PCA) and singular value

decomposition (SVD). PCA finds the optimal k-dimensional subspace that captures

most of the variance in the data. We also show how kernel PCA can be used to find

nonlinear directions that capture the most variance. We conclude with the powerful

SVD spectral decomposition method, studying its geometry, and its relationship

to PCA.

1.5.2 Frequent Pattern Mining

Frequent pattern mining refers to the task of extracting informative and useful patterns

in massive and complex datasets. Patterns comprise sets of co-occurring attribute

values, called itemsets, or more complex patterns, such as sequences, which consider

explicit precedence relationships (either positional or temporal), and graphs, which

consider arbitrary relationships between points. The key goal is to discover hidden

trends and behaviors in the data to understand better the interactions among the points

and attributes.

Part II begins by presenting efficient algorithms for frequent itemset mining in

Chapter 8. The key methods include the level-wise Apriori algorithm, the “vertical”

intersection based Eclat algorithm, and the frequent pattern tree and projection

based FPGrowth method. Typically the mining process results in too many frequent

patterns that can be hard to interpret. In Chapter 9 we consider approaches to

summarize the mined patterns; these include maximal (GenMax algorithm), closed

(Charm algorithm), and non-derivable itemsets. We describe effective methods for

frequent sequence mining in Chapter 10, which include the level-wise GSP method, the

vertical SPADE algorithm, and the projection-based PrefixSpan approach. We also

describe how consecutive subsequences, also called substrings, can be mined much

more efficiently via Ukkonen’s linear time and space suffix tree method. Moving
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beyond sequences to arbitrary graphs, we describe the popular and efficient gSpan

algorithm for frequent subgraph mining in Chapter 11. Graph mining involves two key

steps, namely graph isomorphism checks to eliminate duplicate patterns during pattern

enumeration and subgraph isomorphism checks during frequency computation. These

operations can be performed in polynomial time for sets and sequences, but for

graphs it is known that subgraph isomorphism is NP-hard, and thus there is no

polynomial time method possible unless P = NP. The gSpan method proposes a new

canonical code and a systematic approach to subgraph extension, which allow it to

efficiently detect duplicates and to perform several subgraph isomorphism checks

much more efficiently than performing them individually. Given that pattern mining

methods generate many output results it is very important to assess the mined

patterns. We discuss strategies for assessing both the frequent patterns and rules

that can be mined from them in Chapter 12, emphasizing methods for significance

testing.

1.5.3 Clustering

Clustering is the task of partitioning the points into natural groups called clusters,

such that points within a group are very similar, whereas points across clusters are as

dissimilar as possible. Depending on the data and desired cluster characteristics, there

are different types of clustering paradigms such as representative-based, hierarchical,

density-based, graph-based, and spectral clustering.

Part III starts with representative-based clustering methods (Chapter 13), which

include the K-means and Expectation-Maximization (EM) algorithms. K-means is a

greedy algorithm that minimizes the squared error of points from their respective

cluster means, and it performs hard clustering, that is, each point is assigned to only

one cluster. We also show how kernel K-means can be used for nonlinear clusters. EM

generalizes K-means by modeling the data as a mixture of normal distributions, and

it finds the cluster parameters (the mean and covariance matrix) by maximizing the

likelihood of the data. It is a soft clustering approach, that is, instead of making a hard

assignment, it returns the probability that a point belongs to each cluster. In Chapter 14

we consider various agglomerative hierarchical clustering methods, which start from

each point in its own cluster, and successively merge (or agglomerate) pairs of clusters

until the desired number of clusters have been found. We consider various cluster

proximity measures that distinguish the different hierarchical methods. There are some

datasets where the points from different clusters may in fact be closer in distance than

points from the same cluster; this usually happens when the clusters are nonconvex

in shape. Density-based clustering methods described in Chapter 15 use the density

or connectedness properties to find such nonconvex clusters. The two main methods

are DBSCAN and its generalization DENCLUE, which is based on kernel density

estimation. We consider graph clustering methods in Chapter 16, which are typically

based on spectral analysis of graph data. Graph clustering can be considered as an

optimization problem over a k-way cut in a graph; different objectives can be cast as

spectral decomposition of different graph matrices, such as the (normalized) adjacency

matrix, Laplacian matrix, and so on, derived from the original graph data or from the

kernel matrix. Finally, given the proliferation of different types of clustering methods,
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it is important to assess the mined clusters as to how good they are in capturing

the natural groups in data. In Chapter 17, we describe various clustering validation

and evaluation strategies, spanning external and internal measures to compare a

clustering with the ground-truth if it is available, or to compare two clusterings. We

also highlight methods for clustering stability, that is, the sensitivity of the clustering

to data perturbation, and clustering tendency, that is, the clusterability of the data. We

also consider methods to choose the parameter k, which is the user-specified value for

the number of clusters to discover.

1.5.4 Classification

The classification task is to predict the label or class for a given unlabeled point.

Formally, a classifier is a model or function M that predicts the class label ŷ for a given

input example x, that is, ŷ =M(x), where ŷ ∈ {c1,c2, . . . ,ck} and each ci is a class label

(a categorical attribute value). To build the model we require a set of points with their

correct class labels, which is called a training set. After learning the model M, we can

automatically predict the class for any new point. Many different types of classification

models have been proposed such as decision trees, probabilistic classifiers, support

vector machines, and so on.

Part IV starts with the powerful Bayes classifier, which is an example of the

probabilistic classification approach (Chapter 18). It uses the Bayes theorem to predict

the class as the one that maximizes the posterior probability P(ci |x). The main task is

to estimate the joint probability density function f (x) for each class, which is modeled

via a multivariate normal distribution. One limitation of the Bayes approach is the

number of parameters to be estimated which scales as O(d2). The naive Bayes classifier

makes the simplifying assumption that all attributes are independent, which requires

the estimation of only O(d) parameters. It is, however, surprisingly effective for many

datasets. In Chapter 19 we consider the popular decision tree classifier, one of whose

strengths is that it yields models that are easier to understand compared to other

methods. A decision tree recursively partitions the data space into “pure” regions

that contain data points from only one class, with relatively few exceptions. Next, in

Chapter 20, we consider the task of finding an optimal direction that separates the

points from two classes via linear discriminant analysis. It can be considered as a

dimensionality reduction method that also takes the class labels into account, unlike

PCA, which does not consider the class attribute. We also describe the generalization

of linear to kernel discriminant analysis, which allows us to find nonlinear directions

via the kernel trick. In Chapter 21 we describe the support vector machine (SVM)

approach in detail, which is one of the most effective classifiers for many different

problem domains. The goal of SVMs is to find the optimal hyperplane that maximizes

the margin between the classes. Via the kernel trick, SVMs can be used to find

nonlinear boundaries, which nevertheless correspond to some linear hyperplane in

some high-dimensional “nonlinear” space. One of the important tasks in classification

is to assess how good the models are. We conclude this part with Chapter 22, which

presents the various methodologies for assessing classification models. We define

various classification performance measures including ROC analysis. We then describe

the bootstrap and cross-validation approaches for classifier evaluation. Finally, we
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discuss the bias–variance tradeoff in classification, and how ensemble classifiers can

help improve the variance or the bias of a classifier.
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1.7 EXERCISES

Q1. Show that the mean of the centered data matrix Z in (1.5) is 0.

Q2. Prove that for the Lp-distance in Eq. (1.2), we have

δ∞(x,y)= lim
p→∞

δp(x,y)= d
max
i=1

{
|xi − yi |

}

for x,y ∈Rd .
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CHAPTER 2 Numeric Attributes

In this chapter, we discuss basic statistical methods for exploratory data analysis of

numeric attributes. We look at measures of central tendency or location, measures of

dispersion, and measures of linear dependence or association between attributes. We

emphasize the connection between the probabilistic and the geometric and algebraic

views of the data matrix.

2.1 UNIVARIATE ANALYSIS

Univariate analysis focuses on a single attribute at a time; thus the data matrix D can

be thought of as an n× 1 matrix, or simply a column vector, given as

D=




X

x1

x2

...

xn




where X is the numeric attribute of interest, with xi ∈R. X is assumed to be a random

variable, with each point xi (1 ≤ i ≤ n) itself treated as an identity random variable.

We assume that the observed data is a random sample drawn from X, that is, each

variable xi is independent and identically distributed as X. In the vector view, we treat

the sample as an n-dimensional vector, and write X ∈Rn.

In general, the probability density or mass function f (x) and the cumulative

distribution function F(x), for attribute X, are both unknown. However, we can

estimate these distributions directly from the data sample, which also allow us to

compute statistics to estimate several important population parameters.

Empirical Cumulative Distribution Function

The empirical cumulative distribution function (CDF) of X is given as

F̂ (x)= 1

n

n∑

i=1

I(xi ≤ x) (2.1)

33
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where

I(xi ≤ x)=
{

1 if xi ≤ x

0 if xi > x

is a binary indicator variable that indicates whether the given condition is satisfied

or not. Intuitively, to obtain the empirical CDF we compute, for each value x ∈ R,

how many points in the sample are less than or equal to x. The empirical CDF puts a

probability mass of 1
n

at each point xi . Note that we use the notation F̂ to denote the

fact that the empirical CDF is an estimate for the unknown population CDF F .

Inverse Cumulative Distribution Function

Define the inverse cumulative distribution function or quantile function for a random

variable X as follows:

F−1(q)=min{x | F̂ (x)≥ q} for q ∈ [0,1] (2.2)

That is, the inverse CDF gives the least value of X, for which q fraction of the values

are higher, and 1−q fraction of the values are lower. The empirical inverse cumulative

distribution function F̂−1 can be obtained from Eq. (2.1).

Empirical Probability Mass Function

The empirical probability mass function (PMF) of X is given as

f̂ (x)= P(X= x)= 1

n

n∑

i=1

I(xi = x) (2.3)

where

I(xi = x)=
{

1 if xi = x

0 if xi 6= x

The empirical PMF also puts a probability mass of 1
n

at each point xi .

2.1.1 Measures of Central Tendency

These measures given an indication about the concentration of the probability mass,

the “middle” values, and so on.

Mean

The mean, also called the expected value, of a random variable X is the arithmetic

average of the values of X. It provides a one-number summary of the location or central

tendency for the distribution of X.

The mean or expected value of a discrete random variable X is defined as

µ=E[X]=
∑

x

xf (x) (2.4)

where f (x) is the probability mass function of X.
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The expected value of a continuous random variable X is defined as

µ=E[X]=
∞∫

−∞

xf (x) dx

where f (x) is the probability density function of X.

Sample Mean The sample mean is a statistic, that is, a function µ̂ : {x1,x2, . . . ,xn}→R,

defined as the average value of xi’s:

µ̂= 1

n

n∑

i=1

xi (2.5)

It serves as an estimator for the unknown mean value µ of X. It can be derived by

plugging in the empirical PMF f̂ (x) in Eq. (2.4):

µ̂=
∑

x

xf̂ (x)=
∑

x

x

(
1

n

n∑

i=1

I(xi = x)

)
= 1

n

n∑

i=1

xi

Sample Mean Is Unbiased An estimator θ̂ is called an unbiased estimator for

parameter θ if E[θ̂]= θ for every possible value of θ . The sample mean µ̂ is an unbiased

estimator for the population mean µ, as

E[µ̂]=E

[
1

n

n∑

i=1

xi

]
= 1

n

n∑

i=1

E[xi]=
1

n

n∑

i=1

µ= µ (2.6)

where we use the fact that the random variables xi are IID according to X, which

implies that they have the same mean µ as X, that is, E[xi]= µ for all xi . We also used

the fact that the expectation function E is a linear operator, that is, for any two random

variables X and Y, and real numbers a and b, we have E [aX+ bY]= aE[X]+ bE[Y].

Robustness We say that a statistic is robust if it is not affected by extreme values (such

as outliers) in the data. The sample mean is unfortunately not robust because a single

large value (an outlier) can skew the average. A more robust measure is the trimmed

mean obtained after discarding a small fraction of extreme values on one or both ends.

Furthermore, the mean can be somewhat misleading in that it is typically not a value

that occurs in the sample, and it may not even be a value that the random variable

can actually assume (for a discrete random variable). For example, the number of cars

per capita is an integer-valued random variable, but according to the US Bureau of

Transportation Studies, the average number of passenger cars in the United States was

0.45 in 2008 (137.1 million cars, with a population size of 304.4 million). Obviously, one

cannot own 0.45 cars; it can be interpreted as saying that on average there are 45 cars

per 100 people.

Median

The median of a random variable is defined as the value m such that

P(X≤m)≥ 1

2
and P(X≥m)≥ 1

2



36 Numeric Attributes

In other words, the median m is the “middle-most” value; half of the values of X are

less and half of the values of X are more than m. In terms of the (inverse) cumulative

distribution function, the median is therefore the value m for which

F(m)= 0.5 or m= F−1(0.5)

The sample median can be obtained from the empirical CDF [Eq. (2.1)] or the

empirical inverse CDF [Eq. (2.2)] by computing

F̂ (m)= 0.5 or m= F̂−1(0.5)

A simpler approach to compute the sample median is to first sort all the values xi

(i ∈ [1,n]) in increasing order. If n is odd, the median is the value at position n+1
2

. If n

is even, the values at positions n

2
and n

2
+ 1 are both medians.

Unlike the mean, median is robust, as it is not affected very much by extreme

values. Also, it is a value that occurs in the sample and a value the random variable can

actually assume.

Mode

The mode of a random variable X is the value at which the probability mass function

or the probability density function attains its maximum value, depending on whether

X is discrete or continuous, respectively.

The sample mode is a value for which the empirical probability mass function

[Eq. (2.3)] attains its maximum, given as

mode(X)= argmax
x

f̂ (x)

The mode may not be a very useful measure of central tendency for a sample

because by chance an unrepresentative element may be the most frequent element.

Furthermore, if all values in the sample are distinct, each of them will be the mode.

Example 2.1 (Sample Mean, Median, and Mode). Consider the attribute sepal

length (X1) in the Iris dataset, whose values are shown in Table 1.2. The sample

mean is given as follows:

µ̂= 1

150
(5.9+ 6.9+ ·· ·+ 7.7+ 5.1)= 876.5

150
= 5.843

Figure 2.1 shows all 150 values of sepal length, and the sample mean. Figure 2.2a

shows the empirical CDF and Figure 2.2b shows the empirical inverse CDF for sepal

length.

Because n= 150 is even, the sample median is the value at positions n

2
= 75 and

n

2
+ 1 = 76 in sorted order. For sepal length both these values are 5.8; thus the

sample median is 5.8. From the inverse CDF in Figure 2.2b, we can see that

F̂ (5.8)= 0.5 or 5.8= F̂−1(0.5)

The sample mode for sepal length is 5, which can be observed from the

frequency of 5 in Figure 2.1. The empirical probability mass at x = 5 is

f̂ (5)= 10

150
= 0.067
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Figure 2.1. Sample mean for sepal length. Multiple occurrences of the same value are shown stacked.
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Figure 2.2. Empirical CDF and inverse CDF: sepal length.
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2.1.2 Measures of Dispersion

The measures of dispersion give an indication about the spread or variation in the

values of a random variable.

Range

The value range or simply range of a random variable X is the difference between the

maximum and minimum values of X, given as

r =max{X}−min{X}

The (value) range of X is a population parameter, not to be confused with the range

of the function X, which is the set of all the values X can assume. Which range is being

used should be clear from the context.

The sample range is a statistic, given as

r̂ = n
max
i=1
{xi}−

n

min
i=1
{xi}

By definition, range is sensitive to extreme values, and thus is not robust.

Interquartile Range

Quartiles are special values of the quantile function [Eq. (2.2)] that divide the data into

four equal parts. That is, quartiles correspond to the quantile values of 0.25, 0.5, 0.75,

and 1.0. The first quartile is the value q1 = F−1(0.25), to the left of which 25% of the

points lie; the second quartile is the same as the median value q2 = F−1(0.5), to the left

of which 50% of the points lie; the third quartile q3 = F−1(0.75) is the value to the left

of which 75% of the points lie; and the fourth quartile is the maximum value of X, to

the left of which 100% of the points lie.

A more robust measure of the dispersion of X is the interquartile range (IQR),

defined as

IQR= q3− q1 = F−1(0.75)−F−1(0.25) (2.7)

IQR can also be thought of as a trimmed range, where we discard 25% of the low and

high values of X. Or put differently, it is the range for the middle 50% of the values of

X. IQR is robust by definition.

The sample IQR can be obtained by plugging in the empirical inverse

CDF in Eq. (2.7):

ÎQR= q̂3− q̂1 = F̂−1(0.75)− F̂−1(0.25)

Variance and Standard Deviation

The variance of a random variable X provides a measure of how much the values of X

deviate from the mean or expected value of X. More formally, variance is the expected
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value of the squared deviation from the mean, defined as

σ 2 = var(X)=E[(X−µ)2]=





∑

x

(x−µ)2 f (x) if X is discrete

∞∫

−∞

(x−µ)2 f (x) dx if X is continuous

(2.8)

The standard deviation, σ , is defined as the positive square root of the variance, σ 2.

We can also write the variance as the difference between the expectation of X2 and

the square of the expectation of X:

σ 2 = var(X)=E[(X−µ)2]=E[X2− 2µX+µ2]

=E[X2]− 2µE[X]+µ2=E[X2]− 2µ2+µ2

=E[X2]− (E[X])2 (2.9)

It is worth noting that variance is in fact the second moment about the mean,

corresponding to r = 2, which is a special case of the rth moment about the mean for a

random variable X, defined as E [(x−µ)r].

Sample Variance The sample variance is defined as

σ̂ 2 = 1

n

n∑

i=1

(xi − µ̂)2 (2.10)

It is the average squared deviation of the data values xi from the sample mean µ̂, and

can be derived by plugging in the empirical probability function f̂ from Eq. (2.3) into

Eq. (2.8), as

σ̂ 2 =
∑

x

(x− µ̂)2f̂ (x)=
∑

x

(x− µ̂)2

(
1

n

n∑

i=1

I(xi = x)

)
= 1

n

n∑

i=1

(xi − µ̂)2

The sample standard deviation is given as the positive square root of the sample

variance:

σ̂ =

√√√√1

n

n∑

i=1

(xi − µ̂)2

The standard score, also called the z-score, of a sample value xi is the number of

standard deviations the value is away from the mean:

zi =
xi − µ̂

σ̂

Put differently, the z-score of xi measures the deviation of xi from the mean value µ̂,

in units of σ̂ .
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Geometric Interpretation of Sample Variance We can treat the data sample for

attribute X as a vector in n-dimensional space, where n is the sample size. That is,

we write X= (x1,x2, . . . ,xn)
T ∈Rn. Further, let

Z=X− 1 · µ̂=




x1− µ̂

x2− µ̂
...

xn− µ̂




denote the mean subtracted attribute vector, where 1 ∈Rn is the n-dimensional vector

all of whose elements have value 1. We can rewrite Eq. (2.10) in terms of the magnitude

of Z, that is, the dot product of Z with itself:

σ̂ 2 = 1

n
‖Z‖2 = 1

n
ZTZ= 1

n

n∑

i=1

(xi − µ̂)2 (2.11)

The sample variance can thus be interpreted as the squared magnitude of the centered

attribute vector, or the dot product of the centered attribute vector with itself,

normalized by the sample size.

Example 2.2. Consider the data sample for sepal length shown in Figure 2.1. We

can see that the sample range is given as

max
i
{xi}−min

i
{xi} = 7.9− 4.3= 3.6

From the inverse CDF for sepal length in Figure 2.2b, we can find the sample

IQR as follows:

q̂1 = F̂−1(0.25)= 5.1

q̂3 = F̂−1(0.75)= 6.4

ÎQR= q̂3− q̂1 = 6.4− 5.1= 1.3

The sample variance can be computed from the centered data vector via

Eq. (2.11):

σ̂ 2 = 1

n
(X− 1 · µ̂)T(X− 1 · µ̂)= 102.168/150= 0.681

The sample standard deviation is then

σ̂ =
√

0.681= 0.825

Variance of the Sample Mean Because the sample mean µ̂ is itself a statistic, we can

compute its mean value and variance. The expected value of the sample mean is simply

µ, as we saw in Eq. (2.6). To derive an expression for the variance of the sample mean,



2.1 Univariate Analysis 41

we utilize the fact that the random variables xi are all independent, and thus

var

(
n∑

i=1

xi

)
=

n∑

i=1

var(xi)

Further, because all the xi’s are identically distributed as X, they have the same

variance as X, that is,

var(xi)= σ 2 for all i

Combining the above two facts, we get

var

(
n∑

i=1

xi

)
=

n∑

i=1

var(xi)=
n∑

i=1

σ 2 = nσ 2 (2.12)

Further, note that

E

[
n∑

i=1

xi

]
= nµ (2.13)

Using Eqs. (2.9), (2.12), and (2.13), the variance of the sample mean µ̂ can be

computed as

var(µ̂)=E[(µ̂−µ)2]=E[µ̂2]−µ2 =E



(

1

n

n∑

i=1

xi

)2

− 1

n2
E

[
n∑

i=1

xi

]2

= 1

n2


E



(

n∑

i=1

xi

)2

−E

[
n∑

i=1

xi

]2

= 1

n2
var

(
n∑

i=1

xi

)

= σ 2

n
(2.14)

In other words, the sample mean µ̂ varies or deviates from the mean µ in proportion

to the population variance σ 2. However, the deviation can be made smaller by

considering larger sample size n.

Sample Variance Is Biased, but Is Asymptotically Unbiased The sample variance in

Eq. (2.10) is a biased estimator for the true population variance, σ 2, that is, E[σ̂ 2] 6= σ 2.

To show this we make use of the identity

n∑

i=1

(xi −µ)2 = n(µ̂−µ)2+
n∑

i=1

(xi − µ̂)2 (2.15)

Computing the expectation of σ̂ 2 by using Eq. (2.15) in the first step, we get

E[σ̂ 2]=E

[
1

n

n∑

i=1

(xi − µ̂)2

]
=E

[
1

n

n∑

i=1

(xi −µ)2

]
−E[(µ̂−µ)2] (2.16)
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Recall that the random variables xi are IID according to X, which means that they have

the same mean µ and variance σ 2 as X. This means that

E[(xi −µ)2]= σ 2

Further, from Eq. (2.14) the sample mean µ̂ has variance E[(µ̂−µ)2] = σ2

n
. Plugging

these into the Eq. (2.16) we get

E[σ̂ 2]= 1

n
nσ 2− σ 2

n

=
(

n− 1

n

)
σ 2

The sample variance σ̂ 2 is a biased estimator of σ 2, as its expected value differs from

the population variance by a factor of n−1
n

. However, it is asymptotically unbiased, that

is, the bias vanishes as n→∞ because

lim
n→∞

n− 1

n
= lim

n→∞
1− 1

n
= 1

Put differently, as the sample size increases, we have

E[σ̂ 2]→ σ 2 as n→∞

2.2 BIVARIATE ANALYSIS

In bivariate analysis, we consider two attributes at the same time. We are specifically

interested in understanding the association or dependence between them, if any. We

thus restrict our attention to the two numeric attributes of interest, say X1 and X2, with

the data D represented as an n× 2 matrix:

D=




X1 X2

x11 x12

x21 x22

...
...

xn1 xn2




Geometrically, we can think of D in two ways. It can be viewed as n points or vectors

in 2-dimensional space over the attributes X1 and X2, that is, xi = (xi1,xi2)
T ∈ R

2.

Alternatively, it can be viewed as two points or vectors in an n-dimensional space

comprising the points, that is, each column is a vector in R
n, as follows:

X1 = (x11,x21, . . . ,xn1)
T

X2 = (x12,x22, . . . ,xn2)
T

In the probabilistic view, the column vector X= (X1,X2)
T is considered a bivariate

vector random variable, and the points xi (1 ≤ i ≤ n) are treated as a random sample

drawn from X, that is, xi’s are considered independent and identically distributed as X.
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Empirical Joint Probability Mass Function

The empirical joint probability mass function for X is given as

f̂ (x)= P(X= x)= 1

n

n∑

i=1

I(xi = x) (2.17)

f̂ (x1,x2)= P(X1 = x1,X2 = x2)=
1

n

n∑

i=1

I(xi1 = x1,xi2 = x2)

where x= (x1,x2)
T and I is a indicator variable that takes on the value 1 only when its

argument is true:

I(xi = x)=
{

1 if xi1 = x1 and xi2 = x2

0 otherwise

As in the univariate case, the probability function puts a probability mass of 1
n

at each

point in the data sample.

2.2.1 Measures of Location and Dispersion

Mean

The bivariate mean is defined as the expected value of the vector random variable X,

defined as follows:

µ=E[X]=E

[(
X1

X2

)]
=
(

E[X1]

E[X2]

)
=
(

µ1

µ2

)
(2.18)

In other words, the bivariate mean vector is simply the vector of expected values along

each attribute.

The sample mean vector can be obtained from f̂X1
and f̂X2

, the empirical

probability mass functions of X1 and X2, respectively, using Eq. (2.5). It can also be

computed from the joint empirical PMF in Eq. (2.17)

µ̂=
∑

x

xf̂ (x)=
∑

x

x

(
1

n

n∑

i=1

I(xi = x)

)
= 1

n

n∑

i=1

xi (2.19)

Variance

We can compute the variance along each attribute, namely σ 2
1 for X1 and σ 2

2 for X2

using Eq. (2.8). The total variance [Eq. (1.4)] is given as

var(D)= σ 2
1 +σ 2

2

The sample variances σ̂ 2
1 and σ̂ 2

2 can be estimated using Eq. (2.10), and the sample

total variance is simply σ̂ 2
1 + σ̂ 2

2 .

2.2.2 Measures of Association

Covariance

The covariance between two attributes X1 and X2 provides a measure of the association

or linear dependence between them, and is defined as

σ12 =E[(X1−µ1)(X2−µ2)] (2.20)
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By linearity of expectation, we have

σ12 =E[(X1−µ1)(X2−µ2)]

=E[X1X2−X1µ2−X2µ1+µ1µ2]

=E[X1X2]−µ2E[X1]−µ1E[X2]+µ1µ2

=E[X1X2]−µ1µ2

=E[X1X2]−E[X1]E[X2] (2.21)

Eq. (2.21) can be seen as a generalization of the univariate variance [Eq. (2.9)] to the

bivariate case.

If X1 and X2 are independent random variables, then we conclude that their

covariance is zero. This is because if X1 and X2 are independent, then we have

E[X1X2]=E[X1] ·E[X2]

which in turn implies that

σ12 = 0

However, the converse is not true. That is, if σ12 = 0, one cannot claim that X1 and X2

are independent. All we can say is that there is no linear dependence between them,

but we cannot rule out that there might be a higher order relationship or dependence

between the two attributes.

The sample covariance between X1 and X2 is given as

σ̂12 =
1

n

n∑

i=1

(xi1− µ̂1)(xi2− µ̂2) (2.22)

It can be derived by substituting the empirical joint probability mass function f̂ (x1,x2)

from Eq. (2.17) into Eq. (2.20), as follows:

σ̂12 =E[(X1− µ̂1)(X2− µ̂2)]

=
∑

x=(x1,x2)T

(x1− µ̂1)(x2− µ̂2)f̂ (x1,x2)

= 1

n

∑

x=(x1,x2)T

n∑

i=1

(x1− µ̂1) · (x2− µ̂2) · I(xi1 = x1,xi2 = x2)

= 1

n

n∑

i=1

(xi1− µ̂1)(xi2− µ̂2)

Notice that sample covariance is a generalization of the sample variance

[Eq. (2.10)] because

σ̂11 =
1

n

n∑

i=1

(xi −µ1)(xi −µ1)=
1

n

n∑

i=1

(xi −µ1)
2 = σ̂ 2

1

and similarly, σ̂22 = σ̂ 2
2 .
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Correlation

The correlation between variables X1 and X2 is the standardized covariance, obtained

by normalizing the covariance with the standard deviation of each variable, given as

ρ12 =
σ12

σ1σ2

= σ12√
σ 2

1 σ 2
2

(2.23)

The sample correlation for attributes X1 and X2 is given as

ρ̂12 =
σ̂12

σ̂1σ̂2

=
∑n

i=1(xi1− µ̂1)(xi2− µ̂2)√∑n

i=1(xi1− µ̂1)2
∑n

i=1(xi2− µ̂2)2
(2.24)

Geometric Interpretation of Sample Covariance and Correlation

Let Z1 and Z2 denote the centered attribute vectors in R
n, given as follows:

Z1 =X1− 1 · µ̂1 =




x11− µ̂1

x21− µ̂1

...

xn1− µ̂1


 Z2 =X2− 1 · µ̂2 =




x12− µ̂2

x22− µ̂2

...

xn2− µ̂2




The sample covariance [Eq. (2.22)] can then be written as

σ̂12 =
ZT

1 Z2

n

In other words, the covariance between the two attributes is simply the dot product

between the two centered attribute vectors, normalized by the sample size. The above

can be seen as a generalization of the univariate sample variance given in Eq. (2.11).

xn

x2

x1

b

b

θ

Z2

Z1

Figure 2.3. Geometric interpretation of covariance and correlation. The two centered attribute vectors are

shown in the (conceptual) n-dimensional space R
n spanned by the n points.
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The sample correlation [Eq. (2.24)] can be written as

ρ̂12 =
ZT

1 Z2√
ZT

1 Z1

√
ZT

2 Z2

= ZT
1 Z2

‖Z1‖ ‖Z2‖
=
(

Z1

‖Z1‖

)T(
Z2

‖Z2‖

)
= cosθ (2.25)

Thus, the correlation coefficient is simply the cosine of the angle [Eq. (1.3)] between

the two centered attribute vectors, as illustrated in Figure 2.3.

Covariance Matrix

The variance–covariance information for the two attributes X1 and X2 can be

summarized in the square 2× 2 covariance matrix, given as

6 =E[(X−µ)(X−µ)T]

=E

[(
X1−µ1

X2−µ2

)(
X1−µ1 X2−µ2

)]

=
(

E[(X1−µ1)(X1−µ1)] E[(X1−µ1)(X2−µ2)]

E[(X2−µ2)(X1−µ1)] E[(X2−µ2)(X2−µ2)]

)

=
(

σ 2
1 σ12

σ21 σ 2
2

)
(2.26)

Because σ12= σ21, 6 is a symmetric matrix. The covariance matrix records the attribute

specific variances on the main diagonal, and the covariance information on the

off-diagonal elements.

The total variance of the two attributes is given as the sum of the diagonal elements

of 6, which is also called the trace of 6, given as

var(D)= tr(6)= σ 2
1 +σ 2

2

We immediately have tr(6)≥ 0.

The generalized variance of the two attributes also considers the covariance, in

addition to the attribute variances, and is given as the determinant of the covariance

matrix 6, denoted as |6| or det(6). The generalized covariance is non-negative,

because

|6| = det(6)= σ 2
1 σ 2

2 −σ 2
12 = σ 2

1 σ 2
2 −ρ2

12σ
2
1 σ 2

2 = (1−ρ2
12)σ

2
1 σ 2

2

where we used Eq. (2.23), that is, σ12 = ρ12σ1σ2. Note that |ρ12| ≤ 1 implies that ρ2
12 ≤ 1,

which in turn implies that det(6)≥ 0, that is, the determinant is non-negative.

The sample covariance matrix is given as

6̂ =
(

σ̂ 2
1 σ̂12

σ̂12 σ̂ 2
2

)

The sample covariance matrix 6̂ shares the same properties as 6, that is, it is symmetric

and |6̂| ≥ 0, and it can be used to easily obtain the sample total and generalized

variance.
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Figure 2.4. Correlation between sepal length and sepal width.

Example 2.3 (Sample Mean and Covariance). Consider the sepal length and

sepal width attributes for the Iris dataset, plotted in Figure 2.4. There are n= 150

points in the d = 2 dimensional attribute space. The sample mean vector is given as

µ̂=
(

5.843

3.054

)

The sample covariance matrix is given as

6̂ =
(

0.681 −0.039

−0.039 0.187

)

The variance for sepal length is σ̂ 2
1 = 0.681, and that for sepal width is σ̂ 2

2 = 0.187.

The covariance between the two attributes is σ̂12 = −0.039, and the correlation

between them is

ρ̂12 =
−0.039√

0.681 · 0.187
=−0.109

Thus, there is a very weak negative correlation between these two attributes, as

evidenced by the best linear fit line in Figure 2.4. Alternatively, we can consider

the attributes sepal length and sepal width as two points in R
n. The correlation

is then the cosine of the angle between them; we have

ρ̂12 = cosθ =−0.109, which implies that θ = cos−1(−0.109)= 96.26◦

The angle is close to 90◦, that is, the two attribute vectors are almost orthogonal,

indicating weak correlation. Further, the angle being greater than 90◦ indicates

negative correlation.
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The sample total variance is given as

tr(6̂)= 0.681+ 0.187= 0.868

and the sample generalized variance is given as

|6̂| = det(6̂)= 0.681 · 0.187− (−0.039)2= 0.126

2.3 MULTIVARIATE ANALYSIS

In multivariate analysis, we consider all the d numeric attributes X1,X2, . . . ,Xd . The

full data is an n× d matrix, given as

D=




X1 X2 · · · Xd

x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd




In the row view, the data can be considered as a set of n points or vectors in the

d-dimensional attribute space

xi = (xi1,xi2, . . . ,xid)
T ∈Rd

In the column view, the data can be considered as a set of d points or vectors in the

n-dimensional space spanned by the data points

Xj = (x1j ,x2j , . . . ,xnj )
T ∈Rn

In the probabilistic view, the d attributes are modeled as a vector random variable,

X= (X1,X2, . . . ,Xd)
T, and the points xi are considered to be a random sample drawn

from X, that is, they are independent and identically distributed as X.

Mean

Generalizing Eq. (2.18), the multivariate mean vector is obtained by taking the mean of

each attribute, given as

µ=E[X]=




E[X1]

E[X2]
...

E[Xd]


=




µ1

µ2

...

µd




Generalizing Eq. (2.19), the sample mean is given as

µ̂= 1

n

n∑

i=1

xi
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Covariance Matrix

Generalizing Eq. (2.26) to d dimensions, the multivariate covariance information is

captured by the d × d (square) symmetric covariance matrix that gives the covariance

for each pair of attributes:

6 =E[(X−µ)(X−µ)T]=




σ 2
1 σ12 · · · σ1d

σ21 σ 2
2 · · · σ2d

· · · · · · · · · · · ·
σd1 σd2 · · · σ 2

d




The diagonal element σ 2
i specifies the attribute variance for Xi , whereas the

off-diagonal elements σij = σji represent the covariance between attribute pairs Xi

and Xj .

Covariance Matrix Is Positive Semidefinite

It is worth noting that 6 is a positive semidefinite matrix, that is,

aT6a≥ 0 for any d-dimensional vector a

To see this, observe that

aT6a= aTE[(X−µ)(X−µ)T]a

=E[aT(X−µ)(X−µ)Ta]

=E[Y2]

≥ 0

where Y is the random variable Y= aT(X−µ)=
∑d

i=1 ai(Xi −µi), and we use the fact

that the expectation of a squared random variable is non-negative.

Because 6 is also symmetric, this implies that all the eigenvalues of 6 are real and

non-negative. In other words the d eigenvalues of 6 can be arranged from the largest

to the smallest as follows: λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0. A consequence is that the determinant

of 6 is non-negative:

det(6)=
d∏

i=1

λi ≥ 0 (2.27)

Total and Generalized Variance

The total variance is given as the trace of the covariance matrix:

var(D)= tr(6)= σ 2
1 +σ 2

2 + ·· ·+σ 2
d (2.28)

Being a sum of squares, the total variance must be non-negative.

The generalized variance is defined as the determinant of the covariance matrix,

det(6), also denoted as |6|. It gives a single value for the overall multivariate scatter.

From Eq. (2.27) we have det(6)≥ 0.
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Sample Covariance Matrix

The sample covariance matrix is given as

6̂ =E[(X− µ̂)(X− µ̂)T]=




σ̂ 2
1 σ̂12 · · · σ̂1d

σ̂21 σ̂ 2
2 · · · σ̂2d

· · · · · · · · · · · ·
σ̂d1 σ̂d2 · · · σ̂ 2

d


 (2.29)

Instead of computing the sample covariance matrix element-by-element, we can

obtain it via matrix operations. Let Z represent the centered data matrix, given as the

matrix of centered attribute vectors Zi =Xi − 1 · µ̂i, where 1 ∈Rn:

Z=D− 1 · µ̂T =



| | |

Z1 Z2 · · · Zd

| | |




Alternatively, the centered data matrix can also be written in terms of the centered

points zi = xi − µ̂:

Z=D− 1 · µ̂T =




xT
1 − µ̂T

xT
2 − µ̂T

...

xT
n − µ̂T



=




— zT
1 —

— zT
2 —

...

— zT
n —




In matrix notation, the sample covariance matrix can be written as

6̂ = 1

n

(
ZTZ

)
= 1

n




ZT
1 Z1 ZT

1 Z2 · · · ZT
1 Zd

ZT
2 Z1 ZT

2 Z2 · · · ZT
2 Zd

...
...

. . .
...

ZT
d Z1 ZT

d Z2 · · · ZT
d Zd




(2.30)

The sample covariance matrix is thus given as the pairwise inner or dot products of the

centered attribute vectors, normalized by the sample size.

In terms of the centered points zi , the sample covariance matrix can also be written

as a sum of rank-one matrices obtained as the outer product of each centered point:

6̂ = 1

n

n∑

i=1

zi · zT
i (2.31)

Example 2.4 (Sample Mean and Covariance Matrix). Let us consider all four

numeric attributes for the Iris dataset, namely sepal length, sepal width, petal

length, and petal width. The multivariate sample mean vector is given as

µ̂=
(
5.843 3.054 3.759 1.199

)T
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and the sample covariance matrix is given as

6̂ =




0.681 −0.039 1.265 0.513

−0.039 0.187 −0.320 −0.117

1.265 −0.320 3.092 1.288

0.513 −0.117 1.288 0.579




The sample total variance is

var(D)= tr(6̂)= 0.681+ 0.187+ 3.092+ 0.579= 4.539

and the generalized variance is

det(6̂)= 1.853× 10−3

Example 2.5 (Inner and Outer Product). To illustrate the inner and outer

product–based computation of the sample covariance matrix, consider the

2-dimensional dataset

D=




A1 A2

1 0.8

5 2.4

9 5.5




The mean vector is as follows:

µ̂=
(

µ̂1

µ̂2

)
=
(

15/3

8.7/3

)
=
(

5

2.9

)

and the centered data matrix is then given as

Z=D− 1 ·µT =




1 0.8

5 2.4

9 5.5


−




1

1

1


(5 2.9

)
=



−4 −2.1

0 −0.5

4 2.6




The inner-product approach [Eq. (2.30)] to compute the sample covariance matrix

gives

6̂ = 1

n
ZTZ= 1

3

(
−4 0 4

−2.1 −0.5 2.6

)
·



−4 −2.1

0 −0.5

4 2.6




= 1

3

(
32 18.8

18.8 11.42

)
=
(

10.67 6.27

6.27 3.81

)

Alternatively, the outer-product approach [Eq. (2.31)] gives

6̂ = 1

n

n∑

i=1

zi · zT
i

= 1

3

[(
−4

−2.1

)
·
(
−4 −2.1

)
+
(

0

−0.5

)
·
(
0 −0.5

)
+
(

4

2.6

)
·
(
4 2.6

)]
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= 1

3

[(
16.0 8.4

8.4 4.41

)
+
(

0.0 0.0

0.0 0.25

)
+
(

16.0 10.4

10.4 6.76

)]

= 1

3

(
32.0 18.8

18.8 11.42

)
=
(

10.67 6.27

6.27 3.81

)

where the centered points zi are the rows of Z. We can see that both the inner and

outer product approaches yield the same sample covariance matrix.

2.4 DATA NORMALIZATION

When analyzing two or more attributes it is often necessary to normalize the values of

the attributes, especially in those cases where the values are vastly different in scale.

Range Normalization

Let X be an attribute and let x1,x2, . . . ,xn be a random sample drawn from X. In range

normalization each value is scaled by the sample range r̂ of X:

x ′i =
xi −mini{xi}

r̂
= xi −mini{xi}

maxi{xi}−mini{xi}

After transformation the new attribute takes on values in the range [0,1].

Standard Score Normalization

In standard score normalization, also called z-normalization, each value is replaced by

its z-score:

x ′i =
xi − µ̂

σ̂

where µ̂ is the sample mean and σ̂ 2 is the sample variance of X. After transformation,

the new attribute has mean µ̂′ = 0, and standard deviation σ̂ ′ = 1.

Example 2.6. Consider the example dataset shown in Table 2.1. The attributes Age

and Income have very different scales, with the latter having much larger values.

Consider the distance between x1 and x2:

‖x1− x2‖ =
∥∥(2,200)T

∥∥=
√

22+ 2002=
√

40004= 200.01

As we can observe, the contribution of Age is overshadowed by the value of Income.

The sample range for Age is r̂ = 40− 12= 28, with the minimum value 12. After

range normalization, the new attribute is given as

Age′ = (0,0.071,0.214,0.393,0.536,0.571,0.786,0.893,0.964,1)T

For example, for the point x2= (x21,x22)= (14,500), the value x21= 14 is transformed

into

x ′21 =
14− 12

28
= 2

28
= 0.071
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Table 2.1. Dataset for normalization

xi Age (X1) Income (X2)

x1 12 300

x2 14 500

x3 18 1000

x4 23 2000

x5 27 3500

x6 28 4000

x7 34 4300

x8 37 6000

x9 39 2500

x10 40 2700

Likewise, the sample range for Income is 2700− 300 = 2400, with a minimum value

of 300; Income is therefore transformed into

Income′ = (0,0.035,0.123,0.298,0.561,0.649,0.702,1,0.386,0.421)T

so that x22= 0.035. The distance between x1 and x2 after range normalization is given

as

∥∥x′1− x′2
∥∥=

∥∥(0,0)T− (0.071,0.035)T
∥∥=

∥∥(−0.071,−0.035)T
∥∥= 0.079

We can observe that Income no longer skews the distance.

For z-normalization, we first compute the mean and standard deviation of both

attributes:

Age Income

µ̂ 27.2 2680

σ̂ 9.77 1726.15

Age is transformed into

Age′ = (−1.56,−1.35,−0.94,−0.43,−0.02,0.08,0.70,1.0,1.21,1.31)T

For instance, the value x21 = 14, for the point x2 = (x21,x22) = (14,500), is

transformed as

x ′21 =
14− 27.2

9.77
=−1.35

Likewise, Income is transformed into

Income′ = (−1.38,−1.26,−0.97,−0.39,0.48,0.77,0.94,1.92,−0.10,0.01)T

so that x22 =−1.26. The distance between x1 and x2 after z-normalization is given as

∥∥x′1− x′2
∥∥=

∥∥(−1.56,−1.38)T− (1.35,−1.26)T
∥∥=

∥∥(−0.18,−0.12)T
∥∥= 0.216
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2.5 NORMAL DISTRIBUTION

The normal distribution is one of the most important probability density functions,

especially because many physically observed variables follow an approximately normal

distribution. Furthermore, the sampling distribution of the mean of any arbitrary

probability distribution follows a normal distribution. The normal distribution also

plays an important role as the parametric distribution of choice in clustering, density

estimation, and classification.

2.5.1 Univariate Normal Distribution

A random variable X has a normal distribution, with the parameters mean µ and

variance σ 2, if the probability density function of X is given as follows:

f (x|µ,σ 2)= 1√
2πσ 2

exp

{
− (x−µ)2

2σ 2

}

The term (x − µ)2 measures the distance of a value x from the mean µ of the

distribution, and thus the probability density decreases exponentially as a function of

the distance from the mean. The maximum value of the density occurs at the mean

value x = µ, given as f (µ) = 1√
2πσ2

, which is inversely proportional to the standard

deviation σ of the distribution.

Example 2.7. Figure 2.5 plots the standard normal distribution, which has the

parameters µ= 0 and σ 2 = 1. The normal distribution has a characteristic bell shape,

and it is symmetric about the mean. The figure also shows the effect of different

values of standard deviation on the shape of the distribution. A smaller value (e.g.,

σ = 0.5) results in a more “peaked” distribution that decays faster, whereas a larger

value (e.g., σ = 2) results in a flatter distribution that decays slower. Because the

normal distribution is symmetric, the mean µ is also the median, as well as the mode,

of the distribution.

Probability Mass

Given an interval [a,b] the probability mass of the normal distribution within that

interval is given as

P(a ≤ x ≤ b)=
b∫

a

f (x|µ,σ 2) dx

In particular, we are often interested in the probability mass concentrated within k

standard deviations from the mean, that is, for the interval [µ− kσ,µ+ kσ ], which can

be computed as

P
(
µ− kσ ≤ x ≤µ+ kσ

)
= 1√

2πσ

µ+kσ∫

µ−kσ

exp

{
− (x−µ)2

2σ 2

}
dx
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Figure 2.5. Normal distribution: µ= 0, and different variances.

Via a change of variable z = x−µ

σ
, we get an equivalent formulation in terms of the

standard normal distribution:

P(−k ≤ z≤ k)= 1√
2π

k∫

−k

e−
1
2
z2

dz

= 2√
2π

k∫

0

e−
1
2
z2

dz

The last step follows from the fact that e−
1
2
z2

is symmetric, and thus the integral over

the range [−k,k] is equivalent to 2 times the integral over the range [0,k]. Finally, via

another change of variable t = z√
2
, we get

P(−k ≤ z≤ k)= P
(
0≤ t ≤ k/

√
2
)
= 2√

π

k/
√

2∫

0

e−t2dt = erf
(
k/
√

2
)

(2.32)

where erf is the Gauss error function, defined as

erf(x)= 2√
π

x∫

0

e−t2dt

Using Eq. (2.32) we can compute the probability mass within k standard deviations of

the mean. In particular, for k = 1, we have

P(µ−σ ≤ x ≤ µ+σ)= erf(1/
√

2)= 0.6827
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which means that 68.27% of all points lie within 1 standard deviation from the mean.

For k= 2, we have erf(2/
√

2)= 0.9545, and for k= 3 we have erf(3/
√

2)= 0.9973. Thus,

almost the entire probability mass (i.e., 99.73%) of a normal distribution is within ±3σ

from the mean µ.

2.5.2 Multivariate Normal Distribution

Given the d-dimensional vector random variable X= (X1,X2, . . . ,Xd)
T, we say that X

has a multivariate normal distribution, with the parameters mean µ and covariance

matrix 6, if its joint multivariate probability density function is given as follows:

f (x|µ,6)= 1

(
√

2π)d
√
|6|

exp

{
− (x−µ)T 6−1 (x−µ)

2

}
(2.33)

where |6| is the determinant of the covariance matrix. As in the univariate case, the

term

(xi −µ)T 6−1 (xi −µ) (2.34)

measures the distance, called the Mahalanobis distance, of the point x from the mean

µ of the distribution, taking into account all of the variance–covariance information

between the attributes. The Mahalanobis distance is a generalization of Euclidean

distance because if we set 6 = I, where I is the d × d identity matrix (with diagonal

elements as 1’s and off-diagonal elements as 0’s), we get

(xi −µ)T I−1 (xi −µ)= ‖xi −µ‖2

The Euclidean distance thus ignores the covariance information between the attributes,

whereas the Mahalanobis distance explicitly takes it into consideration.

The standard multivariate normal distribution has parameters µ = 0 and 6 = I.

Figure 2.6a plots the probability density of the standard bivariate (d = 2) normal

distribution, with parameters

µ= 0=
(

0

0

)

and

6 = I=
(

1 0

0 1

)

This corresponds to the case where the two attributes are independent, and both

follow the standard normal distribution. The symmetric nature of the standard normal

distribution can be clearly seen in the contour plot shown in Figure 2.6b. Each level

curve represents the set of points x with a fixed density value f (x).

Geometry of the Multivariate Normal

Let us consider the geometry of the multivariate normal distribution for an arbitrary

mean µ and covariance matrix 6. Compared to the standard normal distribution,

we can expect the density contours to be shifted, scaled, and rotated. The shift or

translation comes from the fact that the mean µ is not necessarily the origin 0. The
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Figure 2.6. (a) Standard bivariate normal density and (b) its contour plot. Parameters: µ= (0,0)T, 6 = I.

scaling or skewing is a result of the attribute variances, and the rotation is a result of

the covariances.

The shape or geometry of the normal distribution becomes clear by considering

the eigen-decomposition of the covariance matrix. Recall that 6 is a d × d symmetric

positive semidefinite matrix. The eigenvector equation for 6 is given as

6ui = λiui

Here λi is an eigenvalue of 6 and the vector ui ∈ Rd is the eigenvector corresponding

to λi . Because 6 is symmetric and positive semidefinite it has d real and non-negative

eigenvalues, which can be arranged in order from the largest to the smallest as follows:

λ1 ≥ λ2 ≥ . . .λd ≥ 0. The diagonal matrix 3 is used to record these eigenvalues:

3=




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd



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Further, the eigenvectors are unit vectors (normal) and are mutually orthogonal,

that is, they are orthonormal:

uT
i ui = 1 for all i

uT
i uj = 0 for all i 6= j

The eigenvectors can be put together into an orthogonal matrix U, defined as a matrix

with normal and mutually orthogonal columns:

U=



| | |

u1 u2 · · · ud

| | |




The eigen-decomposition of 6 can then be expressed compactly as follows:

6 =U3UT

This equation can be interpreted geometrically as a change in basis vectors. From the

original d dimensions corresponding to the d attributes Xj , we derive d new dimensions

ui . 6 is the covariance matrix in the original space, whereas 3 is the covariance matrix

in the new coordinate space. Because 3 is a diagonal matrix, we can immediately

conclude that after the transformation, each new dimension ui has variance λi , and

further that all covariances are zero. In other words, in the new space, the normal

distribution is axis aligned (has no rotation component), but is skewed in each axis

proportional to the eigenvalue λi , which represents the variance along that dimension

(further details are given in Section 7.2.4).

Total and Generalized Variance

The determinant of the covariance matrix is is given as det(6) =
∏d

i=1 λi . Thus, the

generalized variance of 6 is the product of its eigenvectors.

Given the fact that the trace of a square matrix is invariant to similarity

transformation, such as a change of basis, we conclude that the total variance var(D)

for a dataset D is invariant, that is,

var(D)= tr(6)=
d∑

i=1

σ 2
i =

d∑

i=1

λi = tr(3)

In other words σ 2
1 + ·· ·+σ 2

d = λ1+ ·· ·+λd .

Example 2.8 (Bivariate Normal Density). Treating attributes sepal length (X1)

and sepal width (X2) in the Iris dataset (see Table 1.1) as continuous random

variables, we can define a continuous bivariate random variable X =
(

X1

X2

)
.

Assuming that X follows a bivariate normal distribution, we can estimate its

parameters from the sample. The sample mean is given as

µ̂= (5.843,3.054)T
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Figure 2.7. Iris: sepal length and sepal width, bivariate normal density and contours.

and the sample covariance matrix is given as

6̂ =
(

0.681 −0.039

−0.039 0.187

)

The plot of the bivariate normal density for the two attributes is shown in Figure 2.7.

The figure also shows the contour lines and the data points.

Consider the point x2 = (6.9,3.1)T. We have

x2− µ̂=
(

6.9

3.1

)
−
(

5.843

3.054

)
=
(

1.057

0.046

)

The Mahalanobis distance between x2 and µ̂ is

(xi − µ̂)T 6̂−1 (xi − µ̂)=
(
1.057 0.046

)( 0.681 −0.039

−0.039 0.187

)−1(
1.057

0.046

)

=
(
1.057 0.046

)(1.486 0.31

0.31 5.42

)(
1.057

0.046

)

= 1.701

whereas the squared Euclidean distance between them is

‖(x2− µ̂)‖2 =
(
1.057 0.046

)(1.057

0.046

)
= 1.119

The eigenvalues and the corresponding eigenvectors of 6̂ are as follows:

λ1 = 0.684 u1 = (−0.997,0.078)T

λ2 = 0.184 u2 = (−0.078,−0.997)T
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These two eigenvectors define the new axes in which the covariance matrix is given as

3=
(

0.684 0

0 0.184

)

The angle between the original axes e1 = (1,0)T and u1 specifies the rotation angle

for the multivariate normal:

cosθ = eT
1 u1 =−0.997

θ = cos−1(−0.997)= 175.5◦

Figure 2.7 illustrates the new coordinate axes and the new variances. We can see that

in the original axes, the contours are only slightly rotated by angle 175.5◦ (or −4.5◦).

2.6 FURTHER READING

There are several good textbooks that cover the topics discussed in this chapter in

more depth; see Evans and Rosenthal (2011); Wasserman (2004) and Rencher and

Christensen (2012).

Evans, M. and Rosenthal, J. (2011). Probability and Statistics: The Science of

Uncertainty, 2nd ed. New York: W. H. Freeman.

Rencher, A. C. and Christensen, W. F. (2012). Methods of Multivariate Analysis, 3rd ed.

Hoboken, NJ: John Wiley & Sons.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference.

New York: Springer Science+Business Media.

2.7 EXERCISES

Q1. True or False:

(a) Mean is robust against outliers.

(b) Median is robust against outliers.

(c) Standard deviation is robust against outliers.

Q2. Let X and Y be two random variables, denoting age and weight, respectively.

Consider a random sample of size n= 20 from these two variables

X= (69,74,68,70,72,67,66,70,76,68,72,79,74,67,66,71,74,75,75,76)

Y= (153,175,155,135,172,150,115,137,200,130,140,265,185,112,140,

150,165,185,210,220)

(a) Find the mean, median, and mode for X.

(b) What is the variance for Y?
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(c) Plot the normal distribution for X.

(d) What is the probability of observing an age of 80 or higher?

(e) Find the 2-dimensional mean µ̂ and the covariance matrix 6̂ for these two

variables.

(f) What is the correlation between age and weight?

(g) Draw a scatterplot to show the relationship between age and weight.

Q3. Show that the identity in Eq. (2.15) holds, that is,

n∑

i=1

(xi −µ)2 = n(µ̂−mu)2+
n∑

i=1

(xi − µ̂)2

Q4. Prove that if xi are independent random variables, then

var

(
n∑

i=1

xi

)
=

n∑

i=1

var(xi)

This fact was used in Eq. (2.12).

Q5. Define a measure of deviation called mean absolute deviation for a random variable

X as follows:
1

n

n∑

i=1

|xi −µ|

Is this measure robust? Why or why not?

Q6. Prove that the expected value of a vector random variable X= (X1,X2)
T is simply the

vector of the expected value of the individual random variables X1 and X2 as given in

Eq. (2.18).

Q7. Show that the correlation [Eq. (2.23)] between any two random variables X1 and X2

lies in the range [−1,1].

Q8. Given the dataset in Table 2.2, compute the covariance matrix and the generalized

variance.

Table 2.2. Dataset for Q8

X1 X2 X3

x1 17 17 12

x2 11 9 13

x3 11 8 19

Q9. Show that the outer-product in Eq. (2.31) for the sample covariance matrix is

equivalent to Eq. (2.29).

Q10. Assume that we are given two univariate normal distributions, NA and NB, and let

their mean and standard deviation be as follows: µA = 4, σA = 1 and µB = 8,σB = 2.

(a) For each of the following values xi ∈ {5,6,7} find out which is the more likely

normal distribution to have produced it.

(b) Derive an expression for the point for which the probability of having been

produced by both the normals is the same.
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Q11. Consider Table 2.3. Assume that both the attributes X and Y are numeric, and the

table represents the entire population. If we know that the correlation between X

and Y is zero, what can you infer about the values of Y?

Table 2.3. Dataset for Q11

X Y

1 a

0 b

1 c

0 a

0 c

Q12. Under what conditions will the covariance matrix 6 be identical to the correlation

matrix, whose (i,j ) entry gives the correlation between attributes Xi and Xj ? What

can you conclude about the two variables?



CHAPTER 3 Categorical Attributes

In this chapter we present methods to analyze categorical attributes. Because

categorical attributes have only symbolic values, many of the arithmetic operations

cannot be performed directly on the symbolic values. However, we can compute the

frequencies of these values and use them to analyze the attributes.

3.1 UNIVARIATE ANALYSIS

We assume that the data consists of values for a single categorical attribute, X. Let the

domain of X consist of m symbolic values dom(X)= {a1,a2, . . . ,am}. The data D is thus

an n× 1 symbolic data matrix given as

D=




X

x1

x2

...

xn




where each point xi ∈ dom(X).

3.1.1 Bernoulli Variable

Let us first consider the case when the categorical attribute X has domain {a1,a2}, with

m = 2. We can model X as a Bernoulli random variable, which takes on two distinct

values, 1 and 0, according to the mapping

X(v)=
{

1 if v = a1

0 if v = a2

The probability mass function (PMF) of X is given as

P(X= x)= f (x)=
{

p1 if x = 1

p0 if x = 0

63
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where p1 and p0 are the parameters of the distribution, which must satisfy the condition

p1+p0 = 1

Because there is only one free parameter, it is customary to denote p1 =p, from which

it follows that p0= 1−p. The PMF of Bernoulli random variable X can then be written

compactly as

P(X= x)= f (x)= px(1−p)1−x

We can see that P(X = 1) = p1(1− p)0 = p and P(X = 0) = p0(1− p)1 = 1− p, as

desired.

Mean and Variance

The expected value of X is given as

µ=E[X]= 1 ·p+ 0 · (1−p)= p

and the variance of X is given as

σ 2 = var(X)=E[X2]− (E[X])2

= (12 ·p+ 02 · (1−p))−p2 = p−p2 = p(1−p) (3.1)

Sample Mean and Variance

To estimate the parameters of the Bernoulli variable X, we assume that each symbolic

point has been mapped to its binary value. Thus, the set {x1,x2, . . . ,xn} is assumed to

be a random sample drawn from X (i.e., each xi is IID with X).

The sample mean is given as

µ̂= 1

n

n∑

i=1

xi =
n1

n
= p̂ (3.2)

where n1 is the number of points with xi = 1 in the random sample (equal to the number

of occurrences of symbol a1).

Let n0= n−n1 denote the number of points with xi = 0 in the random sample. The

sample variance is given as

σ̂ 2 = 1

n

n∑

i=1

(xi − µ̂)2

= n1

n
(1− p̂)2+ n−n1

n
(−p̂)2

= p̂(1− p̂)2+ (1− p̂)p̂2

= p̂(1− p̂)(1− p̂+ p̂)

= p̂(1− p̂)

The sample variance could also have been obtained directly from Eq. (3.1), by

substituting p̂ for p.
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Example 3.1. Consider the sepal length attribute (X1) for the Iris dataset in

Table 1.1. Let us define an Iris flower as Long if its sepal length is in the range [7,∞],

and Short if its sepal length is in the range [−∞,7). Then X1 can be treated as a

categorical attribute with domain {Long,Short}. From the observed sample of size

n= 150, we find 13 long Irises. The sample mean of X1 is

µ̂= p̂= 13/150= 0.087

and its variance is

σ̂ 2 = p̂(1− p̂)= 0.087(1− 0.087)= 0.087 · 0.913= 0.079

Binomial Distribution: Number of Occurrences

Given the Bernoulli variable X, let {x1,x2, . . . ,xn} denote a random sample of size n

drawn from X. Let N be the random variable denoting the number of occurrences

of the symbol a1 (value X = 1) in the sample. N has a binomial distribution,

given as

f (N= n1| n,p)=
(

n

n1

)
pn1(1−p)n−n1 (3.3)

In fact, N is the sum of the n independent Bernoulli random variables xi IID with

X, that is, N =
∑n

i=1 xi . By linearity of expectation, the mean or expected number of

occurrences of symbol a1 is given as

µN =E[N]=E

[
n∑

i=1

xi

]
=

n∑

i=1

E[xi]=
n∑

i=1

p = np

Because xi are all independent, the variance of N is given as

σ 2
N = var(N)=

n∑

i=1

var(xi)=
n∑

i=1

p(1−p)= np(1−p)

Example 3.2. Continuing with Example 3.1, we can use the estimated parameter

p̂= 0.087 to compute the expected number of occurrences N of Long sepal length

Irises via the binomial distribution:

E[N]= np̂ = 150 · 0.087= 13

In this case, because p is estimated from the sample via p̂, it is not surprising that the

expected number of occurrences of long Irises coincides with the actual occurrences.

However, what is more interesting is that we can compute the variance in the number

of occurrences:

var(N)= np̂(1− p̂)= 150 · 0.079= 11.9



66 Categorical Attributes

As the sample size increases, the binomial distribution given in Eq. 3.3 tends to a

normal distribution with µ = 13 and σ =
√

11.9 = 3.45 for our example. Thus, with

confidence greater than 95% we can claim that the number of occurrences of a1 will

lie in the range µ± 2σ = [9.55,16.45], which follows from the fact that for a normal

distribution 95.45% of the probability mass lies within two standard deviations from

the mean (see Section 2.5.1).

3.1.2 Multivariate Bernoulli Variable

We now consider the general case when X is a categorical attribute with domain

{a1,a2, . . . ,am}. We can model X as an m-dimensional Bernoulli random variable

X = (A1,A2, . . . ,Am)T, where each Ai is a Bernoulli variable with parameter pi

denoting the probability of observing symbol ai . However, because X can assume only

one of the symbolic values at any one time, if X = ai , then Ai = 1, and Aj = 0 for

all j 6= i. The range of the random variable X is thus the set {0,1}m, with the further

restriction that if X= ai , then X= ei , where ei is the ith standard basis vector ei ∈Rm

given as

ei = (

i−1︷ ︸︸ ︷
0, . . . ,0,1,

m−i︷ ︸︸ ︷
0, . . . ,0 )T

In ei , only the ith element is 1 (eii = 1), whereas all other elements are zero

(eij = 0,∀j 6= i).

This is precisely the definition of a multivariate Bernoulli variable, which is a

generalization of a Bernoulli variable from two outcomes to m outcomes. We thus

model the categorical attribute X as a multivariate Bernoulli variable X defined as

X(v)= ei if v = ai

The range of X consists of m distinct vector values {e1,e2, . . . ,em}, with the PMF of X

given as

P(X= ei)= f (ei)= pi

where pi is the probability of observing value ai . These parameters must satisfy the

condition

m∑

i=1

pi = 1

The PMF can be written compactly as follows:

P(X= ei)= f (ei)=
m∏

j=1

p
eij

j (3.4)

Because eii = 1, and eij = 0 for j 6= i, we can see that, as expected, we have

f (ei)=
m∏

j=1

p
eij

j = p
ei0
1 ×·· ·p

eii
i · · · ×peim

m = p0
1 ×·· ·p1

i · · ·×p0
m = pi
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Table 3.1. Discretized sepal length attribute

Bins Domain Counts

[4.3,5.2] Very Short (a1) n1 = 45

(5.2,6.1] Short (a2) n2 = 50

(6.1,7.0] Long (a3) n3 = 43

(7.0,7.9] Very Long (a4) n4 = 12

Example 3.3. Let us consider the sepal length attribute (X1) for the Iris dataset

shown in Table 1.2. We divide the sepal length into four equal-width intervals, and

give each interval a name as shown in Table 3.1. We consider X1 as a categorical

attribute with domain

{a1 = VeryShort,a2 = Short,a3 = Long,a4 = VeryLong}

We model the categorical attribute X1 as a multivariate Bernoulli variable X,

defined as

X(v)=





e1 = (1,0,0,0) if v = a1

e2 = (0,1,0,0) if v = a2

e3 = (0,0,1,0) if v = a3

e4 = (0,0,0,1) if v = a4

For example, the symbolic point x1 = Short = a2 is represented as the vector

(0,1,0,0)T = e2.

Mean

The mean or expected value of X can be obtained as

µ=E[X]=
m∑

i=1

eif (ei)=
m∑

i=1

eipi =




1

0
...

0


p1+ ·· ·+




0

0
...

1


pm =




p1

p2

...

pm


= p (3.5)

Sample Mean

Assume that each symbolic point xi ∈ D is mapped to the variable xi = X(xi). The

mapped dataset x1,x2, . . . ,xn is then assumed to be a random sample IID with X. We

can compute the sample mean by placing a probability mass of 1
n

at each point

µ̂= 1

n

n∑

i=1

xi =
m∑

i=1

ni

n
ei =




n1/n

n2/n
...

nm/n


=




p̂1

p̂2

...

p̂m


= p̂ (3.6)

where ni is the number of occurrences of the vector value ei in the sample, which

is equivalent to the number of occurrences of the symbol ai . Furthermore, we have
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Figure 3.1. Probability mass function: sepal length.

∑m

i=1 ni = n, which follows from the fact that X can take on only m distinct values ei ,

and the counts for each value must add up to the sample size n.

Example 3.4 (Sample Mean). Consider the observed counts ni for each of the values

ai (ei) of the discretized sepal length attribute, shown in Table 3.1. Because the

total sample size is n= 150, from these we can obtain the estimates p̂i as follows:

p̂1 = 45/150= 0.3

p̂2 = 50/150= 0.333

p̂3 = 43/150= 0.287

p̂4 = 12/150= 0.08

The PMF for X is plotted in Figure 3.1, and the sample mean for X is given as

µ̂= p̂=




0.3

0.333

0.287

0.08




Covariance Matrix

Recall that an m-dimensional multivariate Bernoulli variable is simply a vector of m

Bernoulli variables. For instance, X = (A1,A2, . . . ,Am)T, where Ai is the Bernoulli

variable corresponding to symbol ai . The variance–covariance information between

the constituent Bernoulli variables yields a covariance matrix for X.
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Let us first consider the variance along each Bernoulli variable Ai . By Eq. (3.1),

we immediately have

σ 2
i = var(Ai)= pi(1−pi)

Next consider the covariance between Ai and Aj . Utilizing the identity in

Eq. (2.21), we have

σij =E[AiAj ]−E[Ai] ·E[Aj ]= 0−pipj =−pipj

which follows from the fact that E[AiAj ]= 0, as Ai and Aj cannot both be 1 at the same

time, and thus their product AiAj = 0. This same fact leads to the negative relationship

between Ai and Aj . What is interesting is that the degree of negative association is

proportional to the product of the mean values for Ai and Aj .

From the preceding expressions for variance and covariance, the m×m covariance

matrix for X is given as

6 =




σ 2
1 σ12 . . . σ1m

σ12 σ 2
2 . . . σ2m

...
...

. . .
...

σ1m σ2m . . . σ 2
m


=




p1(1−p1) −p1p2 · · · −p1pm

−p1p2 p2(1−p2) · · · −p2pm

...
...

. . .
...

−p1pm −p2pm · · · pm(1−pm)




Notice how each row in 6 sums to zero. For example, for row i, we have

−pip1−pip2− ·· ·+pi(1−pi)− ·· ·−pipm = pi −pi

m∑

j=1

pj = pi −pi = 0 (3.7)

Because 6 is symmetric, it follows that each column also sums to zero.

Define P as the m×m diagonal matrix:

P= diag(p)= diag(p1,p2, . . . ,pm)=




p1 0 · · · 0

0 p2 · · · 0
...

...
. . .

...

0 0 · · · pm




We can compactly write the covariance matrix of X as

6 = P−p ·pT (3.8)

Sample Covariance Matrix

The sample covariance matrix can be obtained from Eq. (3.8) in a straightforward

manner:

6̂ = P̂− p̂ · p̂T (3.9)

where P̂= diag(p̂), and p̂= µ̂= (p̂1, p̂2, . . . , p̂m)T denotes the empirical probability mass

function for X.
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Example 3.5. Returning to the discretized sepal length attribute in Example 3.4,

we have µ̂= p̂= (0.3,0.333,0.287,0.08)T. The sample covariance matrix is given as

6̂ = P̂− p̂ · p̂T

=




0.3 0 0 0

0 0.333 0 0

0 0 0.287 0

0 0 0 0.08


−




0.3

0.333

0.287

0.08



(
0.3 0.333 0.287 0.08

)

=




0.3 0 0 0

0 0.333 0 0

0 0 0.287 0

0 0 0 0.08


−




0.09 0.1 0.086 0.024

0.1 0.111 0.096 0.027

0.086 0.096 0.082 0.023

0.024 0.027 0.023 0.006




=




0.21 −0.1 −0.086 −0.024

−0.1 0.222 −0.096 −0.027

−0.086 −0.096 0.204 −0.023

−0.024 −0.027 −0.023 0.074




One can verify that each row (and column) in 6̂ sums to zero.

It is worth emphasizing that whereas the modeling of categorical attribute X as a

multivariate Bernoulli variable, X= (A1,A2, . . . ,Am)T, makes the structure of the mean

and covariance matrix explicit, the same results would be obtained if we simply treat

the mapped values X(xi) as a new n×m binary data matrix, and apply the standard

definitions of the mean and covariance matrix from multivariate numeric attribute

analysis (see Section 2.3). In essence, the mapping from symbols ai to binary vectors ei

is the key idea in categorical attribute analysis.

Example 3.6. Consider the sample D of size n= 5 for the sepal length attribute X1

in the Iris dataset, shown in Table 3.2a. As in Example 3.1, we assume that X1 has

only two categorical values {Long,Short}. We model X1 as the multivariate Bernoulli

variable X1 defined as

X1(v)=





e1 = (1,0)T if v = Long(a1)

e2 = (0,1)T if v = Short(a2)

The sample mean [Eq. (3.6)] is

µ̂= p̂= (2/5,3/5)T = (0.4,0.6)T

and the sample covariance matrix [Eq. (3.9)] is

6̂ = P̂− p̂p̂T =
(

0.4 0

0 0.6

)
−
(

0.4

0.6

)(
0.4 0.6

)

=
(

0.4 0

0 0.6

)
−
(

0.16 0.24

0.24 0.36

)
=
(

0.24 −0.24

−0.24 0.24

)
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Table 3.2. (a) Categorical dataset. (b) Mapped binary dataset. (c) Centered dataset.

(a)

X

x1 Short

x2 Short

x3 Long

x4 Short

x5 Long

(b)

A1 A2

x1 0 1

x2 0 1

x3 1 0

x4 0 1

x5 1 0

(c)

Z1 Z2

z1 −0.4 0.4

z2 −0.4 0.4

z3 0.6 −0.6

z4 −0.4 0.4

z5 0.6 −0.6

To show that the same result would be obtained via standard numeric analysis,

we map the categorical attribute X to the two Bernoulli attributes A1 and A2

corresponding to symbols Long and Short, respectively. The mapped dataset is

shown in Table 3.2b. The sample mean is simply

µ̂= 1

5

5∑

i=1

xi =
1

5
(2,3)T = (0.4,0.6)T

Next, we center the dataset by subtracting the mean value from each attribute. After

centering, the mapped dataset is as shown in Table 3.2c, with attribute Zi as the

centered attribute Ai . We can compute the covariance matrix using the inner-product

form [Eq. (2.30)] on the centered column vectors. We have

σ 2
1 =

1

5
ZT

1 Z1 = 1.2/5= 0.24

σ 2
2 =

1

5
ZT

2 Z2 = 1.2/5= 0.24

σ12 =
1

5
ZT

1 Z2 =−1.2/5=−0.24

Thus, the sample covariance matrix is given as

6̂ =
(

0.24 −0.24

−0.24 0.24

)

which matches the result obtained by using the multivariate Bernoulli modeling

approach.

Multinomial Distribution: Number of Occurrences

Given a multivariate Bernoulli variable X and a random sample {x1,x2, . . . ,xn} drawn

from X. Let Ni be the random variable corresponding to the number of occurrences

of symbol ai in the sample, and let N = (N1,N2, . . . ,Nm)T denote the vector random

variable corresponding to the joint distribution of the number of occurrences over all

the symbols. Then N has a multinomial distribution, given as

f
(
N= (n1,n2, . . . ,nm) | p

)
=
(

n

n1n2 . . .nm

) m∏

i=1

p
ni
i
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We can see that this is a direct generalization of the binomial distribution in Eq. (3.3).

The term

(
n

n1n2 . . .nm

)
= n!

n1!n2! . . .nm!

denotes the number of ways of choosing ni occurrences of each symbol ai from a

sample of size n, with
∑m

i=1 ni = n.

The mean and covariance matrix of N are given as n times the mean and covariance

matrix of X. That is, the mean of N is given as

µN =E[N]= nE[X]= n ·µ= n ·p=




np1

...

npm




and its covariance matrix is given as

6N = n · (P−ppT)=




np1(1−p1) −np1p2 · · · −np1pm

−np1p2 np2(1−p2) · · · −np2pm

...
...

. . .
...

−np1pm −np2pm · · · npm(1−pm)




Likewise the sample mean and covariance matrix for N are given as

µ̂N = np̂ 6̂N = n
(
P̂− p̂p̂T

)

3.2 BIVARIATE ANALYSIS

Assume that the data comprises two categorical attributes, X1 and X2, with

dom(X1)= {a11,a12, . . . ,a1m1
}

dom(X2)= {a21,a22, . . . ,a2m2
}

We are given n categorical points of the form xi = (xi1,xi2)
T with xi1 ∈ dom(X1) and

xi2 ∈ dom(X2). The dataset is thus an n× 2 symbolic data matrix:

D=




X1 X2

x11 x12

x21 x22

...
...

xn1 xn2




We can model X1 and X2 as multivariate Bernoulli variables X1 and X2 with

dimensions m1 and m2, respectively. The probability mass functions for X1 and X2 are
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given according to Eq. (3.4):

P(X1 = e1i)= f1(e1i)= p1
i =

m1∏

k=1

(p1
i )

e1
ik

P(X2 = e2j )= f2(e2j )= p2
j =

m2∏

k=1

(p2
j )

e2
jk

where e1i is the ith standard basis vector in R
m1 (for attribute X1) whose kth component

is e1
ik, and e2j is the j th standard basis vector in R

m2 (for attribute X2) whose kth

component is e2
jk. Further, the parameter p1

i denotes the probability of observing

symbol a1i , and p2
j denotes the probability of observing symbol a2j . Together they must

satisfy the conditions:
∑m1

i=1 p1
i = 1 and

∑m2
j=1 p2

j = 1.

The joint distribution of X1 and X2 is modeled as the d ′ = m1 +m2 dimensional

vector variable X=
(

X1

X2

)
, specified by the mapping

X
(
(v1,v2)

T
)
=
(

X1(v1)

X2(v2)

)
=
(

e1i

e2j

)

provided that v1 = a1i and v2 = a2j . The range of X thus consists of m1 ×m2 distinct

pairs of vector values
{
(e1i,e2j )

T
}
, with 1≤ i ≤m1 and 1≤ j ≤m2. The joint PMF of X

is given as

P
(
X= (e1i,e2j )

T
)
= f (e1i,e2j )= pij =

m1∏

r=1

m2∏

s=1

p
e1
ir
·e2

js

ij

where pij the probability of observing the symbol pair (a1i,a2j ). These probability

parameters must satisfy the condition
∑m1

i=1

∑m2
j=1 pij = 1. The joint PMF for X can be

expressed as the m1×m2 matrix

P12 =




p11 p12 . . . p1m2

p21 p22 . . . p2m2

...
...

. . .
...

pm11 pm12 . . . pm1m2


 (3.10)

Example 3.7. Consider the discretized sepal length attribute (X1) in Table 3.1. We

also discretize the sepal width attribute (X2) into three values as shown in Table 3.3.

We thus have

dom(X1)= {a11 = VeryShort,a12 = Short,a13 = Long,a14 = VeryLong}
dom(X2)= {a21 = Short,a22 = Medium,a23 = Long}

The symbolic point x= (Short,Long)= (a12,a23), is mapped to the vector

X(x)=
(

e12

e23

)
= (0,1,0,0 | 0,0,1)T ∈R7
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Table 3.3. Discretized sepal width attribute

Bins Domain Counts

[2.0,2.8] Short (a1) 47

(2.8,3.6] Medium (a2) 88

(3.6,4.4] Long (a3) 15

where we use | to demarcate the two subvectors e12 = (0,1,0,0)T ∈ R
4 and e23 =

(0,0,1)T ∈R3, corresponding to symbolic attributes sepal length and sepal width,

respectively. Note that e12 is the second standard basis vector in R
4 for X1, and e23 is

the third standard basis vector in R
3 for X2.

Mean

The bivariate mean can easily be generalized from Eq. (3.5), as follows:

µ=E[X]=E

[(
X1

X2

)]
=
(

E[X1]

E[X2]

)
=
(

µ1

µ2

)
=
(

p1

p2

)

where µ1 = p1 = (p1
1, . . . ,p

1
m1

)T and µ2 = p2 = (p2
1, . . . ,p

2
m2

)T are the mean vectors for

X1 and X2. The vectors p1 and p2 also represent the probability mass functions for X1

and X2, respectively.

Sample Mean

The sample mean can also be generalized from Eq. (3.6), by placing a probability mass

of 1
n

at each point:

µ̂= 1

n

n∑

i=1

xi =
1

n



∑m1

i=1 n1
i e1i

∑m2
j=1 n2

j e2j


= 1

n




n1
1
...

n1
m1

n2
1
...

n2
m2




=




p̂1
1
...

p̂1
m1

p̂2
1
...

p̂2
m2




=
(

p̂1

p̂2

)
=
(

µ̂1

µ̂2

)

where ni
j is the observed frequency of symbol aij in the sample of size n, and µ̂i = p̂i =

(pi
1,p

i
2, . . . ,p

i
mi

)T is the sample mean vector for Xi , which is also the empirical PMF for

attribute Xi .

Covariance Matrix

The covariance matrix for X is the d ′× d ′ = (m1+m2)× (m1+m2) matrix given as

6 =
(

611 612

6T
12 622

)
(3.11)

where 611 is the m1×m1 covariance matrix for X1, and 622 is the m2×m2 covariance

matrix for X2, which can be computed using Eq. (3.8). That is,

611 = P1−p1p
T
1

622 = P2−p2p
T
2
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where P1 = diag(p1) and P2 = diag(p2). Further, 612 is the m1×m2 covariance matrix

between variables X1 and X2, given as

612 =E[(X1−µ1)(X2−µ2)
T]

=E[X1X
T
2 ]−E[X1]E[X2]

T

= P12−µ1µ
T
2

= P12−p1p
T
2

=




p11−p1
1p

2
1 p12−p1

1p
2
2 · · · p1m2

−p1
1p

2
m2

p21−p1
2p

2
1 p22−p1

2p
2
2 · · · p2m2

−p1
2p

2
m2

...
...

. . .
...

pm11−p1
m1

p2
1 pm12−p1

m1
p2

2 · · · pm1m2
−p1

m1
p2

m2




where P12 represents the joint PMF for X given in Eq. (3.10).

Incidentally, each row and each column of 612 sums to zero. For example, consider

row i and column j :

m2∑

k=1

(pik −p1
i p

2
k)=

(
m2∑

k=1

pik

)
−p1

i = p1
i −p1

i = 0

m1∑

k=1

(pkj −p1
kp

2
j )=

(
m1∑

k=1

pkj

)
−p2

j = p2
j −p2

j = 0

which follows from the fact that summing the joint mass function over all values of X2,

yields the marginal distribution of X1, and summing it over all values of X1 yields the

marginal distribution for X2. Note that p2
j is the probability of observing symbol a2j ; it

should not be confused with the square of pj . Combined with the fact that 611 and 622

also have row and column sums equal to zero via Eq. (3.7), the full covariance matrix

6 has rows and columns that sum up to zero.

Sample Covariance Matrix

The sample covariance matrix is given as

6̂ =
(

6̂11 6̂12

6̂T
12 6̂22

)
(3.12)

where

6̂11 = P̂1− p̂1p̂
T
1

6̂22 = P̂2− p̂2p̂
T
2

6̂12 = P̂12− p̂1p̂
T
2

Here P̂1 = diag(p̂1) and P̂2 = diag(p̂2), and p̂1 and p̂2 specify the empirical probability

mass functions for X1, and X2, respectively. Further, P̂12 specifies the empirical joint

PMF for X1 and X2, given as

P̂12(i,j)= f̂ (e1i,e2j )=
1

n

n∑

k=1

Iij (xk)=
nij

n
= p̂ij (3.13)
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where Iij is the indicator variable

Iij (xk)=
{

1 if xk1 = e1i and xk2 = e2j

0 otherwise

Taking the sum of Iij (xk) over all the n points in the sample yields the number

of occurrences, nij , of the symbol pair (a1i,a2j ) in the sample. One issue with the

cross-attribute covariance matrix 6̂12 is the need to estimate a quadratic number of

parameters. That is, we need to obtain reliable counts nij to estimate the parameters

pij , for a total of O(m1 ×m2) parameters that have to be estimated, which can be a

problem if the categorical attributes have many symbols. On the other hand, estimating

6̂11 and 6̂22 requires that we estimate m1 and m2 parameters, corresponding to p1
i

and p2
j , respectively. In total, computing 6 requires the estimation of m1m2+m1+m2

parameters.

Example 3.8. We continue with the bivariate categorical attributes X1 and X2 in

Example 3.7. From Example 3.4, and from the occurrence counts for each of the

values of sepal width in Table 3.3, we have

µ̂1 = p̂1 =




0.3

0.333

0.287

0.08


 µ̂2 = p̂2 =

1

150




47

88

15


=




0.313

0.587

0.1




Thus, the mean for X=
(

X1

X2

)
is given as

µ̂=
(

µ̂1

µ̂2

)
=
(

p̂1

p̂2

)
= (0.3,0.333,0.287,0.08 | 0.313,0.587,0.1)T

From Example 3.5 we have

6̂11 =




0.21 −0.1 −0.086 −0.024

−0.1 0.222 −0.096 −0.027

−0.086 −0.096 0.204 −0.023

−0.024 −0.027 −0.023 0.074




In a similar manner we can obtain

6̂22 =




0.215 −0.184 −0.031

−0.184 0.242 −0.059

−0.031 −0.059 0.09




Next, we use the observed counts in Table 3.4 to obtain the empirical joint PMF

for X1 and X2 using Eq. (3.13), as plotted in Figure 3.2. From these probabilities we

get

E[X1X
T
2 ]= P̂12 =

1

150




7 33 5

24 18 8

13 30 0

3 7 2


=




0.047 0.22 0.033

0.16 0.12 0.053

0.087 0.2 0

0.02 0.047 0.013



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Table 3.4. Observed Counts (nij): sepal length and sepal width

X2

Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 7 33 5

Short (e22) 24 18 8

Long (e13) 13 30 0

Very Long (e14) 3 7 2

X1

X2

f (x)

b

b

b

b

b

b

b

b

b

b
b

b

0.047

0.22

0.033

0.16

0.12

0.053

0.087

0.2

0

0.02
0.047

0.013

e11

e12

e13

e14

e21

e22

e23

0.1

0.2

Figure 3.2. Empirical joint probability mass function: sepal length and sepal width.

Further, we have

E[X1]E[X2]
T = µ̂1µ̂

T
2 = p̂1p̂

T
2

=




0.3

0.333

0.287

0.08



(
0.313 0.587 0.1

)

=




0.094 0.176 0.03

0.104 0.196 0.033

0.09 0.168 0.029

0.025 0.047 0.008



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We can now compute the across-attribute sample covariance matrix 6̂12 for X1

and X2 using Eq. (3.11), as follows:

6̂12 = P̂12− p̂1p̂
T
2

=




−0.047 0.044 0.003

0.056 −0.076 0.02

−0.003 0.032 −0.029

−0.005 0 0.005




One can observe that each row and column in 6̂12 sums to zero. Putting it all together,

from 6̂11, 6̂22 and 6̂12 we obtain the sample covariance matrix as follows

6̂ =
(

6̂11 6̂12

6̂T
12 6̂22

)

=




0.21 −0.1 −0.086 −0.024 −0.047 0.044 0.003

−0.1 0.222 −0.096 −0.027 0.056 −0.076 0.02

−0.086 −0.096 0.204 −0.023 −0.003 0.032 −0.029

−0.024 −0.027 −0.023 0.074 −0.005 0 0.005

−0.047 0.056 −0.003 −0.005 0.215 −0.184 −0.031

0.044 −0.076 0.032 0 −0.184 0.242 −0.059

0.003 0.02 −0.029 0.005 −0.031 −0.059 0.09




In 6̂, each row and column also sums to zero.

3.2.1 Attribute Dependence: Contingency Analysis

Testing for the independence of the two categorical random variables X1 and X2 can

be done via contingency table analysis. The main idea is to set up a hypothesis testing

framework, where the null hypothesis H0 is that X1 and X2 are independent, and the

alternative hypothesis H1 is that they are dependent. We then compute the value of the

chi-square statistic χ2 under the null hypothesis. Depending on the p-value, we either

accept or reject the null hypothesis; in the latter case the attributes are considered to

be dependent.

Contingency Table

A contingency table for X1 and X2 is the m1×m2 matrix of observed counts nij for all

pairs of values (e1i,e2j ) in the given sample of size n, defined as

N12 = n · P̂12 =




n11 n12 · · · n1m2

n21 n22 · · · n2m2

...
...

. . .
...

nm11 nm12 · · · nm1m2



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Table 3.5. Contingency table: sepal length vs. sepal width

S
e
p
a
l

l
e
n
g
t
h

(X
1
)

Sepal width (X2)

Short Medium Long

a21 a22 a23 Row Counts

Very Short (a11) 7 33 5 n1
1 = 45

Short (a12) 24 18 8 n1
2 = 50

Long (a13) 13 30 0 n1
3 = 43

Very Long (a14) 3 7 2 n1
4 = 12

Column Counts n2
1 = 47 n2

2 = 88 n2
3 = 15 n= 150

where P̂12 is the empirical joint PMF for X1 and X2, computed via Eq. (3.13). The

contingency table is then augmented with row and column marginal counts, as follows:

N1 = n · p̂1 =




n1
1
...

n1
m1


 N2 = n · p̂2 =




n2
1
...

n2
m2




Note that the marginal row and column entries and the sample size satisfy the following

constraints:

n1
i =

m2∑

j=1

nij n2
j =

m1∑

i=1

nij n=
m1∑

i=1

n1
i =

m2∑

j=1

n2
j =

m1∑

i=1

m2∑

j=1

nij

It is worth noting that both N1 and N2 have a multinomial distribution with

parameters p1 = (p1
1, . . . ,p

1
m1

) and p2 = (p2
1, . . . ,p

2
m2

), respectively. Further, N12 also has

a multinomial distribution with parameters P12 = {pij }, for 1≤ i ≤m1 and 1≤ j ≤m2.

Example 3.9 (Contingency Table). Table 3.4 shows the observed counts for the

discretized sepal length (X1) and sepal width (X2) attributes. Augmenting the

table with the row and column marginal counts and the sample size yields the final

contingency table shown in Table 3.5.

χ 2 Statistic and Hypothesis Testing

Under the null hypothesis X1 and X2 are assumed to be independent, which means that

their joint probability mass function is given as

p̂ij = p̂1
i · p̂2

j

Under this independence assumption, the expected frequency for each pair of values

is given as

eij = n · p̂ij = n · p̂1
i · p̂2

j = n · n
1
i

n
·
n2

j

n
=

n1
i n

2
j

n
(3.14)

However, from the sample we already have the observed frequency of each pair

of values, nij . We would like to determine whether there is a significant difference

in the observed and expected frequencies for each pair of values. If there is no
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significant difference, then the independence assumption is valid and we accept the

null hypothesis that the attributes are independent. On the other hand, if there is a

significant difference, then the null hypothesis should be rejected and we conclude

that the attributes are dependent.

The χ2 statistic quantifies the difference between observed and expected counts

for each pair of values; it is defined as follows:

χ2 =
m1∑

i=1

m2∑

j=1

(nij − eij )
2

eij

(3.15)

At this point, we need to determine the probability of obtaining the computed

χ2 value. In general, this can be rather difficult if we do not know the sampling

distribution of a given statistic. Fortunately, for the χ2 statistic it is known that

its sampling distribution follows the chi-squared density function with q degrees of

freedom:

f (x|q)= 1

2q/2Ŵ(q/2)
x

q

2
−1

e
− x

2 (3.16)

where the gamma function Ŵ is defined as

Ŵ(k > 0)=
∞∫

0

xk−1e−xdx (3.17)

The degrees of freedom, q , represent the number of independent parameters. In

the contingency table there are m1×m2 observed counts nij . However, note that each

row i and each column j must sum to n1
i and n2

j , respectively. Further, the sum of

the row and column marginals must also add to n; thus we have to remove (m1+m2)

parameters from the number of independent parameters. However, doing this removes

one of the parameters, say nm1m2
, twice, so we have to add back one to the count. The

total degrees of freedom is therefore

q = |dom(X1)|× |dom(X2)|− (|dom(X1)|+ |dom(X2)|)+ 1

=m1m2−m1−m2+ 1

= (m1− 1)(m2− 1)

p-value

The p-value of a statistic θ is defined as the probability of obtaining a value at least as

extreme as the observed value, say z, under the null hypothesis, defined as

p-value(z)= P(θ ≥ z)= 1−F(θ)

where F(θ) is the cumulative probability distribution for the statistic.

The p-value gives a measure of how surprising is the observed value of the statistic.

If the observed value lies in a low-probability region, then the value is more surprising.

In general, the lower the p-value, the more surprising the observed value, and the
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Table 3.6. Expected counts

X2

Short (a21) Medium (a22) Short (a23)

X1

Very Short (a11) 14.1 26.4 4.5

Short (a12) 15.67 29.33 5.0

Long (a13) 13.47 25.23 4.3

Very Long (a14) 3.76 7.04 1.2

more the grounds for rejecting the null hypothesis. The null hypothesis is rejected

if the p-value is below some significance level, α. For example, if α = 0.01, then we

reject the null hypothesis if p-value(z) ≤ α. The significance level α corresponds to

the probability of rejecting the null hypothesis when it is true. For a given significance

level α, the value of the test statistic, say z, with a p-value of p-value(z) = α, is called

a critical value. An alternative test for rejection of the null hypothesis is to check

if χ2 > z, as in that case the p-value of the observed χ2 value is bounded by α,

that is, p-value(χ2) ≤ p-value(z) = α. The value 1 − α is also called the confidence

level.

Example 3.10. Consider the contingency table for sepal length and sepal width

in Table 3.5. We compute the expected counts using Eq. (3.14); these counts are

shown in Table 3.6. For example, we have

e11 =
n1

1n
2
1

n
= 45 · 47

150
= 2115

150
= 14.1

Next we use Eq. (3.15) to compute the value of the χ2 statistic, which is given as

χ2 = 21.8.

Further, the number of degrees of freedom is given as

q = (m1− 1) · (m2− 1)= 3 · 2= 6

The plot of the chi-squared density function with 6 degrees of freedom is shown in

Figure 3.3. From the cumulative chi-squared distribution, we obtain

p-value(21.8)= 1−F(21.8|6)= 1− 0.9987= 0.0013

At a significance level of α= 0.01, we would certainly be justified in rejecting the null

hypothesis because the large value of the χ2 statistic is indeed surprising. Further, at

the 0.01 significance level, the critical value of the statistic is

z= F−1(1− 0.01|6)= F−1(0.99|6)= 16.81

This critical value is also shown in Figure 3.3, and we can clearly see that the observed

value of 21.8 is in the rejection region, as 21.8 > z= 16.81. In effect, we reject the null

hypothesis that sepal length and sepal width are independent, and accept the

alternative hypothesis that they are dependent.
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Figure 3.3. Chi-squared distribution (q= 6).

3.3 MULTIVARIATE ANALYSIS

Assume that the dataset comprises d categorical attributes Xj (1 ≤ j ≤ d) with

dom(Xj) = {aj1,aj2, . . . ,ajmj
}. We are given n categorical points of the form xi =

(xi1,xi2, . . . ,xid)
T with xij ∈ dom(Xj). The dataset is thus an n× d symbolic matrix

D=




X1 X2 · · · Xd

x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd




Each attribute Xi is modeled as an mi-dimensional multivariate Bernoulli variable Xi ,

and their joint distribution is modeled as a d ′ =
∑d

j=1 mj dimensional vector random

variable

X=




X1

...

Xd




Each categorical data point v = (v1,v2, . . . ,vd)
T is therefore represented as a

d ′-dimensional binary vector

X(v)=




X1(v1)
...

Xd(vd)


=




e1k1

...

edkd



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provided vi = aiki
, the kith symbol of Xi . Here eiki

is the kith standard basis vector

in R
mi .

Mean

Generalizing from the bivariate case, the mean and sample mean for X are given as

µ=E[X]=




µ1

...

µd


=




p1

...

pd


 µ̂=




µ̂1

...

µ̂d


=




p̂1

...

p̂d




where pi = (pi
1, . . . ,p

i
mi

)T is the PMF for Xi , and p̂i = (p̂i
1, . . . , p̂

i
mi

)T is the empirical

PMF for Xi .

Covariance Matrix

The covariance matrix for X, and its estimate from the sample, are given as the d ′× d ′

matrices:

6 =




611 612 · · · 61d

6T
12 622 · · · 62d

· · · · · · . . . · · ·
6T

1d 6T
2d · · · 6dd


 6̂ =




6̂11 6̂12 · · · 6̂1d

6̂T
12 6̂22 · · · 6̂2d

· · · · · · . . . · · ·
6̂T

1d 6̂T
2d · · · 6̂dd




where d ′=
∑d

i=1 mi , and 6ij (and 6̂ij) is the mi×mj covariance matrix (and its estimate)

for attributes Xi and Xj :

6ij = Pij −pip
T
j 6̂ij = P̂ij − p̂i p̂

T
j (3.18)

Here Pij is the joint PMF and P̂ij is the empirical joint PMF for Xi and Xj , which can

be computed using Eq. (3.13).

Example 3.11 (Multivariate Analysis). Let us consider the 3-dimensional subset of

the Iris dataset, with the discretized attributes sepal length (X1) and sepal

width (X2), and the categorical attribute class (X3). The domains for X1

and X2 are given in Table 3.1 and Table 3.3, respectively, and dom(X3) =
{iris-versicolor,iris-setosa,iris-virginica}. Each value of X3 occurs 50

times.

The categorical point x = (Short,Medium,iris-versicolor) is modeled as the

vector

X(x)=




e12

e22

e31


= (0,1,0,0 | 0,1,0 | 1,0,0)T ∈R10

From Example 3.8 and the fact that each value in dom(X3) occurs 50 times in a

sample of n= 150, the sample mean is given as

µ̂=




µ̂1

µ̂2

µ̂3


=




p̂1

p̂2

p̂3


= (0.3,0.333,0.287,0.08 | 0.313,0.587,0.1 | 0.33,0.33,0.33)T



84 Categorical Attributes

Using p̂3 = (0.33,0.33,0.33)T we can compute the sample covariance matrix for

X3 using Eq. (3.9):

6̂33 =




0.222 −0.111 −0.111

−0.111 0.222 −0.111

−0.111 −0.111 0.222




Using Eq. (3.18) we obtain

6̂13 =




−0.067 0.16 −0.093

0.082 −0.038 −0.044

0.011 −0.096 0.084

−0.027 −0.027 0.053




6̂23 =




0.076 −0.098 0.022

−0.042 0.044 −0.002

−0.033 0.053 −0.02




Combined with 6̂11, 6̂22 and 6̂12 from Example 3.8, the final sample covariance

matrix is the 10× 10 symmetric matrix given as

6̂ =




6̂11 6̂12 6̂13

6̂T
12 6̂22 6̂23

6̂T
13 6̂T

23 6̂33




3.3.1 Multiway Contingency Analysis

For multiway dependence analysis, we have to first determine the empirical joint

probability mass function for X:

f̂ (e1i1
,e2i2

, . . . ,edid
)= 1

n

n∑

k=1

Ii1i2...id
(xk)=

ni1i2...id

n
= p̂i1i2...id

where Ii1i2...id
is the indicator variable

Ii1i2...id
(xk)=

{
1 if xk1 = e1i1

,xk2 = e2i2
, . . . ,xkd = edid

0 otherwise

The sum of Ii1i2...id
over all the n points in the sample yields the number of occurrences,

ni1i2...id
, of the symbolic vector (a1i1

,a2i2
, . . . ,adid

). Dividing the occurrences by the

sample size results in the probability of observing those symbols. Using the notation

i= (i1, i2, . . . , id) to denote the index tuple, we can write the joint empirical PMF as the

d-dimensional matrix P̂ of size m1×m2×·· ·×md =
∏d

i=1 mi , given as

P̂(i)=
{
p̂i

}
for all index tuples i, with 1≤ i1 ≤m1, . . . ,1≤ id ≤md

where p̂i = p̂i1i2...id
. The d-dimensional contingency table is then given as

N= n× P̂=
{
ni

}
for all index tuples i, with 1≤ i1 ≤m1, . . . ,1≤ id ≤md
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where ni= ni1i2...id
. The contingency table is augmented with the marginal count vectors

Ni for all d attributes Xi :

Ni = np̂i =




ni
1
...

ni
mi




where p̂i is the empirical PMF for Xi .

χ 2-Test

We can test for a d-way dependence between the d categorical attributes using the null

hypothesis H0 that they are d-way independent. The alternative hypothesis H1 is that

they are not d-way independent, that is, they are dependent in some way. Note that

d-dimensional contingency analysis indicates whether all d attributes taken together

are independent or not. In general we may have to conduct k-way contingency analysis

to test if any subset of k ≤ d attributes are independent or not.

Under the null hypothesis, the expected number of occurrences of the symbol tuple

(a1i1
,a2i2

, . . . ,adid
) is given as

ei = n · p̂i = n ·
d∏

j=1

p̂
j

ij
=

n1
i1
n2

i2
. . .nd

id

nd−1
(3.19)

The chi-squared statistic measures the difference between the observed counts ni

and the expected counts ei:

χ2 =
∑

i

(ni− ei)
2

ei

=
m1∑

i1=1

m2∑

i2=1

· · ·
md∑

id=1

(ni1,i2,...,id
− ei1,i2,...,id

)2

ei1,i2,...,id

(3.20)

The χ2 statistic follows a chi-squared density function with q degrees of freedom.

For the d-way contingency table we can compute q by noting that there are ostensibly∏d

i=1 |dom(Xi)| independent parameters (the counts). However, we have to remove∑d

i=1 |dom(Xi)| degrees of freedom because the marginal count vector along each

dimension Xi must equal Ni . However, doing so removes one of the parameters d

times, so we need to add back d − 1 to the free parameters count. The total number of

degrees of freedom is given as

q =
d∏

i=1

|dom(Xi)|−
d∑

i=1

|dom(Xi)|+ (d− 1)

=
( d∏

i=1

mi

)
−
( d∑

i=1

mi

)
+ d − 1 (3.21)

To reject the null hypothesis, we have to check whether the p-value of the observed

χ2 value is smaller than the desired significance level α (say α = 0.01) using the

chi-squared density with q degrees of freedom [Eq. (3.16)].
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Figure 3.4. 3-Way contingency table (with marginal counts along each dimension).

Table 3.7. 3-Way expected counts

X3(a31/a32/a33)

X2

a21 a22 a23

X1

a11 1.25 2.35 0.40

a12 4.49 8.41 1.43

a13 5.22 9.78 1.67

a14 4.70 8.80 1.50

Example 3.12. Consider the 3-way contingency table in Figure 3.4. It shows the

observed counts for each tuple of symbols (a1i,a2j ,a3k) for the three attributes sepal

length (X1), sepal width (X2), and class (X3). From the marginal counts for X1

and X2 in Table 3.5, and the fact that all three values of X3 occur 50 times, we can

compute the expected counts [Eq. (3.19)] for each cell. For instance,

e(4,1,1) =
n1

4 ·n2
1 ·n3

1

1502
= 45 · 47 · 50

150 · 150
= 4.7

The expected counts are the same for all three values of X3 and are given in Table 3.7.

The value of the χ2 statistic [Eq. (3.20)] is given as

χ2 = 231.06
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Using Eq. (3.21), the number of degrees of freedom is given as

q = 4 · 3 · 3− (4+ 3+ 3)+ 2= 36− 10+ 2= 28

In Figure 3.4 the counts in bold are the dependent parameters. All other counts are

independent. In fact, any eight distinct cells could have been chosen as the dependent

parameters.

For a significance level of α= 0.01, the critical value of the chi-square distribution

is z = 48.28. The observed value of χ2 = 231.06 is much greater than z, and it is

thus extremely unlikely to happen under the null hypothesis. We conclude that the

three attributes are not 3-way independent, but rather there is some dependence

between them. However, this example also highlights one of the pitfalls of multiway

contingency analysis. We can observe in Figure 3.4 that many of the observed counts

are zero. This is due to the fact that the sample size is small, and we cannot reliably

estimate all the multiway counts. Consequently, the dependence test may not be

reliable as well.

3.4 DISTANCE AND ANGLE

With the modeling of categorical attributes as multivariate Bernoulli variables, it is

possible to compute the distance or the angle between any two points xi and xj :

xi =




e1i1

...

ed id


 xj =




e1j1

...

ed jd




The different measures of distance and similarity rely on the number of matching

and mismatching values (or symbols) across the d attributes Xk. For instance, we can

compute the number of matching values s via the dot product:

s = xT
i xj =

d∑

k=1

(ekik
)Tekjk

On the other hand, the number of mismatches is simply d − s. Also useful is the norm

of each point:

‖xi‖2 = xT
i xi = d

Euclidean Distance

The Euclidean distance between xi and xj is given as

δ(xi,xj )=
∥∥xi − xj

∥∥=
√

xT
i xi − 2xixj + xT

j xj =
√

2(d− s)

Thus, the maximum Euclidean distance between any two points is
√

2d, which happens

when there are no common symbols between them, that is, when s = 0.
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Hamming Distance

The Hamming distance between xi and xj is defined as the number of mismatched

values:

δH(xi,xj )= d − s = 1

2
δ(xi,xj )

2

Hamming distance is thus equivalent to half the squared Euclidean distance.

Cosine Similarity

The cosine of the angle between xi and xj is given as

cosθ = xT
i xj∥∥xi

∥∥ ·
∥∥xj

∥∥ =
s

d

Jaccard Coefficient

The Jaccard Coefficient is a commonly used similarity measure between two categori-

cal points. It is defined as the ratio of the number of matching values to the number of

distinct values that appear in both xi and xj , across the d attributes:

J(xi,xj )=
s

2(d − s)+ s
= s

2d− s

where we utilize the observation that when the two points do not match for dimension

k, they contribute 2 to the distinct symbol count; otherwise, if they match, the number

of distinct symbols increases by 1. Over the d − s mismatches and s matches, the

number of distinct symbols is 2(d− s)+ s.

Example 3.13. Consider the 3-dimensional categorical data from Example 3.11. The

symbolic point (Short,Medium,iris-versicolor) is modeled as the vector

x1 =




e12

e22

e31


= (0,1,0,0 | 0,1,0 | 1,0,0)T ∈R10

and the symbolic point (VeryShort,Medium,iris-setosa) is modeled as

x2 =




e11

e22

e32


= (1,0,0,0 | 0,1,0 | 0,1,0)T ∈R10

The number of matching symbols is given as

s = xT
1 x2 = (e12)

Te11+ (e22)
Te22+ (e31)

Te32

=
(
0 1 0 0

)



1

0

0

0


+

(
0 1 0

)



0

1

0


+

(
1 0 0

)



0

1

0




= 0+ 1+ 0= 1
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The Euclidean and Hamming distances are given as

δ(x1,x2)=
√

2(d − s)=
√

2 · 2=
√

4= 2

δH(x1,x2)= d− s = 3− 1= 2

The cosine and Jaccard similarity are given as

cosθ = s

d
= 1

3
= 0.333

J(x1,x2)=
s

2d− s
= 1

5
= 0.2

3.5 DISCRETIZATION

Discretization, also called binning, converts numeric attributes into categorical ones.

It is usually applied for data mining methods that cannot handle numeric attributes.

It can also help in reducing the number of values for an attribute, especially if there

is noise in the numeric measurements; discretization allows one to ignore small and

irrelevant differences in the values.

Formally, given a numeric attribute X, and a random sample {xi}ni=1 of size n drawn

from X, the discretization task is to divide the value range of X into k consecutive

intervals, also called bins, by finding k−1 boundary values v1,v2, . . . ,vk−1 that yield the

k intervals:

[xmin,v1], (v1,v2], . . . , (vk−1,xmax]

where the extremes of the range of X are given as

xmin =min
i
{xi} xmax =max

i
{xi}

The resulting k intervals or bins, which span the entire range of X, are usually mapped

to symbolic values that comprise the domain for the new categorical attribute X.

Equal-Width Intervals

The simplest binning approach is to partition the range of X into k equal-width

intervals. The interval width is simply the range of X divided by k:

w= xmax− xmin

k

Thus, the ith interval boundary is given as

vi = xmin+ iw, for i = 1, . . . ,k− 1

Equal-Frequency Intervals

In equal-frequency binning we divide the range of X into intervals that contain

(approximately) equal number of points; equal frequency may not be possible due

to repeated values. The intervals can be computed from the empirical quantile or
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inverse cumulative distribution function F̂−1(q) for X [Eq. (2.2)]. Recall that F̂−1(q)=
min{x |P(X≤ x)≥ q}, for q ∈ [0,1]. In particular, we require that each interval contain

1/k of the probability mass; therefore, the interval boundaries are given as follows:

vi = F̂−1(i/k) for i = 1, . . . ,k− 1

Example 3.14. Consider the sepal length attribute in the Iris dataset. Its minimum

and maximum values are

xmin = 4.3 xmax = 7.9

We discretize it into k = 4 bins using equal-width binning. The width of an interval is

given as

w= 7.9− 4.3

4
= 3.6

4
= 0.9

and therefore the interval boundaries are

v1 = 4.3+ 0.9= 5.2 v2 = 4.3+ 2 · 0.9= 6.1 v3 = 4.3+ 3 · 0.9= 7.0

The four resulting bins for sepal length are shown in Table 3.1, which also shows

the number of points ni in each bin, which are not balanced among the bins.

For equal-frequency discretization, consider the empirical inverse cumulative

distribution function (CDF) for sepal length shown in Figure 3.5. With k = 4 bins,

the bin boundaries are the quartile values (which are shown as dashed lines):

v1 = F̂−1(0.25)= 5.1 v2 = F̂−1(0.50)= 5.8 v3 = F̂−1(0.75)= 6.4

The resulting intervals are shown in Table 3.8. We can see that although the interval

widths vary, they contain a more balanced number of points. We do not get identical

4

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0 0.25 0.50 0.75 1.00
q

F̂
−

1
(q

)

Figure 3.5. Empirical inverse CDF: sepal length.



3.7 Exercises 91

Table 3.8. Equal-frequency discretization: sepal length

Bin Width Count

[4.3,5.1] 0.8 n1 = 41

(5.1,5.8] 0.7 n2 = 39

(5.8,6.4] 0.6 n3 = 35

(6.4,7.9] 1.5 n4 = 35

counts for all the bins because many values are repeated; for instance, there are nine

points with value 5.1 and there are seven points with value 5.8.

3.6 FURTHER READING

For a comprehensive introduction to categorical data analysis see Agresti (2012).

Some aspects also appear in Wasserman (2004). For an entropy-based supervised

discretization method that takes the class attribute into account see Fayyad and Irani

(1993).

Agresti, A. (2012). Categorical Data Analysis, 3rd ed. Hoboken, NJ: John Wiley &

Sons.

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval Discretization of

Continuous-valued Attributes for Classification Learning. In Proceedings of the

13th International Joint Conference on Artificial Intelligence. Morgan-Kaufmann,

pp. 1022–1027.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference.

NewYork: Springer Science + Business Media.

3.7 EXERCISES

Q1. Show that for categorical points, the cosine similarity between any two vectors in lies

in the range cosθ ∈ [0,1], and consequently θ ∈ [0◦,90◦].

Q2. Prove that E[(X1−µ1)(X2−µ2)
T]=E[X1XT

2 ]−E[X1]E[X2]T.

Table 3.9. Contingency table for Q3

Z= f Z= g

Y= d Y= e Y= d Y= e

X= a 5 10 10 5

X= b 15 5 5 20

X= c 20 10 25 10
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Table 3.10. χ2 Critical values for different p-values for different degrees of freedom (q): For example, for

q= 5 degrees of freedom, the critical value of χ2 = 11.070 has p-value= 0.05.

q 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 — — 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

Q3. Consider the 3-way contingency table for attributes X,Y,Z shown in Table 3.9.

Compute the χ2 metric for the correlation between Y and Z. Are they dependent

or independent at the 95% confidence level? See Table 3.10 for χ2 values.

Q4. Consider the “mixed” data given in Table 3.11. Here X1 is a numeric attribute and

X2 is a categorical one. Assume that the domain of X2 is given as dom(X2) = {a,b}.
Answer the following questions.

(a) What is the mean vector for this dataset?

(b) What is the covariance matrix?

Q5. In Table 3.11, assuming that X1 is discretized into three bins, as follows:

c1 = (−2,−0.5]

c2 = (−0.5,0.5]

c3 = (0.5,2]

Answer the following questions:

(a) Construct the contingency table between the discretized X1 and X2 attributes.

Include the marginal counts.

(b) Compute the χ2 statistic between them.

(c) Determine whether they are dependent or not at the 5% significance level. Use

the χ2 critical values from Table 3.10.

Table 3.11. Dataset for Q4 and Q5

X1 X2

0.3 a

−0.3 b

0.44 a

−0.60 a

0.40 a

1.20 b

−0.12 a

−1.60 b

1.60 b

−1.32 a



CHAPTER 4 Graph Data

The traditional paradigm in data analysis typically assumes that each data instance is

independent of another. However, often data instances may be connected or linked

to other instances via various types of relationships. The instances themselves may

be described by various attributes. What emerges is a network or graph of instances

(or nodes), connected by links (or edges). Both the nodes and edges in the graph

may have several attributes that may be numerical or categorical, or even more

complex (e.g., time series data). Increasingly, today’s massive data is in the form

of such graphs or networks. Examples include the World Wide Web (with its Web

pages and hyperlinks), social networks (wikis, blogs, tweets, and other social media

data), semantic networks (ontologies), biological networks (protein interactions, gene

regulation networks, metabolic pathways), citation networks for scientific literature,

and so on. In this chapter we look at the analysis of the link structure in graphs that

arise from these kinds of networks. We will study basic topological properties as well

as models that give rise to such graphs.

4.1 GRAPH CONCEPTS

Graphs

Formally, a graph G = (V,E) is a mathematical structure consisting of a finite

nonempty set V of vertices or nodes, and a set E ⊆ V × V of edges consisting of

unordered pairs of vertices. An edge from a node to itself, (vi,vi), is called a loop. An

undirected graph without loops is called a simple graph. Unless mentioned explicitly,

we will consider a graph to be simple. An edge e = (vi,vj ) between vi and vj is said to

be incident with nodes vi and vj ; in this case we also say that vi and vj are adjacent to

one another, and that they are neighbors. The number of nodes in the graph G, given

as |V| = n, is called the order of the graph, and the number of edges in the graph, given

as |E| =m, is called the size of G.

A directed graph or digraph has an edge set E consisting of ordered pairs of

vertices. A directed edge (vi,vj ) is also called an arc, and is said to be from vi to vj .

We also say that vi is the tail and vj the head of the arc.

93
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A weighted graph consists of a graph together with a weight wij for each edge

(vi,vj ) ∈ E. Every graph can be considered to be a weighted graph in which the edges

have weight one.

Subgraphs

A graph H = (VH,EH) is called a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E. We

also say that G is a supergraph of H. Given a subset of the vertices V′ ⊆V, the induced

subgraph G′ = (V′,E′) consists exactly of all the edges present in G between vertices in

V′. More formally, for all vi,vj ∈ V′, (vi,vj ) ∈ E′ ⇐⇒ (vi,vj ) ∈ E. In other words, two

nodes are adjacent in G′ if and only if they are adjacent in G. A (sub)graph is called

complete (or a clique) if there exists an edge between all pairs of nodes.

Degree

The degree of a node vi ∈ V is the number of edges incident with it, and is denoted as

d(vi) or just di . The degree sequence of a graph is the list of the degrees of the nodes

sorted in non-increasing order.

Let Nk denote the number of vertices with degree k. The degree frequency

distribution of a graph is given as

(N0,N1, . . . ,Nt )

where t is the maximum degree for a node in G. Let X be a random variable denoting

the degree of a node. The degree distribution of a graph gives the probability mass

function f for X, given as (
f (0),f (1), . . . ,f (t)

)

where f (k) = P(X = k) = Nk

n
is the probability of a node with degree k, given as

the number of nodes Nk with degree k, divided by the total number of nodes n. In

graph analysis, we typically make the assumption that the input graph represents a

population, and therefore we write f instead of f̂ for the probability distributions.

For directed graphs, the indegree of node vi , denoted as id(vi), is the number of

edges with vi as head, that is, the number of incoming edges at vi . The outdegree

of vi , denoted od(vi), is the number of edges with vi as the tail, that is, the number

of outgoing edges from vi .

Path and Distance

A walk in a graph G between nodes x and y is an ordered sequence of vertices, starting

at x and ending at y,

x = v0, v1, . . . , vt−1, vt = y

such that there is an edge between every pair of consecutive vertices, that is,

(vi−1,vi) ∈E for all i = 1,2, . . . , t . The length of the walk, t , is measured in terms of

hops – the number of edges along the walk. In a walk, there is no restriction on the

number of times a given vertex may appear in the sequence; thus both the vertices and

edges may be repeated. A walk starting and ending at the same vertex (i.e., with y = x)

is called closed. A trail is a walk with distinct edges, and a path is a walk with distinct

vertices (with the exception of the start and end vertices). A closed path with length
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v1 v2

v3 v4 v5 v6

v7 v8

(a)

v1 v2

v3 v4 v5 v6

v7 v8

(b)

Figure 4.1. (a) A graph (undirected). (b) A directed graph.

t ≥ 3 is called a cycle, that is, a cycle begins and ends at the same vertex and has distinct

nodes.

A path of minimum length between nodes x and y is called a shortest path, and the

length of the shortest path is called the distance between x and y, denoted as d(x,y). If

no path exists between the two nodes, the distance is assumed to be d(x,y)=∞.

Connectedness

Two nodes vi and vj are said to be connected if there exists a path between them.

A graph is connected if there is a path between all pairs of vertices. A connected

component, or just component, of a graph is a maximal connected subgraph. If a graph

has only one component it is connected; otherwise it is disconnected, as by definition

there cannot be a path between two different components.

For a directed graph, we say that it is strongly connected if there is a (directed) path

between all ordered pairs of vertices. We say that it is weakly connected if there exists

a path between node pairs only by considering edges as undirected.

Example 4.1. Figure 4.1a shows a graph with |V| = 8 vertices and |E| = 11 edges.

Because (v1,v5) ∈ E, we say that v1 and v5 are adjacent. The degree of v1 is d(v1) =
d1 = 4. The degree sequence of the graph is

(4,4,4,3,2,2,2,1)

and therefore its degree frequency distribution is given as

(N0,N1,N2,N3,N4)= (0,1,3,1,3)

We have N0 = 0 because there are no isolated vertices, and N4 = 3 because there are

three nodes, v1, v4 and v5, that have degree k = 4; the other numbers are obtained in

a similar fashion. The degree distribution is given as

(
f (0),f (1),f (2),f (3),f (4)

)
= (0,0.125,0.375,0.125,0.375)

The vertex sequence (v3,v1,v2,v5,v1,v2,v6) is a walk of length 6 between v3

and v6. We can see that vertices v1 and v2 have been visited more than once. In
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contrast, the vertex sequence (v3,v4,v7,v8,v5,v2,v6) is a path of length 6 between

v3 and v6. However, this is not the shortest path between them, which happens to be

(v3,v1,v2,v6) with length 3. Thus, the distance between them is given as d(v3,v6)= 3.

Figure 4.1b shows a directed graph with 8 vertices and 12 edges. We can see that

edge (v5,v8) is distinct from edge (v8,v5). The indegree of v7 is id(v7)= 2, whereas its

outdegree is od(v7)= 0. Thus, there is no (directed) path from v7 to any other vertex.

Adjacency Matrix

A graph G= (V,E), with |V| = n vertices, can be conveniently represented in the form

of an n×n, symmetric binary adjacency matrix, A, defined as

A(i,j)=
{

1 if vi is adjacent to vj

0 otherwise

If the graph is directed, then the adjacency matrix A is not symmetric, as (vi,vj ) ∈ E

obviously does not imply that (vj ,vi) ∈E.

If the graph is weighted, then we obtain an n× n weighted adjacency matrix, A,

defined as

A(i,j)=
{

wij if vi is adjacent to vj

0 otherwise

where wij is the weight on edge (vi,vj )∈E. A weighted adjacency matrix can always be

converted into a binary one, if desired, by using some threshold τ on the edge weights

A(i,j)=
{

1 if wij ≥ τ

0 otherwise
(4.1)

Graphs from Data Matrix

Many datasets that are not in the form of a graph can nevertheless be converted into

one. Let D={xi}ni=1 (with xi ∈Rd), be a dataset consisting of n points in a d-dimensional

space. We can define a weighted graph G= (V,E), where there exists a node for each

point in D, and there exists an edge between each pair of points, with weight

wij = sim(xi,xj )

where sim(xi,xj ) denotes the similarity between points xi and xj . For instance,

similarity can be defined as being inversely related to the Euclidean distance between

the points via the transformation

wij = sim(xi,xj )= exp

{
−
∥∥xi − xj

∥∥2

2σ 2

}
(4.2)

where σ is the spread parameter (equivalent to the standard deviation in the normal

density function). This transformation restricts the similarity function sim() to lie in the

range [0,1]. One can then choose an appropriate threshold τ and convert the weighted

adjacency matrix into a binary one via Eq. (4.1).
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Figure 4.2. Iris similarity graph.

Example 4.2. Figure 4.2 shows the similarity graph for the Iris dataset (see

Table 1.1). The pairwise similarity between distinct pairs of points was computed

using Eq. (4.2), with σ = 1/
√

2 (we do not allow loops, to keep the graph simple).

The mean similarity between points was 0.197, with a standard deviation of 0.290.

A binary adjacency matrix was obtained via Eq. (4.1) using a threshold of τ =
0.777, which results in an edge between points having similarity higher than two

standard deviations from the mean. The resulting Iris graph has 150 nodes and 753

edges.

The nodes in the Iris graph in Figure 4.2 have also been categorized according

to their class. The circles correspond to class iris-versicolor, the triangles

to iris-virginica, and the squares to iris-setosa. The graph has two big

components, one of which is exclusively composed of nodes labeled as iris-setosa.

4.2 TOPOLOGICAL ATTRIBUTES

In this section we study some of the purely topological, that is, edge-based or structural,

attributes of graphs. These attributes are local if they apply to only a single node (or

an edge), and global if they refer to the entire graph.

Degree

We have already defined the degree of a node vi as the number of its neighbors. A

more general definition that holds even when the graph is weighted is as follows:

di =
∑

j

A(i,j)
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The degree is clearly a local attribute of each node. One of the simplest global attribute

is the average degree:

µd =
∑

i di

n

The preceding definitions can easily be generalized for (weighted) directed graphs.

For example, we can obtain the indegree and outdegree by taking the summation over

the incoming and outgoing edges, as follows:

id(vi)=
∑

j

A(j, i)

od(vi)=
∑

j

A(i,j)

The average indegree and average outdegree can be obtained likewise.

Average Path Length

The average path length, also called the characteristic path length, of a connected graph

is given as

µL =
∑

i

∑
j>i d(vi,vj )(

n

2

) = 2

n(n− 1)

∑

i

∑

j>i

d(vi,vj )

where n is the number of nodes in the graph, and d(vi,vj ) is the distance between

vi and vj . For a directed graph, the average is over all ordered pairs of vertices:

µL =
1

n(n− 1)

∑

i

∑

j

d(vi,vj )

For a disconnected graph the average is taken over only the connected pairs of vertices.

Eccentricity

The eccentricity of a node vi is the maximum distance from vi to any other node in the

graph:

e(vi)=max
j

{
d(vi,vj )

}

If the graph is disconnected the eccentricity is computed only over pairs of vertices

with finite distance, that is, only for vertices connected by a path.

Radius and Diameter

The radius of a connected graph, denoted r(G), is the minimum eccentricity of any

node in the graph:

r(G)=min
i

{
e(vi)

}
=min

i

{
max

j

{
d(vi,vj )

}}
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The diameter, denoted d(G), is the maximum eccentricity of any vertex in the

graph:

d(G)=max
i

{
e(vi)

}
=max

i,j

{
d(vi,vj )

}

For a disconnected graph, the diameter is the maximum eccentricity over all the

connected components of the graph.

The diameter of a graph G is sensitive to outliers. A more robust notion is

effective diameter, defined as the minimum number of hops for which a large fraction,

typically 90%, of all connected pairs of nodes can reach each other. More formally,

let H(k) denote the number of pairs of nodes that can reach each other in k

hops or less. The effective diameter is defined as the smallest value of k such that

H(k)≥ 0.9×H(d(G)).

Example 4.3. For the graph in Figure 4.1a, the eccentricity of node v4 is e(v4) = 3

because the node farthest from it is v6 and d(v4,v6) = 3. The radius of the graph is

r(G) = 2; both v1 and v5 have the least eccentricity value of 2. The diameter of the

graph is d(G)= 4, as the largest distance over all the pairs is d(v6,v7)= 4.

The diameter of the Iris graph is d(G)= 11, which corresponds to the bold path

connecting the gray nodes in Figure 4.2. The degree distribution for the Iris graph

is shown in Figure 4.3. The numbers at the top of each bar indicate the frequency.

For example, there are exactly 13 nodes with degree 7, which corresponds to the

probability f (7)= 13
150
= 0.0867.

The path length histogram for the Iris graph is shown in Figure 4.4. For instance,

1044 node pairs have a distance of 2 hops between them. With n= 150 nodes, there
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Figure 4.3. Iris graph: degree distribution.
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Figure 4.4. Iris graph: path length histogram.

are
(
n

2

)
= 11,175 pairs. Out of these 6502 pairs are unconnected, and there are a total

of 4673 reachable pairs. Out of these 4175
4673
= 0.89 fraction are reachable in 6 hops, and

4415
4673
= 0.94 fraction are reachable in 7 hops. Thus, we can determine that the effective

diameter is 7. The average path length is 3.58.

Clustering Coefficient

The clustering coefficient of a node vi is a measure of the density of edges in the

neighborhood of vi . Let Gi = (Vi,Ei) be the subgraph induced by the neighbors of

vertex vi . Note that vi 6∈Vi , as we assume that G is simple. Let |Vi| = ni be the number

of neighbors of vi , and |Ei| = mi be the number of edges among the neighbors of vi .

The clustering coefficient of vi is defined as

C(vi)=
no. of edges in Gi

maximum number of edges in Gi

= mi(
ni
2

) = 2 ·mi

ni(ni − 1)

The clustering coefficient gives an indication about the “cliquishness” of a node’s

neighborhood, because the denominator corresponds to the case when Gi is a complete

subgraph.

The clustering coefficient of a graph G is simply the average clustering coefficient

over all the nodes, given as

C(G)= 1

n

∑

i

C(vi)

Because C(vi) is well defined only for nodes with degree d(vi) ≥ 2, we can define

C(vi)= 0 for nodes with degree less than 2. Alternatively, we can take the summation

only over nodes with d(vi)≥ 2.
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The clustering coefficient C(vi) of a node is closely related to the notion of

transitive relationships in a graph or network. That is, if there exists an edge between

vi and vj , and another between vi and vk , then how likely are vj and vk to be linked or

connected to each other. Define the subgraph composed of the edges (vi,vj ) and (vi,vk)

to be a connected triple centered at vi . A connected triple centered at vi that includes

(vj ,vk) is called a triangle (a complete subgraph of size 3). The clustering coefficient of

node vi can be expressed as

C(vi)=
no. of triangles including vi

no. of connected triples centered at vi

Note that the number of connected triples centered at vi is simply
(
di
2

)
= ni (ni−1)

2
, where

di = ni is the number of neighbors of vi .

Generalizing the aforementioned notion to the entire graph yields the transitivity

of the graph, defined as

T(G)= 3×no. of triangles in G

no. of connected triples in G

The factor 3 in the numerator is due to the fact that each triangle contributes to

three connected triples centered at each of its three vertices. Informally, transitivity

measures the degree to which a friend of your friend is also your friend, say, in a social

network.

Efficiency

The efficiency for a pair of nodes vi and vj is defined as 1
d(vi ,vj )

. If vi and vj are not

connected, then d(vi,vj ) =∞ and the efficiency is 1/∞= 0. As such, the smaller the

distance between the nodes, the more “efficient” the communication between them.

The efficiency of a graph G is the average efficiency over all pairs of nodes, whether

connected or not, given as

2

n(n− 1)

∑

i

∑

j>i

1

d(vi,vj )

The maximum efficiency value is 1, which holds for a complete graph.

The local efficiency for a node vi is defined as the efficiency of the subgraph Gi

induced by the neighbors of vi . Because vi 6∈Gi , the local efficiency is an indication of

the local fault tolerance, that is, how efficient is the communication between neighbors

of vi when vi is removed or deleted from the graph.

Example 4.4. For the graph in Figure 4.1a, consider node v4. Its neighborhood graph

is shown in Figure 4.5. The clustering coefficient of node v4 is given as

C(v4)=
2(
4
2

) = 2

6
= 0.33

The clustering coefficient for the entire graph (over all nodes) is given as

C(G)= 1

8

(
1

2
+ 1

3
+ 1+ 1

3
+ 1

3
+ 0+ 0+ 0

)
= 2.5

8
= 0.3125
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v1
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v7

Figure 4.5. Subgraph G4 induced by node v4.

The local efficiency of v4 is given as

2

4 · 3

(
1

d(v1,v3)
+ 1

d(v1,v5)
+ 1

d(v1,v7)
+ 1

d(v3,v5)
+ 1

d(v3,v7)
+ 1

d(v5,v7)

)

= 1

6
(1+ 1+ 0+ 0.5+ 0+ 0)= 2.5

6
= 0.417

4.3 CENTRALITY ANALYSIS

The notion of centrality is used to rank the vertices of a graph in terms of how “central”

or important they are. A centrality can be formally defined as a function c : V→R, that

induces a total order on V. We say that vi is at least as central as vj if c(vi)≥ c(vj ).

4.3.1 Basic Centralities

Degree Centrality

The simplest notion of centrality is the degree di of a vertex vi – the higher the degree,

the more important or central the vertex. For directed graphs, one may further consider

the indegree centrality and outdegree centrality of a vertex.

Eccentricity Centrality

According to this notion, the less eccentric a node is, the more central it is. Eccentricity

centrality is thus defined as follows:

c(vi)=
1

e(vi)
= 1

maxj

{
d(vi,vj )

}

A node vi that has the least eccentricity, that is, for which the eccentricity equals the

graph radius, e(vi)= r(G), is called a center node, whereas a node that has the highest

eccentricity, that is, for which eccentricity equals the graph diameter, e(vi) = d(G), is

called a periphery node.
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Eccentricity centrality is related to the problem of facility location, that is, choosing

the optimum location for a resource or facility. The central node minimizes the

maximum distance to any node in the network, and thus the most central node

would be an ideal location for, say, a hospital, because it is desirable to minimize the

maximum distance someone has to travel to get to the hospital quickly.

Closeness Centrality

Whereas eccentricity centrality uses the maximum of the distances from a given node,

closeness centrality uses the sum of all the distances to rank how central a node is

c(vi)=
1∑

j d(vi,vj )

A node vi with the smallest total distance,
∑

j d(vi,vj ), is called the median node.

Closeness centrality optimizes a different objective function for the facility

location problem. It tries to minimize the total distance over all the other nodes, and

thus a median node, which has the highest closeness centrality, is the optimal one to,

say, locate a facility such as a new coffee shop or a mall, as in this case it is not as

important to minimize the distance for the farthest node.

Betweenness Centrality

For a given vertex vi the betweenness centrality measures how many shortest paths

between all pairs of vertices include vi . This gives an indication as to the central

“monitoring” role played by vi for various pairs of nodes. Let ηjk denote the number

of shortest paths between vertices vj and vk , and let ηjk(vi) denote the number of such

paths that include or contain vi . Then the fraction of paths through vi is denoted as

γjk(vi)=
ηjk(vi)

ηjk

If the two vertices vj and vk are not connected, we assume γjk = 0.

The betweenness centrality for a node vi is defined as

c(vi)=
∑

j 6=i

∑

k 6=i
k>j

γjk =
∑

j 6=i

∑

k 6=i
k>j

ηjk(vi)

ηjk

(4.3)

Example 4.5. Consider Figure 4.1a. The values for the different node centrality

measures are given in Table 4.1. According to degree centrality, nodes v1, v4, and

v5 are the most central. The eccentricity centrality is the highest for the center nodes

in the graph, which are v1 and v5. It is the least for the periphery nodes, of which

there are two, v6 and, v7.

Nodes v1 and v5 have the highest closeness centrality value. In terms of

betweenness, vertex v5 is the most central, with a value of 6.5. We can compute this

value by considering only those pairs of nodes vj and vk that have at least one shortest



104 Graph Data

Table 4.1. Centrality values

Centrality v1 v2 v3 v4 v5 v6 v7 v8

Degree 4 3 2 4 4 1 2 2

Eccentricity 0.5 0.33 0.33 0.33 0.5 0.25 0.25 0.33

e(vi) 2 3 3 3 2 4 4 3

Closeness 0.100 0.083 0.071 0.091 0.100 0.056 0.067 0.071
∑

j d(vi,vj ) 10 12 14 11 10 18 15 14

Betweenness 4.5 6 0 5 6.5 0 0.83 1.17

path passing through v5, as only these node pairs have γjk > 0 in Eq. (4.3). We have

c(v5)= γ18+ γ24+ γ27+ γ28+ γ38+ γ46+ γ48+ γ67+ γ68

= 1+ 1

2
+ 2

3
+ 1+ 2

3
+ 1

2
+ 1

2
+ 2

3
+ 1= 6.5

4.3.2 Web Centralities

We now consider directed graphs, especially in the context of the Web. For example,

hypertext documents have directed links pointing from one document to another;

citation networks of scientific articles have directed edges from a paper to the cited

papers, and so on. We consider notions of centrality that are particularly suited to such

Web-scale graphs.

Prestige

We first look at the notion of prestige, or the eigenvector centrality, of a node in a

directed graph. As a centrality, prestige is supposed to be a measure of the importance

or rank of a node. Intuitively the more the links that point to a given node, the

higher its prestige. However, prestige does not depend simply on the indegree; it also

(recursively) depends on the prestige of the nodes that point to it.

Let G= (V,E) be a directed graph, with |V| = n. The adjacency matrix of G is an

n×n asymmetric matrix A given as

A(u,v)=
{

1 if (u,v) ∈E

0 if (u,v) 6∈E

Let p(u) be a positive real number, called the prestige score for node u. Using the

intuition that the prestige of a node depends on the prestige of other nodes pointing to

it, we can obtain the prestige score of a given node v as follows:

p(v)=
∑

u

A(u,v) ·p(u)

=
∑

u

AT(v,u) ·p(u)
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v1

v4 v5

v3 v2

(a)

A=




0 0 0 1 0

0 0 1 0 1

1 0 0 0 0

0 1 1 0 1

0 1 0 0 0




(b)

AT =




0 0 1 0 0

0 0 0 1 1

0 1 0 1 0

1 0 0 0 0

0 1 0 1 0




(c)

Figure 4.6. Example graph (a), adjacency matrix (b), and its transpose (c).

For example, in Figure 4.6, the prestige of v5 depends on the prestige of v2 and v4.

Across all the nodes, we can recursively express the prestige scores as

p′ =ATp (4.4)

where p is an n-dimensional column vector corresponding to the prestige scores for

each vertex.

Starting from an initial prestige vector we can use Eq. (4.4) to obtain an updated

prestige vector in an iterative manner. In other words, if pk−1 is the prestige vector

across all the nodes at iteration k− 1, then the updated prestige vector at iteration k is

given as

pk =ATpk−1

=AT(ATpk−2)=
(
AT
)2

pk−2

=
(
AT
)2

(ATpk−3)=
(
AT
)3

pk−3

=
...

=
(
AT
)k

p0

where p0 is the initial prestige vector. It is well known that the vector pk converges to

the dominant eigenvector of AT with increasing k.

The dominant eigenvector of AT and the corresponding eigenvalue can be

computed using the power iteration approach whose pseudo-code is shown in

Algorithm 4.1. The method starts with the vector p0, which can be initialized to the

vector (1,1, . . . ,1)T ∈ R
n. In each iteration, we multiply on the left by AT, and scale

the intermediate pk vector by dividing it by the maximum entry pk[i] in pk to prevent

numeric overflow. The ratio of the maximum entry in iteration k to that in k− 1, given

as λ = pk [i]

pk−1[i]
, yields an estimate for the eigenvalue. The iterations continue until the

difference between successive eigenvector estimates falls below some threshold ǫ > 0.
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ALGORITHM 4.1. Power Iteration Method: Dominant Eigenvector

POWERITERATION (A,ǫ):

k← 0 // iteration1

p0← 1 ∈Rn// initial vector2

repeat3

k← k+ 14

pk←ATpk−1 // eigenvector estimate5

i← argmaxj

{
pk[j ]

}
// maximum value index6

λ← pk[i]/pk−1[i] // eigenvalue estimate7

pk← 1
pk [i]

pk // scale vector8

until ‖pk −pk−1‖ ≤ ǫ9

p← 1

‖pk‖pk // normalize eigenvector10

return p,λ11

Table 4.2. Power method via scaling

p0 p1 p2 p3


1

1

1

1

1







1

2

2

1

2



→




0.5

1

1

0.5

1







1

1.5

1.5

0.5

1.5



→




0.67

1

1

0.33

1







1

1.33

1.33

0.67

1.33



→




0.75

1

1

0.5

1




λ 2 1.5 1.33

p4 p5 p6 p7


1

1.5

1.5

0.75

1.5



→




0.67

1

1

0.5

1







1

1.5

1.5

0.67

1.5



→




0.67

1

1

0.44

1







1

1.44

1.44

0.67

1.44



→




0.69

1

1

0.46

1







1

1.46

1.46

0.69

1.46



→




0.68

1

1

0.47

1




1.5 1.5 1.444 1.462

Example 4.6. Consider the example shown in Figure 4.6. Starting with an initial

prestige vector p0= (1,1,1,1,1)T, in Table 4.2 we show several iterations of the power

method for computing the dominant eigenvector of AT. In each iteration we obtain

pk =ATpk−1. For example,

p1 =ATp0 =




0 0 1 0 0

0 0 0 1 1

0 1 0 1 0

1 0 0 0 0

0 1 0 1 0







1

1

1

1

1



=




1

2

2

1

2



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Figure 4.7. Convergence of the ratio to dominant eigenvalue.

Before the next iteration, we scale p1 by dividing each entry by the maximum value

in the vector, which is 2 in this case, to obtain

p1 =
1

2




1

1

2

1

2



=




0.5

1

1

0.5

1




As k becomes large, we get

pk =ATpk−1 ≃ λpk−1

which implies that the ratio of the maximum element of pk to that of pk−1 should

approach λ. The table shows this ratio for successive iterations. We can see in

Figure 4.7 that within 10 iterations the ratio converges to λ = 1.466. The scaled

dominant eigenvector converges to

pk =




1

1.466

1.466

0.682

1.466




After normalizing it to be a unit vector, the dominant eigenvector is given as

p=




0.356

0.521

0.521

0.243

0.521




Thus, in terms of prestige, v2, v3, and v5 have the highest values, as all of them have

indegree 2 and are pointed to by nodes with the same incoming values of prestige.

On the other hand, although v1 and v4 have the same indegree, v1 is ranked higher,

because v3 contributes its prestige to v1, but v4 gets its prestige only from v1.
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PageRank

PageRank is a method for computing the prestige or centrality of nodes in the context

of Web search. The Web graph consists of pages (the nodes) connected by hyperlinks

(the edges). The method uses the so-called random surfing assumption that a person

surfing the Web randomly chooses one of the outgoing links from the current page,

or with some very small probability randomly jumps to any of the other pages in the

Web graph. The PageRank of a Web page is defined to be the probability of a random

web surfer landing at that page. Like prestige, the PageRank of a node v recursively

depends on the PageRank of other nodes that point to it.

Normalized Prestige We assume for the moment that each node u has outdegree at

least 1. We discuss later how to handle the case when a node has no outgoing edges.

Let od(u)=
∑

v A(u,v) denote the outdegree of node u. Because a random surfer can

choose among any of its outgoing links, if there is a link from u to v, then the probability

of visiting v from u is 1
od(u)

.

Starting from an initial probability or PageRank p0(u) for each node, such that
∑

u

p0(u)= 1

we can compute an updated PageRank vector for v as follows:

p(v)=
∑

u

A(u,v)

od(u)
·p(u)

=
∑

u

N(u,v) ·p(u)

=
∑

u

NT(v,u) ·p(u) (4.5)

where N is the normalized adjacency matrix of the graph, given as

N(u,v)=
{

1
od(u)

if (u,v) ∈E

0 if (u,v) 6∈E

Across all nodes, we can express the PageRank vector as follows:

p′ =NTp (4.6)

So far, the PageRank vector is essentially a normalized prestige vector.

Random Jumps In the random surfing approach, there is a small probability of

jumping from one node to any of the other nodes in the graph, even if they do not

have a link between them. In essence, one can think of the Web graph as a (virtual)

fully connected directed graph, with an adjacency matrix given as

Ar = 1n×n =




1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1



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Here 1n×n is the n× n matrix of all ones. For the random surfer matrix, the outdegree

of each node is od(u) = n, and the probability of jumping from u to any node v is

simply 1
od(u)
= 1

n
. Thus, if one allows only random jumps from one node to another, the

PageRank can be computed analogously to Eq. (4.5):

p(v)=
∑

u

Ar(u,v)

od(u)
·p(u)

=
∑

u

Nr(u,v) ·p(u)

=
∑

u

NT
r (v,u) ·p(u)

where Nr is the normalized adjacency matrix of the fully connected Web graph,

given as

Nr =




1
n

1
n
· · · 1

n

1
n

1
n
· · · 1

n

...
...

. . .
...

1
n

1
n
· · · 1

n



= 1

n
Ar =

1

n
1n×n

Across all the nodes the random jump PageRank vector can be represented as

p′ =NT
r p

PageRank The full PageRank is computed by assuming that with some small

probability, α, a random Web surfer jumps from the current node u to any other

random node v, and with probability 1− α the user follows an existing link from u

to v. In other words, we combine the normalized prestige vector, and the random jump

vector, to obtain the final PageRank vector, as follows:

p′ = (1−α)NTp+αNT
r p

=
(
(1−α)NT+αNT

r

)
p

=MTp

(4.7)

where M = (1 − α)N + αNr is the combined normalized adjacency matrix. The

PageRank vector can be computed in an iterative manner, starting with an initial

PageRank assignment p0, and updating it in each iteration using Eq. (4.7). One minor

problem arises if a node u does not have any outgoing edges, that is, when od(u)= 0.

Such a node acts like a sink for the normalized prestige score. Because there is no

outgoing edge from u, the only choice u has is to simply jump to another random node.

Thus, we need to make sure that if od(u)= 0 then for the row corresponding to u in M,

denoted as Mu, we set α = 1, that is,

Mu =
{

Mu if od(u) > 0
1
n
1T

n if od(u)= 0

where 1n is the n-dimensional vector of all ones. We can use the power iteration method

in Algorithm 4.1 to compute the dominant eigenvector of MT.
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Example 4.7. Consider the graph in Figure 4.6. The normalized adjacency matrix is

given as

N=




0 0 0 1 0

0 0 0.5 0 0.5

1 0 0 0 0

0 0.33 0.33 0 0.33

0 1 0 0 0




Because there are n = 5 nodes in the graph, the normalized random jump

adjacency matrix is given as

Nr =




0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2




Assuming that α = 0.1, the combined normalized adjacency matrix is given as

M= 0.9N+ 0.1Nr =




0.02 0.02 0.02 0.92 0.02

0.02 0.02 0.47 0.02 0.47

0.92 0.02 0.02 0.02 0.02

0.02 0.32 0.32 0.02 0.32

0.02 0.92 0.02 0.02 0.02




Computing the dominant eigenvector and eigenvalue of MT we obtain λ= 1 and

p=




0.419

0.546

0.417

0.422

0.417




Node v2 has the highest PageRank value.

Hub and Authority Scores

Note that the PageRank of a node is independent of any query that a user may pose,

as it is a global value for a Web page. However, for a specific user query, a page

with a high global PageRank may not be that relevant. One would like to have a

query-specific notion of the PageRank or prestige of a page. The Hyperlink Induced

Topic Search (HITS) method is designed to do this. In fact, it computes two values to

judge the importance of a page. The authority score of a page is analogous to PageRank

or prestige, and it depends on how many “good” pages point to it. On the other hand,

the hub score of a page is based on how many “good” pages it points to. In other

words, a page with high authority has many hub pages pointing to it, and a page with

high hub score points to many pages that have high authority.
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Given a user query the HITS method first uses standard search engines to retrieve

the set of relevant pages. It then expands this set to include any pages that point to

some page in the set, or any pages that are pointed to by some page in the set. Any

pages originating from the same host are eliminated. HITS is applied only on this

expanded query specific graph G.

We denote by a(u) the authority score and by h(u) the hub score of node u. The

authority score depends on the hub score and vice versa in the following manner:

a(v)=
∑

u

AT(v,u) ·h(u)

h(v)=
∑

u

A(v,u) · a(u)

In matrix notation, we obtain

a′ =ATh

h′ =Aa

In fact, we can rewrite the above recursively as follows:

ak =AThk−1 =AT(Aak−1)= (ATA)ak−1

hk =Aak−1 =A(AThk−1)= (AAT)hk−1

In other words, as k→∞, the authority score converges to the dominant eigenvector

of ATA, whereas the hub score converges to the dominant eigenvector of AAT. The

power iteration method can be used to compute the eigenvector in both cases. Starting

with an initial authority vector a = 1n, the vector of all ones, we can compute the

vector h = Aa. To prevent numeric overflows, we scale the vector by dividing by the

maximum element. Next, we can compute a =ATh, and scale it too, which completes

one iteration. This process is repeated until both a and h converge.

Example 4.8. For the graph in Figure 4.6, we can iteratively compute the authority

and hub score vectors, by starting with a = (1,1,1,1,1)T. In the first iteration,

we have

h=Aa=




0 0 0 1 0

0 0 1 0 1

1 0 0 0 0

0 1 1 0 1

0 1 0 0 0







1

1

1

1

1



=




1

2

1

3

1




After scaling by dividing by the maximum value 3, we get

h′ =




0.33

0.67

0.33

1

0.33



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Next we update a as follows:

a=ATh′ =




0 0 1 0 0

0 0 0 1 1

0 1 0 1 0

1 0 0 0 0

0 1 0 1 0







0.33

0.67

0.33

1

0.33



=




0.33

1.33

1.67

0.33

1.67




After scaling by dividing by the maximum value 1.67, we get

a′ =




0.2

0.8

1

0.2

1




This sets the stage for the next iteration. The process continues until a and h converge

to the dominant eigenvectors of ATA and AAT, respectively, given as

a=




0

0.46

0.63

0

0.63




h=




0

0.58

0

0.79

0.21




From these scores, we conclude that v4 has the highest hub score because it points

to three nodes – v2, v3, and v5 – with good authority. On the other hand, both v3 and

v5 have high authority scores, as the two nodes v4 and v2 with the highest hub scores

point to them.

4.4 GRAPH MODELS

Surprisingly, many real-world networks exhibit certain common characteristics, even

though the underlying data can come from vastly different domains, such as social

networks, biological networks, telecommunication networks, and so on. A natural

question is to understand the underlying processes that might give rise to such

real-world networks. We consider several network measures that will allow us to

compare and contrast different graph models. Real-world networks are usually large

and sparse. By large we mean that the order or the number of nodes n is very large,

and by sparse we mean that the graph size or number of edges m=O(n). The models

we study below make a similar assumption that the graphs are large and sparse.

Small-world Property

It has been observed that many real-world graphs exhibit the so-called small-world

property that there is a short path between any pair of nodes. We say that a graph G

exhibits small-world behavior if the average path length µL scales logarithmically with
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the number of nodes in the graph, that is, if

µL ∝ logn

where n is the number of nodes in the graph. A graph is said to have ultra-small-world

property if the average path length is much smaller than logn, that is, if µL≪ logn.

Scale-free Property

In many real-world graphs it has been observed that the empirical degree distribution

f (k) exhibits a scale-free behavior captured by a power-law relationship with k, that is,

the probability that a node has degree k satisfies the condition

f (k)∝ k−γ (4.8)

Intuitively, a power law indicates that the vast majority of nodes have very small

degrees, whereas there are a few “hub” nodes that have high degrees, that is, they

connect to or interact with lots of nodes. A power-law relationship leads to a scale-free

or scale invariant behavior because scaling the argument by some constant c does

not change the proportionality. To see this, let us rewrite Eq. (4.8) as an equality by

introducing a proportionality constant α that does not depend on k, that is,

f (k)= αk−γ (4.9)

Then we have

f (ck)= α(ck)−γ = (αc−γ )k−γ ∝ k−γ

Also, taking the logarithm on both sides of Eq. (4.9) gives

logf (k)= log(αk−γ )

or logf (k)=−γ logk+ logα

which is the equation of a straight line in the log-log plot of k versus f (k), with −γ

giving the slope of the line. Thus, the usual approach to check whether a graph has

scale-free behavior is to perform a least-square fit of the points
(
logk, logf (k)

)
to a

line, as illustrated in Figure 4.8a.

In practice, one of the problems with estimating the degree distribution for a graph

is the high level of noise for the higher degrees, where frequency counts are the lowest.

One approach to address the problem is to use the cumulative degree distribution F(k),

which tends to smooth out the noise. In particular, we use F c(k)= 1−F(k), which gives

the probability that a randomly chosen node has degree greater than k. If f (k)∝ k−γ ,

and assuming that γ > 1, we have

F c(k)= 1−F(k)= 1−
k∑

0

f (x)=
∞∑

k

f (x)=
∞∑

k

x−γ

≃
∞∫

k

x−γ dx = x−γ+1

−γ + 1

∣∣∣∣
∞

k

= 1

(γ − 1)
· k−(γ−1)

∝ k−(γ−1)
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(a) Degree distribution
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Figure 4.8. Degree distribution and its cumulative distribution.

In other words, the log-log plot of F c(k) versus k will also be a power law with slope

−(γ − 1) as opposed to −γ . Owing to the smoothing effect, plotting logk versus

logF c(k) and observing the slope gives a better estimate of the power law, as illustrated

in Figure 4.8b.

Clustering Effect

Real-world graphs often also exhibit a clustering effect, that is, two nodes are more

likely to be connected if they share a common neighbor. The clustering effect is

captured by a high clustering coefficient for the graph G. Let C(k) denote the average

clustering coefficient for all nodes with degree k; then the clustering effect also
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manifests itself as a power-law relationship between C(k) and k:

C(k)∝ k−γ

In other words, a log-log plot of k versus C(k) exhibits a straight line behavior with

negative slope−γ . Intuitively, the power-law behavior indicates hierarchical clustering

of the nodes. That is, nodes that are sparsely connected (i.e., have smaller degrees) are

part of highly clustered areas (i.e., have higher average clustering coefficients). Further,

only a few hub nodes (with high degrees) connect these clustered areas (the hub nodes

have smaller clustering coefficients).

Example 4.9. Figure 4.8a plots the degree distribution for a graph of human protein

interactions, where each node is a protein and each edge indicates if the two incident

proteins interact experimentally. The graph has n = 9521 nodes and m = 37,060

edges. A linear relationship between logk and logf (k) is clearly visible, although

very small and very large degree values do not fit the linear trend. The best fit line

after ignoring the extremal degrees yields a value of γ = 2.15. The plot of logk

versus logF c(k) makes the linear fit quite prominent. The slope obtained here is

−(γ − 1)= 1.85, that is, γ = 2.85. We can conclude that the graph exhibits scale-free

behavior (except at the degree extremes), with γ somewhere between 2 and 3, as is

typical of many real-world graphs.

The diameter of the graph is d(G) = 14, which is very close to log2 n =
log2(9521)= 13.22. The network is thus small-world.

Figure 4.9 plots the average clustering coefficient as a function of degree. The

log-log plot has a very weak linear trend, as observed from the line of best fit

that gives a slope of −γ = −0.55. We can conclude that the graph exhibits weak

hierarchical clustering behavior.
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Figure 4.9. Average clustering coefficient distribution.
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4.4.1 Erdös–Rényi Random Graph Model

The Erdös–Rényi (ER) model generates a random graph such that any of the possible

graphs with a fixed number of nodes and edges has equal probability of being chosen.

The ER model has two parameters: the number of nodes n and the number of

edges m. Let M denote the maximum number of edges possible among the n nodes,

that is,

M=
(

n

2

)
= n(n− 1)

2

The ER model specifies a collection of graphs G(n,m) with n nodes and m edges, such

that each graph G ∈ G has equal probability of being selected:

P(G)= 1(
M

m

) =
(

M

m

)−1

where
(

M

m

)
is the number of possible graphs with m edges (with n nodes) corresponding

to the ways of choosing the m edges out of a total of M possible edges.

Let V={v1,v2, . . . ,vn} denote the set of n nodes. The ER method chooses a random

graph G = (V,E) ∈ G via a generative process. At each step, it randomly selects two

distinct vertices vi ,vj ∈ V, and adds an edge (vi,vj ) to E, provided the edge is not

already in the graph G. The process is repeated until exactly m edges have been added

to the graph.

Let X be a random variable denoting the degree of a node for G ∈ G. Let p denote

the probability of an edge in G, which can be computed as

p= m

M
= m(

n

2

) = 2m

n(n− 1)

Average Degree

For any given node in G its degree can be at most n− 1 (because we do not allow

loops). Because p is the probability of an edge for any node, the random variable X,

corresponding to the degree of a node, follows a binomial distribution with probability

of success p, given as

f (k)= P(X= k)=
(

n− 1

k

)
pk(1−p)n−1−k

The average degree µd is then given as the expected value of X:

µd =E[X]= (n− 1)p

We can also compute the variance of the degrees among the nodes by computing the

variance of X:

σ 2
d = var(X)= (n− 1)p(1−p)

Degree Distribution

To obtain the degree distribution for large and sparse random graphs, we need to

derive an expression for f (k) = P(X = k) as n→∞. Assuming that m = O(n), we



4.4 Graph Models 117

can write p = m

n(n−1)/2
= O(n)

n(n−1)/2
= 1

O(n)
→ 0. In other words, we are interested in the

asymptotic behavior of the graphs as n→∞ and p→ 0.

Under these two trends, notice that the expected value and variance of X can be

rewritten as

E[X]= (n− 1)p ≃ np as n→∞
var(X)= (n− 1)p(1−p) ≃ np as n→∞ and p→ 0

In other words, for large and sparse random graphs the expectation and variance of X

are the same:

E[X]= var(X)= np

and the binomial distribution can be approximated by a Poisson distribution with

parameter λ, given as

f (k)= λke−λ

k!

where λ = np represents both the expected value and variance of the distribution.

Using Stirling’s approximation of the factorial k!≃ kke−k
√

2πk we obtain

f (k)= λke−λ

k!
≃ λke−λ

kke−k
√

2πk
= e−λ

√
2π

(λe)k

√
kkk

In other words, we have

f (k)∝ αkk−
1
2 k−k

for α = λe = npe. We conclude that large and sparse random graphs follow a Poisson

degree distribution, which does not exhibit a power-law relationship. Thus, in one

crucial respect, the ER random graph model is not adequate to describe real-world

scale-free graphs.

Clustering Coefficient

Let us consider a node vi in G with degree k. The clustering coefficient of vi is given as

C(vi)=
2mi

k(k− 1)

where k = ni also denotes the number of nodes and mi denotes the number of edges in

the subgraph induced by neighbors of vi . However, because p is the probability of an

edge, the expected number of edges mi among the neighbors of vi is simply

mi =
pk(k− 1)

2

Thus, we obtain

C(vi)=
2mi

k(k− 1)
= p

In other words, the expected clustering coefficient across all nodes of all degrees is

uniform, and thus the overall clustering coefficient is also uniform:

C(G)= 1

n

∑

i

C(vi)= p
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Furthermore, for sparse graphs we have p → 0, which in turn implies that C(G) =
C(vi)→ 0. Thus, large random graphs have no clustering effect whatsoever, which is

contrary to many real-world networks.

Diameter

We saw earlier that the expected degree of a node is µd = λ, which means that within

one hop from a given node, we can reach λ other nodes. Because each of the neighbors

of the initial node also has average degree λ, we can approximate the number of nodes

that are two hops away as λ2. In general, at a coarse level of approximation (i.e.,

ignoring shared neighbors), we can estimate the number of nodes at a distance of k

hops away from a starting node vi as λk . However, because there are a total of n distinct

vertices in the graph, we have
t∑

k=1

λk = n

where t denotes the maximum number of hops from vi . We have

t∑

k=1

λk = λt+1− 1

λ− 1
≃ λt

Plugging into the expression above, we have

λt ≃ n or

t logλ≃ logn which implies

t ≃ logn

logλ
∝ logn

Because the path length from a node to the farthest node is bounded by t , it follows

that the diameter of the graph is also bounded by that value, that is,

d(G)∝ logn

assuming that the expected degree λ is fixed. We can thus conclude that random graphs

satisfy at least one property of real-world graphs, namely that they exhibit small-world

behavior.

4.4.2 Watts–Strogatz Small-world Graph Model

The random graph model fails to exhibit a high clustering coefficient, but it is

small-world. The Watts–Strogatz (WS) model tries to explicitly model high local

clustering by starting with a regular network in which each node is connected to its

k neighbors on the right and left, assuming that the initial n vertices are arranged

in a large circular backbone. Such a network will have a high clustering coefficient,

but will not be small-world. Surprisingly, adding a small amount of randomness in the

regular network by randomly rewiring some of the edges or by adding a small fraction

of random edges leads to the emergence of the small-world phenomena.

The WS model starts with n nodes arranged in a circular layout, with each node

connected to its immediate left and right neighbors. The edges in the initial layout are
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Figure 4.10. Watts–Strogatz regular graph: n= 8, k= 2.

called backbone edges. Each node has edges to an additional k − 1 neighbors to the

left and right. Thus, the WS model starts with a regular graph of degree 2k, where

each node is connected to its k neighbors on the right and k neighbors on the left, as

illustrated in Figure 4.10.

Clustering Coefficient and Diameter of Regular Graph

Consider the subgraph Gv induced by the 2k neighbors of a node v. The clustering

coefficient of v is given as

C(v)= mv

Mv

(4.10)

where mv is the actual number of edges, and Mv is the maximum possible number of

edges, among the neighbors of v.

To compute mv , consider some node ri that is at a distance of i hops (with 1≤ i ≤ k)

from v to the right, considering only the backbone edges. The node ri has edges to k− i

of its immediate right neighbors (restricted to the right neighbors of v), and to k− 1 of

its left neighbors (all k left neighbors, excluding v). Owing to the symmetry about v, a

node li that is at a distance of i backbone hops from v to the left has the same number

of edges. Thus, the degree of any node in Gv that is i backbone hops away from v is

given as

di = (k− i)+ (k− 1)= 2k− i− 1

Because each edge contributes to the degree of its two incident nodes, summing the

degrees of all neighbors of v, we obtain

2mv = 2

(
k∑

i=1

2k− i− 1

)
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mv = 2k2− k(k+ 1)

2
− k

mv =
3

2
k(k− 1) (4.11)

On the other hand, the number of possible edges among the 2k neighbors of v is

given as

Mv =
(

2k

2

)
= 2k(2k− 1)

2
= k(2k− 1)

Plugging the expressions for mv and Mv into Eq. (4.10), the clustering coefficient of a

node v is given as

C(v)= mv

Mv

= 3k− 3

4k− 2

As k increases, the clustering coefficient approaches 3
4

because C(G) = C(v)→ 3
4

as

k→∞.

The WS regular graph thus has a high clustering coefficient. However, it does not

satisfy the small-world property. To see this, note that along the backbone, the farthest

node from v has a distance of at most n

2
hops. Further, because each node is connected

to k neighbors on either side, one can reach the farthest node in at most n/2
k

hops. More

precisely, the diameter of a regular WS graph is given as

d(G)=
{⌈

n

2k

⌉
if n is even⌈

n−1
2k

⌉
if n is odd

The regular graph has a diameter that scales linearly in the number of nodes, and thus

it is not small-world.

Random Perturbation of Regular Graph

Edge Rewiring Starting with the regular graph of degree 2k, the WS model perturbs

the regular structure by adding some randomness to the network. One approach is to

randomly rewire edges with probability r . That is, for each edge (u,v) in the graph,

with probability r , replace v with another randomly chosen node avoiding loops and

duplicate edges. Because the WS regular graph has m= kn total edges, after rewiring,

rm of the edges are random, and (1− r)m are regular.

Edge Shortcuts An alternative approach is that instead of rewiring edges, we add a

few shortcut edges between random pairs of nodes, as shown in Figure 4.11. The total

number of random shortcut edges added to the network is given as mr = knr , so that

r can be considered as the probability, per edge, of adding a shortcut edge. The total

number of edges in the graph is then simply m+mr = (1+ r)m = (1+ r)kn. Because

r ∈ [0,1], the number of edges then lies in the range [kn,2kn].

In either approach, if the probability r of rewiring or adding shortcut edges is r = 0,

then we are left with the original regular graph, with high clustering coefficient, but

with no small-world property. On the other hand, if the rewiring or shortcut probability

r= 1, the regular structure is disrupted, and the graph approaches a random graph, with

little to no clustering effect, but with small-world property. Surprisingly, introducing
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Figure 4.11. Watts–Strogatz graph (n= 20, k= 3): shortcut edges are shown dotted.

only a small amount of randomness leads to a significant change in the regular network.

As one can see in Figure 4.11, the presence of a few long-range shortcuts reduces the

diameter of the network significantly. That is, even for a low value of r , the WS model

retains most of the regular local clustering structure, but at the same time becomes

small-world.

Properties of Watts–Strogatz Graphs

Degree Distribution Let us consider the shortcut approach, which is easier to analyze.

In this approach, each vertex has degree at least 2k. In addition there are the shortcut

edges, which follow a binomial distribution. Each node can have n′ = n − 2k − 1

additional shortcut edges, so we take n′ as the number of independent trials to add

edges. Because a node has degree 2k, with shortcut edge probability of r , we expect

roughly 2kr shortcuts from that node, but the node can connect to at most n− 2k− 1

other nodes. Thus, we can take the probability of success as

p= 2kr

n− 2k− 1
= 2kr

n′
(4.12)

Let X denote the random variable denoting the number of shortcuts for each node.

Then the probability of a node with j shortcut edges is given as

f (j)= P(X= j)=
(

n′

j

)
pj (1−p)n′−j

with E[X]= n′p= 2kr . The expected degree of each node in the network is therefore

2k+E[X]= 2k+ 2kr = 2k(1+ r)

It is clear that the degree distribution of the WS graph does not adhere to a power law.

Thus, such networks are not scale-free.
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Clustering Coefficient After the shortcut edges have been added, each node v has

expected degree 2k(1+ r), that is, it is on average connected to 2kr new neighbors, in

addition to the 2k original ones. The number of possible edges among v’s neighbors is

given as

Mv =
2k(1+ r)(2k(1+ r)− 1)

2
= (1+ r)k(4kr+ 2k− 1)

Because the regular WS graph remains intact even after adding shortcuts, the

neighbors of v retain all 3k(k−1)

2
initial edges, as given in Eq. (4.11). In addition, some

of the shortcut edges may link pairs of nodes among v’s neighbors. Let Y be the

random variable that denotes the number of shortcut edges present among the 2k(1+r)

neighbors of v; then Y follows a binomial distribution with probability of success p, as

given in Eq. (4.12). Thus, the expected number of shortcut edges is given as

E[Y]= pMv

Let mv be the random variable corresponding to the actual number of edges present

among v’s neighbors, whether regular or shortcut edges. The expected number of edges

among the neighbors of v is then given as

E[mv]=E

[
3k(k− 1)

2
+Y

]
= 3k(k− 1)

2
+pMv

Because the binomial distribution is essentially concentrated around the mean, we can

now approximate the clustering coefficient by using the expected number of edges, as

follows:

C(v)≃ E[mv]

Mv

=
3k(k−1)

2
+pMv

Mv

= 3k(k− 1)

2Mv

+p

= 3(k− 1)

(1+ r)(4kr+ 2(2k− 1))
+ 2kr

n− 2k− 1

using the value of p given in Eq. (4.12). For large graphs we have n→∞, so we can

drop the second term above, to obtain

C(v)≃ 3(k− 1)

(1+ r)(4kr+ 2(2k− 1))
= 3k− 3

4k− 2+ 2r(2kr+ 4k− 1)
(4.13)

As r→ 0, the above expression becomes equivalent to Eq. (4.10). Thus, for small values

of r the clustering coefficient remains high.

Diameter Deriving an analytical expression for the diameter of the WS model with

random edge shortcuts is not easy. Instead we resort to an empirical study of the

behavior of WS graphs when a small number of random shortcuts are added. In

Example 4.10 we find that small values of shortcut edge probability r are enough to

reduce the diameter from O(n) to O(logn). The WS model thus leads to graphs that

are small-world and that also exhibit the clustering effect. However, the WS graphs do

not display a scale-free degree distribution.
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Figure 4.12. Watts-Strogatz model: diameter (circles) and clustering coefficient (triangles).

Example 4.10. Figure 4.12 shows a simulation of the WS model, for a graph with

n= 1000 vertices and k = 3. The x-axis shows different values of the probability r of

adding random shortcut edges. The diameter values are shown as circles using the

left y-axis, whereas the clustering values are shown as triangles using the right y-axis.

These values are the averages over 10 runs of the WS model. The solid line gives

the clustering coefficient from the analytical formula in Eq. (4.13), which is in perfect

agreement with the simulation values.

The initial regular graph has diameter

d(G)=
⌈ n

2k

⌉
=
⌈

1000

6

⌉
= 167

and its clustering coefficient is given as

C(G)= 3(k− 1)

2(2k− 1)
= 6

10
= 0.6

We can observe that the diameter quickly reduces, even with very small edge addition

probability. For r = 0.005, the diameter is 61. For r = 0.1, the diameter shrinks to 11,

which is on the same scale as O(log2 n) because log2 1000 ≃ 10. On the other hand,

we can observe that clustering coefficient remains high. For r = 0.1, the clustering

coefficient is 0.48. Thus, the simulation study confirms that the addition of even

a small number of random shortcut edges reduces the diameter of the WS regular

graph from O(n) (large-world) to O(logn) (small-world). At the same time the graph

retains its local clustering property.
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4.4.3 Barabási–Albert Scale-free Model

The Barabási–Albert (BA) model tries to capture the scale-free degree distributions of

real-world graphs via a generative process that adds new nodes and edges at each time

step. Further, the edge growth is based on the concept of preferential attachment; that is,

edges from the new vertex are more likely to link to nodes with higher degrees. For this

reason the model is also known as the rich get richer approach. The BA model mimics

a dynamically growing graph by adding new vertices and edges at each time-step t =
1,2, . . .. Let Gt denote the graph at time t , and let nt denote the number of nodes, and

mt the number of edges in Gt .

Initialization

The BA model starts at time-step t = 0, with an initial graph G0 with n0 nodes and m0

edges. Each node in G0 should have degree at least 1; otherwise it will never be chosen

for preferential attachment. We will assume that each node has initial degree 2, being

connected to its left and right neighbors in a circular layout. Thus m0 = n0.

Growth and Preferential Attachment

The BA model derives a new graph Gt+1 from Gt by adding exactly one new node u

and adding q ≤ n0 new edges from u to q distinct nodes vj ∈Gt , where node vj is chosen

with probability πt(vj ) proportional to its degree in Gt , given as

πt (vj )=
dj∑

vi∈Gt
di

(4.14)

Because only one new vertex is added at each step, the number of nodes in Gt is

given as

nt = n0+ t

Further, because exactly q new edges are added at each time-step, the number of edges

in Gt is given as

mt =m0+ qt

Because the sum of the degrees is two times the number of edges in the graph, we have
∑

vi∈Gt

d(vi)= 2mt = 2(m0+ qt)

We can thus rewrite Eq. (4.14) as

πt(vj )=
dj

2(m0+ qt)
(4.15)

As the network grows, owing to preferential attachment, one intuitively expects high

degree hubs to emerge.

Example 4.11. Figure 4.13 shows a graph generated according to the BA model, with

parameters n0 = 3,q = 2, and t = 12. Initially, at time t = 0, the graph has n0 = 3

vertices, namely {v0,v1,v2} (shown in gray), connected by m0 = 3 edges (shown in

bold). At each time step t = 1, . . . ,12, vertex vt+2 is added to the growing network
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Figure 4.13. Barabási–Albert graph (n0 = 3, q= 2, t= 12).

and is connected to q = 2 vertices chosen with a probability proportional to their

degree.

For example, at t = 1, vertex v3 is added, with edges to v1 and v2, chosen according

to the distribution

π0(vi)= 1/3 for i = 0,1,2

At t = 2, v4 is added. Using Eq. (4.15), nodes v2 and v3 are preferentially chosen

according to the probability distribution

π1(v0)= π1(v3)=
2

10
= 0.2

π1(v1)= π1(v2)=
3

10
= 0.3

The final graph after t = 12 time-steps shows the emergence of some hub nodes, such

as v1 (with degree 9) and v3 (with degree 6).

Degree Distribution

We now study two different approaches to estimate the degree distribution for the BA

model, namely the discrete approach, and the continuous approach.

Discrete Approach The discrete approach is also called the master-equation method.

Let Xt be a random variable denoting the degree of a node in Gt , and let ft (k) denote

the probability mass function for Xt . That is, ft (k) is the degree distribution for the
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graph Gt at time-step t . Simply put, ft (k) is the fraction of nodes with degree k at time

t . Let nt denote the number of nodes and mt the number of edges in Gt . Further, let

nt(k) denote the number of nodes with degree k in Gt . Then we have

ft (k)= nt (k)

nt

Because we are interested in large real-world graphs, as t →∞, the number of

nodes and edges in Gt can be approximated as

nt = n0+ t ≃ t

mt =m0+ qt ≃ qt
(4.16)

Based on Eq. (4.14), at time-step t + 1, the probability πt(k) that some node with

degree k in Gt is chosen for preferential attachment can be written as

πt (k)= k ·nt (k)∑
i i ·nt (i)

Dividing the numerator and denominator by nt , we have

πt(k)=
k · nt (k)

nt∑
i i · nt (i)

nt

= k ·ft (k)∑
i i ·ft (i)

(4.17)

Note that the denominator is simply the expected value of Xt , that is, the mean degree

in Gt , because

E[Xt ]= µd(Gt )=
∑

i

i ·ft (i) (4.18)

Note also that in any graph the average degree is given as

µd(Gt )=
∑

i di

nt

= 2mt

nt

≃ 2qt

t
= 2q (4.19)

where we used Eq. (4.16), that is, mt = qt . Equating Eqs. (4.18) and (4.19), we can

rewrite the preferential attachment probability [Eq. (4.17)] for a node of degree k as

πt (k)= k ·ft (k)

2q
(4.20)

We now consider the change in the number of nodes with degree k, when a new

vertex u joins the growing network at time-step t +1. The net change in the number of

nodes with degree k is given as the number of nodes with degree k at time t + 1 minus

the number of nodes with degree k at time t , given as

(nt + 1) ·ft+1(k)−nt ·ft (k)

Using the approximation that nt ≃ t from Eq. (4.16), the net change in degree k nodes is

(nt + 1) ·ft+1(k)−nt ·ft (k)= (t + 1) ·ft+1(k)− t ·ft (k) (4.21)

The number of nodes with degree k increases whenever u connects to a vertex vi of

degree k−1 in Gt , as in this case vi will have degree k in Gt+1. Over the q edges added
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at time t + 1, the number of nodes with degree k− 1 in Gt that are chosen to connect

to u is given as

qπt(k− 1)= q · (k− 1) ·ft(k− 1)

2q
= 1

2
· (k− 1) ·ft(k− 1) (4.22)

where we use Eq. (4.20) for πt (k− 1). Note that Eq. (4.22) holds only when k > q . This

is because vi must have degree at least q , as each node that is added at time t ≥ 1 has

initial degree q . Therefore, if di = k− 1, then k− 1≥ q implies that k > q (we can also

ensure that the initial n0 edges have degree q by starting with clique of size n0 = q+1).

At the same time, the number of nodes with degree k decreases whenever u

connects to a vertex vi with degree k in Gt , as in this case vi will have a degree k+ 1 in

Gt+1. Using Eq. (4.20), over the q edges added at time t + 1, the number of nodes with

degree k in Gt that are chosen to connect to u is given as

q ·πt (k)= q · k ·ft (k)

2q
= 1

2
· k ·ft (k) (4.23)

Based on the preceding discussion, when k > q , the net change in the number of

nodes with degree k is given as the difference between Eqs. (4.22) and (4.23) in Gt :

q ·πt (k− 1)− q ·πt (k)= 1

2
· (k− 1) ·ft(k− 1)− 1

2
k ·ft (k) (4.24)

Equating Eqs. (4.21) and (4.24) we obtain the master equation for k > q :

(t + 1) ·ft+1(k)− t ·ft (k)= 1

2
· (k− 1) ·ft(k− 1)− 1

2
· k ·ft (k) (4.25)

On the other hand, when k= q , assuming that there are no nodes in the graph with

degree less than q , then only the newly added node contributes to an increase in the

number of nodes with degree k = q by one. However, if u connects to an existing node

vi with degree k, then there will be a decrease in the number of degree k nodes because

in this case vi will have degree k+ 1 in Gt+1. The net change in the number of nodes

with degree k is therefore given as

1− q ·πt(k)= 1− 1

2
· k ·ft (k) (4.26)

Equating Eqs. (4.21) and (4.26) we obtain the master equation for the boundary

condition k = q :

(t + 1) ·ft+1(k)− t ·ft (k)= 1− 1

2
· k ·ft (k) (4.27)

Our goal is now to obtain the stationary or time-invariant solutions for the master

equations. In other words, we study the solution when

ft+1(k)= ft (k)= f (k) (4.28)

The stationary solution gives the degree distribution that is independent of time.
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Let us first derive the stationary solution for k = q . Substituting Eq. (4.28) into

Eq. (4.27) and setting k = q , we obtain

(t + 1) ·f (q)− t ·f (q)= 1− 1

2
· q ·f (q)

2f (q)= 2− q ·f (q), which implies that

f (q)= 2

q + 2
(4.29)

The stationary solution for k > q gives us a recursion for f (k) in terms of f (k−1):

(t + 1) ·f (k)− t ·f (k)= 1

2
· (k− 1) ·f (k− 1)− 1

2
· k ·f (k)

2f (k)= (k− 1) ·f (k− 1)− k ·f (k), which implies that

f (k)=
(

k− 1

k+ 2

)
·f (k− 1) (4.30)

Expanding (4.30) until the boundary condition k = q yields

f (k)= (k− 1)

(k+ 2)
·f (k− 1)

= (k− 1)(k− 2)

(k+ 2)(k+ 1)
·f (k− 2)

...

= (k− 1)(k− 2)(k− 3)(k− 4) · · ·(q+ 3)(q+ 2)(q+ 1)(q)

(k+ 2)(k+ 1)(k)(k− 1) · · ·(q+ 6)(q+ 5)(q+ 4)(q+ 3)
·f (q)

= (q+ 2)(q+ 1)q

(k+ 2)(k+ 1)k
·f (q)

Plugging in the stationary solution for f (q) from Eq. (4.29) gives the general

solution

f (k)= (q+ 2)(q+ 1)q

(k+ 2)(k+ 1)k
· 2

(q+ 2)
= 2q(q+ 1)

k(k+ 1)(k+ 2)

For constant q and large k, it is easy to see that the degree distribution scales as

f (k)∝ k−3 (4.31)

In other words, the BA model yields a power-law degree distribution with γ = 3,

especially for large degrees.

Continuous Approach The continuous approach is also called the mean-field method.

In the BA model, the vertices that are added early on tend to have a higher degree,

because they have more chances to acquire connections from the vertices that are

added to the network at a later time. The time dependence of the degree of a vertex

can be approximated as a continuous random variable. Let ki = dt(i) denote the degree

of vertex vi at time t . At time t , the probability that the newly added node u links to
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vi is given as πt(i). Further, the change in vi ’s degree per time-step is given as q ·πt (i).

Using the approximation that nt ≃ t and mt ≃ qt from Eq. (4.16), the rate of change of

ki with time can be written as

dki

dt
= q ·πt(i)= q · ki

2qt
= ki

2t

Rearranging the terms in the preceding equation dki

dt
= ki

2t
and integrating on both sides,

we have

∫
1

ki

dki =
∫

1

2t
dt

lnki =
1

2
ln t +C

elnki = eln t1/2 · eC, which implies

ki = α · t1/2 (4.32)

where C is the constant of integration, and thus α = eC is also a constant.

Let ti denote the time when node i was added to the network. Because the initial

degree for any node is q , we obtain the boundary condition that ki = q at time t = ti .

Plugging these into Eq. (4.32), we get

ki = α · t1/2
i = q, which implies that

α = q√
ti

(4.33)

Substituting Eq. (4.33) into Eq. (4.32) leads to the particular solution

ki = α ·
√

t = q ·
√

t/ti (4.34)

Intuitively, this solution confirms the rich-gets-richer phenomenon. It suggests that if

a node vi is added early to the network (i.e., ti is small), then as time progresses (i.e., t

gets larger), the degree of vi keeps on increasing (as a square root of the time t).

Let us now consider the probability that the degree of vi at time t is less than some

value k, i.e., P(ki < k). Note that if ki < k, then by Eq. (4.34), we have

ki < k

q ·
√

t

ti
< k

t

ti
<

k2

q2
, which implies that

ti >
q2t

k2
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Thus, we can write

P(ki < k)= P

(
ti >

q2t

k2

)
= 1−P

(
ti ≤

q2t

k2

)

In other words, the probability that node vi has degree less than k is the same as the

probability that the time ti at which vi enters the graph is greater than q2

k2 t , which in

turn can be expressed as 1 minus the probability that ti is less than or equal to q2

k2 t .

Note that vertices are added to the graph at a uniform rate of one vertex per

time-step, that is, 1
nt
≃ 1

t
. Thus, the probability that ti is less than or equal to q2

k2 t is

given as

P(ki < k)= 1−P

(
ti ≤

q2t

k2

)

= 1− q2t

k2
· 1
t

= 1− q2

k2

Because vi is any generic node in the graph, P(ki < k) can be considered to be the

cumulative degree distribution Ft (k) at time t . We can obtain the degree distribution

ft (k) by taking the derivative of Ft (k) with respect to k to obtain

ft (k)= d

dk
Ft (k)= d

dk
P (ki < k)

= d

dk

(
1− q2

k2

)

= 0−
(

k2 · 0− q2 · 2k

k4

)

= 2q2

k3

∝ k−3 (4.35)

In Eq. (4.35) we made use of the quotient rule for computing the derivative of the

quotient f (k)= g(k)

h(k)
, given as

df (k)

dk
=

h(k) · dg(k)

dk
− g(k) · dh(k)

dk

h(k)2

Here g(k)= q2 and h(k)= k2, and dg(k)

dk
= 0 and dh(k)

dk
= 2k.

Note that the degree distribution from the continuous approach, given in

Eq. (4.35), is very close to that obtained from the discrete approach given in

Eq. (4.31). Both solutions confirm that the degree distribution is proportional to k−3,

which gives the power-law behavior with γ = 3.
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Clustering Coefficient and Diameter

Closed form solutions for the clustering coefficient and diameter for the BA model are

difficult to derive. It has been shown that the diameter of BA graphs scales as

d(Gt)=O

(
lognt

log lognt

)

suggesting that they exhibit ultra-small-world behavior, when q > 1. Further, the

expected clustering coefficient of the BA graphs scales as

E[C(Gt )]=O

(
(lognt )

2

nt

)

which is only slightly better than the clustering coefficient for random graphs, which

scale as O(n−1
t ). In Example 4.12, we empirically study the clustering coefficient and

diameter for random instances of the BA model with a given set of parameters.

Example 4.12. Figure 4.14 plots the empirical degree distribution obtained as the

average of 10 different BA graphs generated with the parameters n0 = 3, q = 3, and

for t = 997 time-steps, so that the final graph has n= 1000 vertices. The slope of the

line in the log-log scale confirms the existence of a power law, with the slope given as

−γ =−2.64.

The average clustering coefficient over the 10 graphs was C(G) = 0.019, which

is not very high, indicating that the BA model does not capture the clustering effect.

On the other hand, the average diameter was d(G)= 6, indicating ultra-small-world

behavior.
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Figure 4.14. Barabási–Albert model (n0 = 3, t= 997,q= 3): degree distribution.
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4.6 EXERCISES

Q1. Given the graph in Figure 4.15, find the fixed-point of the prestige vector.

a b

c

Figure 4.15. Graph for Q1
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Q2. Given the graph in Figure 4.16, find the fixed-point of the authority and hub vectors.

a

b c

Figure 4.16. Graph for Q2.

Q3. Consider the double star graph given in Figure 4.17 with n nodes, where only nodes

1 and 2 are connected to all other vertices, and there are no other links. Answer the

following questions (treating n as a variable).

(a) What is the degree distribution for this graph?

(b) What is the mean degree?

(c) What is the clustering coefficient for vertex 1 and vertex 3?

(d) What is the clustering coefficient C(G) for the entire graph? What happens to

the clustering coefficient as n→∞?

(e) What is the transitivity T(G) for the graph? What happens to T(G) and n→∞?

(f) What is the average path length for the graph?

(g) What is the betweenness value for node 1?

(h) What is the degree variance for the graph?

3 4 5 · · · · · · · · · · · · · · · n

1 2

Figure 4.17. Graph for Q3.

Q4. Consider the graph in Figure 4.18. Compute the hub and authority score vectors.

Which nodes are the hubs and which are the authorities?

1 3

2 4 5

Figure 4.18. Graph for Q4.

Q5. Prove that in the BA model at time-step t + 1, the probability πt (k) that some node

with degree k in Gt is chosen for preferential attachment is given as

πt (k)= k ·nt (k)∑
i i ·nt (i)



CHAPTER 5 Kernel Methods

Before we can mine data, it is important to first find a suitable data representation

that facilitates data analysis. For example, for complex data such as text, sequences,

images, and so on, we must typically extract or construct a set of attributes or features,

so that we can represent the data instances as multivariate vectors. That is, given a data

instance x (e.g., a sequence), we need to find a mapping φ, so that φ(x) is the vector

representation of x. Even when the input data is a numeric data matrix, if we wish to

discover nonlinear relationships among the attributes, then a nonlinear mapping φ may

be used, so that φ(x) represents a vector in the corresponding high-dimensional space

comprising nonlinear attributes. We use the term input space to refer to the data space

for the input data x and feature space to refer to the space of mapped vectors φ(x).

Thus, given a set of data objects or instances xi , and given a mapping function φ, we

can transform them into feature vectors φ(xi), which then allows us to analyze complex

data instances via numeric analysis methods.

Example 5.1 (Sequence-based Features). Consider a dataset of DNA sequences

over the alphabet 6 = {A,C,G,T}. One simple feature space is to represent each

sequence in terms of the probability distribution over symbols in 6. That is, given a

sequence x with length |x| =m, the mapping into feature space is given as

φ(x)= {P(A),P (C),P (G),P (T)}

where P(s)= ns

m
is the probability of observing symbol s ∈6, and ns is the number of

times s appears in sequence x. Here the input space is the set of sequences 6∗, and

the feature space is R4. For example, if x=ACAGCAGTA, with m= |x| = 9, since A

occurs four times, C and G occur twice, and T occurs once, we have

φ(x)= (4/9,2/9,2/9,1/9)= (0.44,0.22,0.22,0.11)

Likewise, for another sequence y=AGCAAGCGAG, we have

φ(y)= (4/10,2/10,4/10,0)= (0.4,0.2,0.4,0)

The mapping φ now allows one to compute statistics over the data sample to

make inferences about the population. For example, we may compute the mean

134
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symbol composition. We can also define the distance between any two sequences,

for example,

δ(x,y)=
∥∥φ(x)−φ(y)

∥∥

=
√

(0.44− 0.4)2+ (0.22− 0.2)2+ (0.22− 0.4)2+ (0.11− 0)2= 0.22

We can compute larger feature spaces by considering, for example, the probability

distribution over all substrings or words of size up to k over the alphabet 6, and so on.

Example 5.2 (Nonlinear Features). As an example of a nonlinear mapping consider

the mapping φ that takes as input a vector x = (x1,x2)
T ∈ R

2 and maps it to a

“quadratic” feature space via the nonlinear mapping

φ(x)= (x2
1,x

2
2 ,
√

2x1x2)
T ∈R3

For example, the point x= (5.9,3)T is mapped to the vector

φ(x)= (5.92,32,
√

2 · 5.9 · 3)T= (34.81,9,25.03)T

The main benefit of this transformation is that we may apply well-known linear

analysis methods in the feature space. However, because the features are nonlinear

combinations of the original attributes, this allows us to mine nonlinear patterns and

relationships.

Whereas mapping into feature space allows one to analyze the data via algebraic

and probabilistic modeling, the resulting feature space is usually very high-dimensional;

it may even be infinite dimensional. Thus, transforming all the input points into feature

space can be very expensive, or even impossible. Because the dimensionality is high,

we also run into the curse of dimensionality highlighted later in Chapter 6.

Kernel methods avoid explicitly transforming each point x in the input space into

the mapped point φ(x) in the feature space. Instead, the input objects are represented

via their n× n pairwise similarity values. The similarity function, called a kernel, is

chosen so that it represents a dot product in some high-dimensional feature space, yet

it can be computed without directly constructing φ(x). Let I denote the input space,

which can comprise any arbitrary set of objects, and let D = {xi}ni=1 ⊂ I be a dataset

comprising n objects in the input space. We can represent the pairwise similarity values

between points in D via the n×n kernel matrix, defined as

K=




K(x1,x1) K(x1,x2) · · · K(x1,xn)

K(x2,x1) K(x2,x2) · · · K(x2,xn)
...

...
. . .

...

K(xn,x1) K(xn,x2) · · · K(xn,xn)




where K : I × I→ R is a kernel function on any two points in input space. However,

we require that K corresponds to a dot product in some feature space. That is, for any
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xi,xj ∈ I, the kernel function should satisfy the condition

K(xi,xj )= φ(xi)
Tφ(xj) (5.1)

where φ : I→F is a mapping from the input space I to the feature space F . Intuitively,

this means that we should be able to compute the value of the dot product using

the original input representation x, without having recourse to the mapping φ(x).

Obviously, not just any arbitrary function can be used as a kernel; a valid kernel

function must satisfy certain conditions so that Eq. (5.1) remains valid, as discussed

in Section 5.1.

It is important to remark that the transpose operator for the dot product applies

only when F is a vector space. When F is an abstract vector space with an inner

product, the kernel is written as K(xi,xj ) = 〈φ(xi),φ(xj )〉. However, for convenience

we use the transpose operator throughout this chapter; when F is an inner product

space it should be understood that

φ(xi)
Tφ(xj )≡ 〈φ(xi),φ(xj )〉

Example 5.3 (Linear and Quadratic Kernels). Consider the identity mapping,

φ(x)→ x. This naturally leads to the linear kernel, which is simply the dot product

between two input vectors, and thus satisfies Eq. (5.1):

φ(x)Tφ(y)= xTy=K(x,y)

For example, consider the first five points from the two-dimensional Iris dataset

shown in Figure 5.1a:

x1 =
(

5.9

3

)
x2 =

(
6.9

3.1

)
x3 =

(
6.6

2.9

)
x4 =

(
4.6

3.2

)
x5 =

(
6

2.2

)

The kernel matrix for the linear kernel is shown in Figure 5.1b. For example,

K(x1,x2)= xT
1 x2 = 5.9× 6.9+ 3× 3.1= 40.71+ 9.3= 50.01

2

2.5

3.0

4.5 5.0 5.5 6.0 6.5

X1

X2

bC
x1 bC

x2

bC
x3

bC x4

bC
x5

(a)

K x1 x2 x3 x4 x5

x1 43.81 50.01 47.64 36.74 42.00

x2 50.01 57.22 54.53 41.66 48.22

x3 47.64 54.53 51.97 39.64 45.98

x4 36.74 41.66 39.64 31.40 34.64

x5 42.00 48.22 45.98 34.64 40.84

(b)

Figure 5.1. (a) Example points. (b) Linear kernel matrix.
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Consider the quadratic mapping φ : R2 → R
3 from Example 5.2, that maps

x= (x1,x2)
T as follows:

φ(x)= (x2
1,x

2
2 ,
√

2x1x2)
T

The dot product between the mapping for two input points x,y ∈R2 is given as

φ(x)Tφ(y)= x2
1y

2
1 + x2

2y
2
2 + 2x1y1x2y2

We can rearrange the preceding to obtain the (homogeneous) quadratic kernel

function as follows:

φ(x)Tφ(y)= x2
1y

2
1 + x2

2y
2
2 + 2x1y1x2y2

= (x1y1+ x2y2)
2

= (xTy)2

=K(x,y)

We can thus see that the dot product in feature space can be computed by evaluating

the kernel in input space, without explicitly mapping the points into feature space.

For example, we have

φ(x1)= (5.92,32,
√

2 · 5.9 · 3)T = (34.81,9,25.03)T

φ(x2)= (6.92,3.12,
√

2 · 6.9 · 3.1)T= (47.61,9.61,30.25)T

φ(x1)
Tφ(x2)= 34.81× 47.61+ 9× 9.61+ 25.03× 30.25= 2501

We can verify that the homogeneous quadratic kernel gives the same value

K(x1,x2)= (xT
1 x2)

2 = (50.01)2= 2501

We shall see that many data mining methods can be kernelized, that is, instead of

mapping the input points into feature space, the data can be represented via the n× n

kernel matrix K, and all relevant analysis can be performed over K. This is usually

done via the so-called kernel trick, that is, show that the analysis task requires only

dot products φ(xi)
Tφ(xj ) in feature space, which can be replaced by the corresponding

kernel K(xi,xj ) = φ(xi)
Tφ(xj ) that can be computed efficiently in input space. Once

the kernel matrix has been computed, we no longer even need the input points xi , as

all operations involving only dot products in the feature space can be performed over

the n × n kernel matrix K. An immediate consequence is that when the input data

is the typical n× d numeric matrix D and we employ the linear kernel, the results

obtained by analyzing K are equivalent to those obtained by analyzing D (as long

as only dot products are involved in the analysis). Of course, kernel methods allow

much more flexibility, as we can just as easily perform non-linear analysis by employing

nonlinear kernels, or we may analyze (non-numeric) complex objects without explicitly

constructing the mapping φ(x).
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Example 5.4. Consider the five points from Example 5.3 along with the linear kernel

matrix shown in Figure 5.1. The mean of the five points in feature space is simply the

mean in input space, as φ is the identity function for the linear kernel:

µφ =
5∑

i=1

φ(xi)=
5∑

i=1

xi = (6.00,2.88)T

Now consider the squared magnitude of the mean in feature space:

∥∥µφ

∥∥2 = µT
φµφ = (6.02+ 2.882)= 44.29

Because this involves only a dot product in feature space, the squared magnitude can

be computed directly from K. As we shall see later [see Eq. (5.12)] the squared norm

of the mean vector in feature space is equivalent to the average value of the kernel

matrix K. For the kernel matrix in Figure 5.1b we have

1

52

5∑

i=1

5∑

j=1

K(xi,xj )=
1107.36

25
= 44.29

which matches the
∥∥µφ

∥∥2
value computed earlier. This example illustrates that

operations involving dot products in feature space can be cast as operations over

the kernel matrix K.

Kernel methods offer a radically different view of the data. Instead of thinking

of the data as vectors in input or feature space, we consider only the kernel values

between pairs of points. The kernel matrix can also be considered as a weighted

adjacency matrix for the complete graph over the n input points, and consequently

there is a strong connection between kernels and graph analysis, in particular algebraic

graph theory.

5.1 KERNEL MATRIX

Let I denote the input space, which can be any arbitrary set of data objects, and let

D = {x1,x2, . . . ,xn} ⊂ I denote a subset of n objects in the input space. Let φ : I→ F

be a mapping from the input space into the feature space F , which is endowed with a

dot product and norm. Let K: I×I→R be a function that maps pairs of input objects

to their dot product value in feature space, that is, K(xi,xj )= φ(xi)
Tφ(xj ), and let K be

the n×n kernel matrix corresponding to the subset D.

The function K is called a positive semidefinite kernel if and only if it is symmetric:

K(xi,xj )=K(xj ,xi)

and the corresponding kernel matrix K for any subset D ⊂ I is positive semidefinite,

that is,

aTKa≥ 0, for all vectors a ∈Rn
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which implies that
n∑

i=1

n∑

j=1

aiajK(xi,xj )≥ 0, for all ai ∈R, i ∈ [1,n] (5.2)

We first verify that if K(xi,xj ) represents the dot product φ(xi)
Tφ(xj ) in some

feature space, then K is a positive semidefinite kernel. Consider any dataset D, and

let K= {K(xi,xj )} be the corresponding kernel matrix. First, K is symmetric since the

dot product is symmetric, which also implies that K is symmetric. Second, K is positive

semidefinite because

aTKa=
n∑

i=1

n∑

j=1

aiajK(xi,xj )

=
n∑

i=1

n∑

j=1

aiajφ(xi)
Tφ(xj )

=
(

n∑

i=1

aiφ(xi)

)T



n∑

j=1

ajφ(xj )




=
∥∥∥∥∥

n∑

i=1

aiφ(xi)

∥∥∥∥∥

2

≥ 0

Thus, K is a positive semidefinite kernel.

We now show that if we are given a positive semidefinite kernel K : I × I → R,

then it corresponds to a dot product in some feature space F .

5.1.1 Reproducing Kernel Map

For the reproducing kernel map φ, we map each point x ∈ I into a function in

a functional space {f : I → R} comprising functions that map points in I into R.

Algebraically this space of functions is an abstract vector space where each point

happens to be a function. In particular, any x ∈ I in the input space is mapped to the

following function:

φ(x)=K(x, ·)

where the · stands for any argument in I. That is, each object x in the input space gets

mapped to a feature point φ(x), which is in fact a function K(x, ·) that represents its

similarity to all other points in the input space I.

Let F be the set of all functions or points that can be obtained as a linear

combination of any subset of feature points, defined as

F = span
{
K(x, ·)| x ∈ I

}

=
{
f= f (·)=

m∑

i=1

αi K(xi, ·)
∣∣∣m ∈N,αi ∈R,{x1, . . . ,xm} ⊆ I

}

We use the dual notation f and f (·) interchangeably to emphasize the fact that each

point f in the feature space is in fact a function f (·). Note that by definition the feature

point φ(x)=K(x, ·) belongs to F .
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Let f,g ∈F be any two points in feature space:

f= f (·)=
ma∑

i=1

αi K(xi, ·) g= g(·)=
mb∑

j=1

βj K(xj , ·)

Define the dot product between two points as

fTg= f (·)Tg(·)=
ma∑

i=1

mb∑

j=1

αiβjK(xi,xj ) (5.3)

We emphasize that the notation fTg is only a convenience; it denotes the inner product

〈f,g〉 because F is an abstract vector space, with an inner product as defined above.

We can verify that the dot product is bilinear, that is, linear in both arguments,

because

fTg=
ma∑

i=1

mb∑

j=1

αi βj K(xi,xj )=
ma∑

i=1

αi g(xi)=
mb∑

j=1

βj f (xj )

The fact that K is positive semidefinite implies that

‖f‖2 = fTf=
ma∑

i=1

ma∑

j=1

αiαjK(xi,x)≥ 0

Thus, the space F is a pre-Hilbert space, defined as a normed inner product space,

because it is endowed with a symmetric bilinear dot product and a norm. By adding

the limit points of all Cauchy sequences that are convergent, F can be turned into a

Hilbert space, defined as a normed inner product space that is complete. However,

showing this is beyond the scope of this chapter.

The space F has the so-called reproducing property, that is, we can evaluate a

function f (·)= f at a point x ∈ I by taking the dot product of f with φ(x), that is,

fTφ(x)= f (·)TK(x, ·)=
ma∑

i=1

αi K(xi,x)= f (x)

For this reason, the space F is also called a reproducing kernel Hilbert space.

All we have to do now is to show that K(xi,xj ) corresponds to a dot product in the

feature space F . This is indeed the case, because using Eq. (5.3) for any two feature

points φ(xi),φ(xj ) ∈F their dot product is given as

φ(xi)
Tφ(xj)=K(xi, ·)TK(xj , ·)=K(xi,xj )

The reproducing kernel map shows that any positive semidefinite kernel corre-

sponds to a dot product in some feature space. This means we can apply well known

algebraic and geometric methods to understand and analyze the data in these spaces.

Empirical Kernel Map

The reproducing kernel map φ maps the input space into a potentially infinite

dimensional feature space. However, given a dataset D= {xi}ni=1, we can obtain a finite
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dimensional mapping by evaluating the kernel only on points in D. That is, define the

map φ as follows:

φ(x)=
(
(K(x1,x),K(x2,x), . . . ,K(xn,x)

)T

∈Rn

which maps each point x ∈ I to the n-dimensional vector comprising the kernel values

of x with each of the objects xi ∈D. We can define the dot product in feature space as

φ(xi)
Tφ(xj )=

n∑

k=1

K(xk,xi)K(xk,xj )=KT
i Kj (5.4)

where Ki denotes the ith column of K, which is also the same as the ith row of K

(considered as a column vector), as K is symmetric. However, for φ to be a valid map,

we require that φ(xi)
Tφ(xj )=K(xi,xj ), which is clearly not satisfied by Eq. (5.4). One

solution is to replace KT
i Kj in Eq. (5.4) with KT

i AKj for some positive semidefinite

matrix A such that

KT
i AKj =K(xi,xj )

If we can find such an A, it would imply that over all pairs of mapped points we have

{
KT

i AKj

}n

i,j=1
=
{
K(xi,xj )

}n

i,j=1

which can be written compactly as

KAK=K

This immediately suggests that we take A = K−1, the (pseudo) inverse of the kernel

matrix K. The modified map φ, called the empirical kernel map, is then defined as

φ(x)=K−1/2 ·
(
(K(x1,x),K(x2,x), . . . ,K(xn,x)

)T

∈Rn

so that the dot product yields

φ(xi)
Tφ(xj )=

(
K−1/2 Ki

)T(
K−1/2 Kj

)

=KT
i

(
K−1/2K−1/2

)
Kj

=KT
i K−1 Kj

Over all pairs of mapped points, we have

{
KT

i K−1 Kj

}n

i,j=1
=K K−1 K=K

as desired. However, it is important to note that this empirical feature representation

is valid only for the n points in D. If points are added to or removed from D, the kernel

map will have to be updated for all points.

5.1.2 Mercer Kernel Map

In general different feature spaces can be constructed for the same kernel K. We now

describe how to construct the Mercer map.
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Data-specific Kernel Map

The Mercer kernel map is best understood starting from the kernel matrix for the

dataset D in input space. Because K is a symmetric positive semidefinite matrix, it has

real and non-negative eigenvalues, and it can be decomposed as follows:

K=U3UT

where U is the orthonormal matrix of eigenvectors ui = (ui1,ui2, . . . ,uin)
T ∈ R

n

(for i = 1, . . . ,n), and 3 is the diagonal matrix of eigenvalues, with both arranged in

non-increasing order of the eigenvalues λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0:

U=



| | |

u1 u2 · · · un

| | |


 3=




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn




The kernel matrix K can therefore be rewritten as the spectral sum

K= λ1u1u
T
1 +λ2u2u

T
2 + ·· ·+λnunuT

n

In particular the kernel function between xi and xj is given as

K(xi,xj )= λ1 u1i u1j +λ2 u2i u2j · · · +λn uni unj

=
n∑

k=1

λk uki ukj (5.5)

where uki denotes the ith component of eigenvector uk. It follows that if we define the

Mercer map φ as follows:

φ(xi)=
(√

λ1 u1i,
√

λ2 u2i, . . . ,
√

λn uni

)T

(5.6)

then K(xi,xj ) is a dot product in feature space between the mapped points φ(xi) and

φ(xj) because

φ(xi)
Tφ(xj )=

(√
λ1 u1i, . . . ,

√
λn uni

)(√
λ1 u1j , . . . ,

√
λn unj

)T

= λ1 u1i u1j + ·· ·+λn uni unj =K(xi,xj )

Noting that Ui = (u1i,u2i, . . . ,uni)
T is the ith row of U, we can rewrite the Mercer map

φ as

φ(xi)=
√

3Ui (5.7)

Thus, the kernel value is simply the dot product between scaled rows of U:

φ(xi)
Tφ(xj )=

(√
3Ui

)T (√
3Uj

)
=UT

i 3Uj

The Mercer map, defined equivalently in Eqs. (5.6) and (5.7), is obviously restricted

to the input dataset D, just like the empirical kernel map, and is therefore called

the data-specific Mercer kernel map. It defines a data-specific feature space of

dimensionality at most n, comprising the eigenvectors of K.
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Example 5.5. Let the input dataset comprise the five points shown in Figure 5.1a,

and let the corresponding kernel matrix be as shown in Figure 5.1b. Computing the

eigen-decomposition of K, we obtain λ1 = 223.95, λ2= 1.29, and λ3= λ4= λ5 = 0. The

effective dimensionality of the feature space is 2, comprising the eigenvectors u1 and

u2. Thus, the matrix U is given as follows:

U=




u1 u2

U1 −0.442 0.163

U2 −0.505 −0.134

U3 −0.482 −0.181

U4 −0.369 0.813

U5 −0.425 −0.512




and we have

3=
(

223.95 0

0 1.29

) √
3=

(√
223.95 0

0
√

1.29

)
=
(

14.965 0

0 1.135

)

The kernel map is specified via Eq. (5.7). For example, for x1 = (5.9,3)T and

x2 = (6.9,3.1)T we have

φ(x1)=
√

3U1 =
(

14.965 0

0 1.135

)(
−0.442

0.163

)
=
(
−6.616

0.185

)

φ(x2)=
√

3U2 =
(

14.965 0

0 1.135

)(
−0.505

−0.134

)
=
(
−7.563

−0.153

)

Their dot product is given as

φ(x1)
Tφ(x2)= 6.616× 7.563− 0.185× 0.153

= 50.038− 0.028= 50.01

which matches the kernel value K(x1,x2) in Figure 5.1b.

Mercer Kernel Map

For compact continuous spaces, analogous to the discrete case in Eq. (5.5), the kernel

value between any two points can be written as the infinite spectral decomposition

K(xi,xj )=
∞∑

k=1

λk uk(xi) uk(xj)

where {λ1,λ2, . . .} is the infinite set of eigenvalues, and
{
u1(·),u2(·), . . .

}
is the

corresponding set of orthogonal and normalized eigenfunctions, that is, each function

ui(·) is a solution to the integral equation

∫
K(x,y) ui(y) dy= λiui(x)
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and K is a continuous positive semidefinite kernel, that is, for all functions a(·) with a

finite square integral (i.e.,
∫

a(x)2 dx < 0) K satisfies the condition
∫ ∫

K(x1,x2) a(x1) a(x2) dx1 dx2 ≥ 0

We can see that this positive semidefinite kernel for compact continuous spaces is

analogous to the the discrete kernel in Eq. (5.2). Further, similarly to the data-specific

Mercer map [Eq. (5.6)], the general Mercer kernel map is given as

φ(xi)=
(√

λ1 u1(xi),
√

λ2 u2(xi), . . .
)T

with the kernel value being equivalent to the dot product between two mapped points:

K(xi,xj )= φ(xi)
Tφ(xj)

5.2 VECTOR KERNELS

We now consider two of the most commonly used vector kernels in practice.

Kernels that map an (input) vector space into another (feature) vector space are

called vector kernels. For multivariate input data, the input vector space will be the

d-dimensional real space R
d . Let D comprise n input points xi ∈ Rd , for i = 1,2, . . . ,n.

Commonly used (nonlinear) kernel functions over vector data include the polynomial

and Gaussian kernels, as described next.

Polynomial Kernel

Polynomial kernels are of two types: homogeneous or inhomogeneous. Let x,y ∈ Rd .

The homogeneous polynomial kernel is defined as

Kq(x,y)= φ(x)Tφ(y)= (xTy)q (5.8)

where q is the degree of the polynomial. This kernel corresponds to a feature space

spanned by all products of exactly q attributes.

The most typical cases are the linear (with q= 1) and quadratic (with q= 2) kernels,

given as

K1(x,y)= xTy

K2(x,y)= (xTy)2

The inhomogeneous polynomial kernel is defined as

Kq(x,y)= φ(x)Tφ(y)= (c+ xTy)q (5.9)

where q is the degree of the polynomial, and c ≥ 0 is some constant. When c = 0 we

obtain the homogeneous kernel. When c > 0, this kernel corresponds to the feature

space spanned by all products of at most q attributes. This can be seen from the

binomial expansion

Kq(x,y)= (c+ xTy)q =
q∑

k=1

(
q

k

)
cq−k

(
xTy

)k
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For example, for the typical value of c = 1, the inhomogeneous kernel is a weighted

sum of the homogeneous polynomial kernels for all powers up to q , that is,

(1+ xTy)q = 1+ qxTy+
(
q

2

)(
xTy

)2+ ·· ·+ q
(
xTy

)q−1+
(
xTy

)q

Example 5.6. Consider the points x1 and x2 in Figure 5.1.

x1 =
(

5.9

3

)
x2 =

(
6.9

3.1

)

The homogeneous quadratic kernel is given as

K(x1,x2)= (xT
1 x2)

2 = 50.012= 2501

The inhomogeneous quadratic kernel is given as

K(x1,x2)= (1+ xT
1 x2)

2 = (1+ 50.01)2= 51.012= 2602.02

For the polynomial kernel it is possible to construct a mapping φ from the input to

the feature space. Let n0,n1, . . . ,nd denote non-negative integers, such that
∑d

i=0 ni = q .

Further, let n = (n0,n1, . . . ,nd), and let |n| =
∑d

i=0 ni = q . Also, let
(
q

n

)
denote the

multinomial coefficient
(

q

n

)
=
(

q

n0,n1, . . . ,nd

)
= q!

n0!n1! . . .nd!

The multinomial expansion of the inhomogeneous kernel is then given as

Kq(x,y)= (c+ xTy)q =
(

c+
d∑

k=1

xkyk

)q

= (c+ x1y1+ ·· ·+ xdyd)
q

=
∑

|n|=q

(
q

n

)
cn0 (x1y1)

n1 (x2y2)
n2 . . . (xdyd)

nd

=
∑

|n|=q

(
q

n

)
cn0
(
x

n1
1 x

n2
2 . . .x

nd
d

)(
y

n1
1 y

n2
2 . . .y

nd
d

)

=
∑

|n|=q

(
√

an

d∏

k=1

x
nk
k

)(
√

an

d∏

k=1

y
nk
k

)

= φ(x)Tφ(y)

where an =
(
q

n

)
cn0 , and the summation is over all n = (n0,n1, . . . ,nd) such that |n| =

n0 + n1 + ·· · + nd = q . Using the notation xn =
∏d

k=1 x
nk
k , the mapping φ : Rd → R

m is

given as the vector

φ(x)= (. . . ,anxn, . . . )T =
(

. . . ,

√(
q

n

)
cn0

d∏

k=1

x
nk
k , . . .

)T
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where the variable n = (n0, . . . ,nd) ranges over all the possible assignments, such that

|n| = q . It can be shown that the dimensionality of the feature space is given as

m=
(

d+ q

q

)

Example 5.7 (Quadratic Polynomial Kernel). Let x,y ∈ R
2 and let c = 1. The

inhomogeneous quadratic polynomial kernel is given as

K(x,y)= (1+ xTy)2 = (1+ x1y1+ x2y2)
2

The set of all assignments n= (n0,n1,n2), such that |n| = q = 2, and the corresponding

terms in the multinomial expansion are shown below.

Assignments Coefficient Variables

n= (n0,n1,n2) an =
(
q

n

)
cn0 xnyn =

∏d

k=1(xiyi)
ni

(1,1,0) 2 x1y1

(1,0,1) 2 x2y2

(0,1,1) 2 x1y1x2y2

(2,0,0) 1 1

(0,2,0) 1 (x1y1)
2

(0,0,2) 1 (x2y2)
2

Thus, the kernel can be written as

K(x,y)= 1+ 2x1y1+ 2x2y2+ 2x1y1x2y2+ x2
1y

2
1 + x2

2y
2
2

=
(
1,
√

2x1,
√

2x2,
√

2x1x2,x
2
1 ,x

2
2

)(
1,
√

2y1,
√

2y2,
√

2y1y2,y
2
1 ,y

2
2

)T

= φ(x)Tφ(y)

When the input space is R2, the dimensionality of the feature space is given as

m=
(

d + q

q

)
=
(

2+ 2

2

)
=
(

4

2

)
= 6

In this case the inhomogeneous quadratic kernel with c = 1 corresponds to the

mapping φ : R2→R
6, given as

φ(x)=
(
1,
√

2x1,
√

2x2,
√

2x1x2, x2
1, x2

2

)T

For example, for x1 = (5.9,3)T and x2 = (6.9,3.1)T, we have

φ(x1)=
(
1,
√

2 · 5.9,
√

2 · 3,
√

2 · 5.9 · 3, 5.92, 32
)T

=
(
1,8.34,4.24,25.03,34.81,9

)T

φ(x2)=
(
1,
√

2 · 6.9,
√

2 · 3.1,
√

2 · 6.9 · 3.1, 6.92, 3.12
)T

=
(
1,9.76,4.38,30.25,47.61,9.61

)T
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Thus, the inhomogeneous kernel value is

φ(x1)
Tφ(x2)= 1+ 81.40+ 18.57+ 757.16+ 1657.30+86.49= 2601.92

On the other hand, when the input space is R
2, the homogeneous quadratic kernel

corresponds to the mapping φ : R2→R
3, defined as

φ(x)=
(√

2x1x2, x2
1 , x2

2

)T

because only the degree 2 terms are considered. For example, for x1 and x2, we have

φ(x1)=
(√

2 · 5.9 · 3, 5.92, 32
)T

=
(
25.03,34.81,9

)T

φ(x2)=
(√

2 · 6.9 · 3.1, 6.92, 3.12
)T

=
(
30.25,47.61,9.61

)T

and thus

K(x1,x2)= φ(x1)
Tφ(x2)= 757.16+ 1657.3+ 86.49= 2500.95

These values essentially match those shown in Example 5.6 up to four significant

digits.

Gaussian Kernel

The Gaussian kernel, also called the Gaussian radial basis function (RBF) kernel, is

defined as

K(x,y)= exp

{
−
∥∥x− y

∥∥2

2σ 2

}
(5.10)

where σ > 0 is the spread parameter that plays the same role as the standard deviation

in a normal density function. Note that K(x,x)= 1, and further that the kernel value is

inversely related to the distance between the two points x and y.

Example 5.8. Consider again the points x1 and x2 in Figure 5.1:

x1 =
(

5.9

3

)
x2 =

(
6.9

3.1

)

The squared distance between them is given as

‖x1− x2‖2 =
∥∥(−1,−0.1)T

∥∥2 = 12+ 0.12 = 1.01

With σ = 1, the Gaussian kernel is

K(x1,x2)= exp

{
−1.012

2

}
= exp{−0.51} = 0.6

It is interesting to note that a feature space for the Gaussian kernel has infinite

dimensionality. To see this, note that the exponential function can be written as the
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infinite expansion

exp{a} =
∞∑

n=0

an

n!
= 1+ a+ 1

2!
a2+ 1

3!
a3+ ·· ·

Further, using γ = 1

2σ2 , and noting that
∥∥x− y

∥∥2 = ‖x‖2+
∥∥y
∥∥2− 2xTy, we can rewrite

the Gaussian kernel as follows:

K(x,y)= exp
{
−γ

∥∥x− y
∥∥2
}

= exp
{
−γ ‖x‖2

}
· exp

{
−γ

∥∥y
∥∥2
}
· exp

{
2γ xTy

}

In particular, the last term is given as the infinite expansion

exp
{
2γ xTy

}
=
∞∑

q=0

(2γ )q

q!

(
xTy

)q = 1+ (2γ )xTy+ (2γ )2

2!

(
xTy

)2+ ·· ·

Using the multinomial expansion of (xTy)q , we can write the Gaussian kernel as

K(x,y)= exp
{
−γ ‖x‖2

}
exp

{
−γ

∥∥y
∥∥2
} ∞∑

q=0

(2γ )q

q!


∑

|n|=q

(
q

n

) d∏

k=1

(xkyk)
nk




=
∞∑

q=0

∑

|n|=q

(
√

aq,n exp
{
−γ ‖x‖2

} d∏

k=1

x
nk
k

)(
√

aq,n exp
{
−γ

∥∥y
∥∥2
} d∏

k=1

y
nk
k

)

= φ(x)Tφ(y)

where aq,n = (2γ )q

q!

(
q

n

)
, and n = (n1,n2, . . . ,nd), with |n| = n1 + n2 + ·· · + nd = q . The

mapping into feature space corresponds to the function φ : Rd→R
∞

φ(x)=
(

. . . ,

√
(2γ )q

q!

(
q

n

)
exp

{
−γ ‖x‖2

} d∏

k=1

x
nk
k , . . .

)T

with the dimensions ranging over all degrees q = 0, . . . ,∞, and with the variable

n = (n1, . . . ,nd) ranging over all possible assignments such that |n| = q for each value

of q . Because φ maps the input space into an infinite dimensional feature space, we

obviously cannot explicitly transform x into φ(x), yet computing the Gaussian kernel

K(x,y) is straightforward.

5.3 BASIC KERNEL OPERATIONS IN FEATURE SPACE

Let us look at some of the basic data analysis tasks that can be performed solely via

kernels, without instantiating φ(x).

Norm of a Point

We can compute the norm of a point φ(x) in feature space as follows:

‖φ(x)‖2 = φ(x)Tφ(x)=K(x,x)

which implies that ‖φ(x)‖ =
√

K(x,x).
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Distance between Points

The distance between two points φ(xi) and φ(xj) can be computed as

∥∥φ(xi)−φ(xj)
∥∥2 = ‖φ(xi)‖2+

∥∥φ(xj )
∥∥2− 2φ(xi)

Tφ(xj ) (5.11)

=K(xi,xi)+K(xj ,xj )− 2K(xi,xj )

which implies that

δ
(
φ(xi),φ(xj )

)
=
∥∥φ(xi)−φ(xj)

∥∥=
√

K(xi,xi)+K(xj,xj )− 2K(xi,xj )

Rearranging Eq. (5.11), we can see that the kernel value can be considered as a

measure of the similarity between two points, as

1

2

(
‖φ(xi)‖2+‖φ(xj )‖2−‖φ(xi)−φ(xj)‖2

)
=K(xi,xj )= φ(xi)

Tφ(xj )

Thus, the more the distance ‖φ(xi)− φ(xj )‖ between the two points in feature space,

the less the kernel value, that is, the less the similarity.

Example 5.9. Consider the two points x1 and x2 in Figure 5.1:

x1 =
(

5.9

3

)
x2 =

(
6.9

3.1

)

Assuming the homogeneous quadratic kernel, the norm of φ(x1) can be computed as

‖φ(x1)‖2 =K(x1,x1)= (xT
1 x1)

2 = 43.812= 1919.32

which implies that the norm of the transformed point is ‖φ(x1)‖ =
√

43.812= 43.81.

The distance between φ(x1) and φ(x2) in feature space is given as

δ
(
φ(x1),φ(x2)

)
=
√

K(x1,x1)+K(x2,x2)− 2K(x1,x2)

=
√

1919.32+ 3274.13−2 · 2501=
√

191.45= 13.84

Mean in Feature Space

The mean of the points in feature space is given as

µφ =
1

n

n∑

i=1

φ(xi)

Because we do not, in general, have access to φ(xi), we cannot explicitly compute the

mean point in feature space.
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Nevertheless, we can compute the squared norm of the mean as follows:

‖µφ‖2 =µT
φµφ

=
(

1

n

n∑

i=1

φ(xi)

)T

 1

n

n∑

j=1

φ(xj )




= 1

n2

n∑

i=1

n∑

j=1

φ(xi)
Tφ(xj )

= 1

n2

n∑

i=1

n∑

j=1

K(xi,xj ) (5.12)

The above derivation implies that the squared norm of the mean in feature space is

simply the average of the values in the kernel matrix K.

Example 5.10. Consider the five points from Example 5.3, also shown in Figure 5.1.

Example 5.4 showed the norm of the mean for the linear kernel. Let us consider the

Gaussian kernel with σ = 1. The Gaussian kernel matrix is given as

K=




1.00 0.60 0.78 0.42 0.72

0.60 1.00 0.94 0.07 0.44

0.78 0.94 1.00 0.13 0.65

0.42 0.07 0.13 1.00 0.23

0.72 0.44 0.65 0.23 1.00




The squared norm of the mean in feature space is therefore

∥∥µφ

∥∥2 = 1

25

5∑

i=1

5∑

j=1

K(xi,xj )=
14.98

25
= 0.599

which implies that
∥∥µφ

∥∥=
√

0.599= 0.774.

Total Variance in Feature Space

Let us first derive a formula for the squared distance of a point φ(xi) to the mean µφ

in feature space:

‖φ(xi)−µφ‖2 = ‖φ(xi)‖2− 2φ(xi)
Tµφ +‖µφ‖2

=K(xi,xi)−
2

n

n∑

j=1

K(xi,xj )+
1

n2

n∑

a=1

n∑

b=1

K(xa,xb)

The total variance [Eq. (1.4)] in feature space is obtained by taking the average

squared deviation of points from the mean in feature space:

σ 2
φ =

1

n

n∑

i=1

‖φ(xi)−µφ‖2
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= 1

n

n∑

i=1


K(xi,xi)−

2

n

n∑

j=1

K(xi,xj )+
1

n2

n∑

a=1

n∑

b=1

K(xa,xb)




= 1

n

n∑

i=1

K(xi,xi)−
2

n2

n∑

i=1

n∑

j=1

K(xi,xj )+
n

n3

n∑

a=1

n∑

b=1

K(xa,xb)

= 1

n

n∑

i=1

K(xi,xi)−
1

n2

n∑

i=1

n∑

j=1

K(xi,xj ) (5.13)

In other words, the total variance in feature space is given as the difference between

the average of the diagonal entries and the average of the entire kernel matrix K. Also

notice that by Eq. (5.12) the second term is simply
∥∥µφ

∥∥2
.

Example 5.11. Continuing Example 5.10, the total variance in feature space for the

five points, for the Gaussian kernel, is given as

σ 2
φ =

(
1

n

n∑

i=1

K(xi,xi)

)
−
∥∥µφ

∥∥2 = 1

5
× 5− 0.599= 0.401

The distance between φ(x1) and the mean µφ in feature space is given as

‖φ(x1)−µφ‖2 =K(x1,x1)−
2

5

5∑

j=1

K(x1,xj )+
∥∥µφ

∥∥2

= 1− 2

5

(
1+ 0.6+ 0.78+ 0.42+0.72

)
+ 0.599

= 1− 1.410+ 0.599= 0.189

Centering in Feature Space

We can center each point in feature space by subtracting the mean from it, as follows:

φ̂(xi)= φ(xi)−µφ

Because we do not have explicit representation of φ(xi) or µφ , we cannot explicitly

center the points. However, we can still compute the centered kernel matrix, that is, the

kernel matrix over centered points.

The centered kernel matrix is given as

K̂=
{
K̂(xi,xj )

}n

i,j=1

where each cell corresponds to the kernel between centered points, that is

K̂(xi,xj )= φ̂(xi)
Tφ̂(xj )

= (φ(xi)−µφ)
T(φ(xj )−µφ)

= φ(xi)
Tφ(xj )−φ(xi)

Tµφ −φ(xj)
Tµφ +µT

φµφ
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=K(xi,xj )−
1

n

n∑

k=1

φ(xi)
Tφ(xk)−

1

n

n∑

k=1

φ(xj )
Tφ(xk)+‖µφ‖2

=K(xi,xj )−
1

n

n∑

k=1

K(xi,xk)−
1

n

n∑

k=1

K(xj ,xk)+
1

n2

n∑

a=1

n∑

b=1

K(xa,xb)

In other words, we can compute the centered kernel matrix using only the kernel

function. Over all the pairs of points, the centered kernel matrix can be written

compactly as follows:

K̂=K− 1

n
1n×nK− 1

n
K1n×n+

1

n2
1n×nK1n×n

=
(

I− 1

n
1n×n

)
K

(
I− 1

n
1n×n

)
(5.14)

where 1n×n is the n×n singular matrix, all of whose entries equal 1.

Example 5.12. Consider the first five points from the 2-dimensional Iris dataset

shown in Figure 5.1a:

x1 =
(

5.9

3

)
x2 =

(
6.9

3.1

)
x3 =

(
6.6

2.9

)
x4 =

(
4.6

3.2

)
x5 =

(
6

2.2

)

Consider the linear kernel matrix shown in Figure 5.1b. We can center it by first

computing

I− 1

5
15×5 =




0.8 −0.2 −0.2 −0.2 −0.2

−0.2 0.8 −0.2 −0.2 −0.2

−0.2 −0.2 0.8 −0.2 −0.2

−0.2 −0.2 −0.2 0.8 −0.2

−0.2 −0.2 −0.2 −0.2 0.8




The centered kernel matrix [Eq. (5.14)] is given as

K̂=
(

I− 1

5
15×5

)
·




43.81 50.01 47.64 36.74 42.00

50.01 57.22 54.53 41.66 48.22

47.64 54.53 51.97 39.64 45.98

36.74 41.66 39.64 31.40 34.64

42.00 48.22 45.98 34.64 40.84



·
(

I− 1

5
15×5

)

=




0.02 −0.06 −0.06 0.18 −0.08

−0.06 0.86 0.54 −1.19 −0.15

−0.06 0.54 0.36 −0.83 −0.01

0.18 −1.19 −0.83 2.06 −0.22

−0.08 −0.15 −0.01 −0.22 0.46




To verify that K̂ is the same as the kernel matrix for the centered points, let us

first center the points by subtracting the mean µ = (6.0,2.88)T. The centered points
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in feature space are given as

z1 =
(
−0.1

0.12

)
z2 =

(
0.9

0.22

)
z3 =

(
0.6

0.02

)
z4 =

(
−1.4

0.32

)
z5 =

(
0.0

−0.68

)

For example, the kernel between φ(z1) and φ(z2) is

φ(z1)
Tφ(z2)= zT

1 z2 =−0.09+ 0.03=−0.06

which matches K̂(x1,x2), as expected. The other entries can be verified in a similar

manner. Thus, the kernel matrix obtained by centering the data and then computing

the kernel is the same as that obtained via Eq. (5.14).

Normalizing in Feature Space

A common form of normalization is to ensure that points in feature space have unit

length by replacing φ(xi) with the corresponding unit vector φn(xi) = φ(xi )

‖φ(xi )‖ . The dot

product in feature space then corresponds to the cosine of the angle between the two

mapped points, because

φn(xi)
Tφn(xj)=

φ(xi)
Tφ(xj )∥∥φ(xi)
∥∥ ·
∥∥φ(xj )

∥∥ = cosθ

If the mapped points are both centered and normalized, then a dot product

corresponds to the correlation between the two points in feature space.

The normalized kernel matrix, Kn, can be computed using only the kernel function

K, as

Kn(xi,xj )=
φ(xi)

Tφ(xj )∥∥φ(xi)
∥∥ ·
∥∥φ(xj )

∥∥ =
K(xi,xj )√

K(xi,xi) ·K(xj ,xj )

Kn has all diagonal elements as 1.

Let W denote the diagonal matrix comprising the diagonal elements of K:

W= diag(K)=




K(x1,x1) 0 · · · 0

0 K(x2,x2) · · · 0
...

...
. . .

...

0 0 · · · K(xn,xn)




The normalized kernel matrix can then be expressed compactly as

Kn =W−1/2 ·K ·W−1/2

where W−1/2 is the diagonal matrix, defined as W−1/2(xi,xi) = 1√
K(xi ,xi )

, with all other

elements being zero.
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Example 5.13. Consider the five points and the linear kernel matrix shown in

Figure 5.1. We have

W=




43.81 0 0 0 0

0 57.22 0 0 0

0 0 51.97 0 0

0 0 0 31.40 0

0 0 0 0 40.84




The normalized kernel is given as

Kn =W−1/2 ·K ·W−1/2 =




1.0000 0.9988 0.9984 0.9906 0.9929

0.9988 1.0000 0.9999 0.9828 0.9975

0.9984 0.9999 1.0000 0.9812 0.9980

0.9906 0.9828 0.9812 1.0000 0.9673

0.9929 0.9975 0.9980 0.9673 1.0000




The same kernel is obtained if we first normalize the feature vectors to have unit

length and then take the dot products. For example, with the linear kernel, the

normalized point φn(x1) is given as

φn(x1)=
φ(x1)

‖φ(x1)‖
= x1

‖x1‖
= 1√

43.81

(
5.9

3

)
=
(

0.8914

0.4532

)

Likewise, we have φn(x2)= 1√
57.22

(
6.9

3.1

)
=
(

0.9122

0.4098

)
. Their dot product is

φn(x1)
Tφn(x2)= 0.8914 · 0.9122+ 0.4532 · 0.4098= 0.9988

which matches Kn(x1,x2).

If we start with the centered kernel matrix K̂ from Example 5.12, and then

normalize it, we obtain the normalized and centered kernel matrix K̂n:

K̂n =




1.00 −0.44 −0.61 0.80 −0.77

−0.44 1.00 0.98 −0.89 −0.24

−0.61 0.98 1.00 −0.97 −0.03

0.80 −0.89 −0.97 1.00 −0.22

−0.77 −0.24 −0.03 −0.22 1.00




As noted earlier, the kernel value K̂n(xi,xj ) denotes the correlation between xi and

xj in feature space, that is, it is cosine of the angle between the centered points φ(xi)

and φ(xj ).

5.4 KERNELS FOR COMPLEX OBJECTS

We conclude this chapter with some examples of kernels defined for complex data such

as strings and graphs. The use of kernels for dimensionality reduction is described in
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Section 7.3, for clustering in Section 13.2 and Chapter 16, for discriminant analysis in

Section 20.2, and for classification in Sections 21.4 and 21.5.

5.4.1 Spectrum Kernel for Strings

Consider text or sequence data defined over an alphabet 6. The l-spectrum feature

map is the mapping φ : 6∗ → R
|6|l from the set of substrings over 6 to the

|6|l-dimensional space representing the number of occurrences of all possible

substrings of length l, defined as

φ(x)=
(
· · · ,#(α), · · ·

)T

α∈6l

where #(α) is the number of occurrences of the l-length string α in x.

The (full) spectrum map is an extension of the l-spectrum map, obtained by

considering all lengths from l = 0 to l =∞, leading to an infinite dimensional feature

map φ : 6∗→R
∞:

φ(x)=
(
· · · ,#(α), · · ·

)T

α∈6∗

where #(α) is the number of occurrences of the string α in x.

The (l-)spectrum kernel between two strings xi,xj is simply the dot product

between their (l-)spectrum maps:

K(xi,xj )= φ(xi)
Tφ(xj )

A naive computation of the l-spectrum kernel takes O(|6|l) time. However, for a

given string x of length n, the vast majority of the l-length strings have an occurrence

count of zero, which can be ignored. The l-spectrum map can be effectively computed

in O(n) time for a string of length n (assuming n≫ l) because there can be at most

n− l + 1 substrings of length l, and the l-spectrum kernel can thus be computed in

O(n+m) time for any two strings of length n and m, respectively.

The feature map for the (full) spectrum kernel is infinite dimensional, but once

again, for a given string x of length n, the vast majority of the strings will have an

occurrence count of zero. A straightforward implementation of the spectrum map

for a string x of length n can be computed in O(n2) time because x can have at

most
∑n

l=1 n− l + 1 = n(n+ 1)/2 distinct nonempty substrings. The spectrum kernel

can then be computed in O(n2 + m2) time for any two strings of length n and m,

respectively. However, a much more efficient computation is enabled via suffix trees

(see Chapter 10), with a total time of O(n+m).

Example 5.14. Consider sequences over the DNA alphabet 6 = {A,C,G,T}. Let

x1 = ACAGCAGTA, and let x2 = AGCAAGCGAG. For l = 3, the feature space

has dimensionality |6|l = 43 = 64. Nevertheless, we do not have to map the input

points into the full feature space; we can compute the reduced 3-spectrum mapping

by counting the number of occurrences for only the length 3 substrings that occur in

each input sequence, as follows:

φ(x1)= (ACA : 1,AGC : 1,AGT : 1,CAG : 2,GCA : 1,GTA : 1)

φ(x2)= (AAG : 1,AGC : 2,CAA : 1,CGA : 1,GAG : 1,GCA : 1,GCG : 1)
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where the notation α : #(α) denotes that substring α has #(α) occurrences in xi . We

can then compute the dot product by considering only the common substrings, as

follows:

K(x1,x2)= 1× 2+ 1× 1= 2+ 1= 3

The first term in the dot product is due to the substring AGC, and the second is due

to GCA, which are the only common length 3 substrings between x1 and x2.

The full spectrum can be computed by considering the occurrences of all

common substrings over all possible lengths. For x1 and x2, the common substrings

and their occurrence counts are given as

α A C G AG CA AGC GCA AGCA

#(α) in x1 4 2 2 2 2 1 1 1

#(α) in x2 4 2 4 3 1 2 1 1

Thus, the full spectrum kernel value is given as

K(x1,x2)= 16+ 4+ 8+ 6+ 2+ 2+ 1+ 1= 40

5.4.2 Diffusion Kernels on Graph Nodes

Let S be some symmetric similarity matrix between nodes of a graph G = (V,E). For

instance, S can be the (weighted) adjacency matrix A [Eq. (4.1)] or the Laplacian

matrix L = A−1 (or its negation), where 1 is the degree matrix for an undirected

graph G, defined as 1(i, i) = di and 1(i,j) = 0 for all i 6= j , and di is the degree of

node i.

Consider the similarity between any two nodes obtained by summing the product

of the similarities over paths of length 2:

S(2)(xi,xj )=
n∑

a=1

S(xi,xa)S(xa,xj )= ST
i Sj

where

Si =
(
S(xi,x1),S(xi,x2), . . . ,S(xi,xn)

)T

denotes the (column) vector representing the i-th row of S (and because S is symmetric,

it also denotes the ith column of S). Over all pairs of nodes the similarity matrix over

paths of length 2, denoted S(2), is thus given as the square of the base similarity matrix S:

S(2) = S×S= S2

In general, if we sum up the product of the base similarities over all l-length paths

between two nodes, we obtain the l-length similarity matrix S(l), which is simply the lth

power of S, that is,

S(l) = Sl
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Power Kernels

Even path lengths lead to positive semidefinite kernels, but odd path lengths are not

guaranteed to do so, unless the base matrix S is itself a positive semidefinite matrix. In

particular, K = S2 is a valid kernel. To see this, assume that the ith row of S denotes

the feature map for xi , that is, φ(xi)= Si . The kernel value between any two points is

then a dot product in feature space:

K(xi,xj )= S(2)(xi,xj )= ST
i Sj = φ(xi)

Tφ(xj )

For a general path length l, let K= Sl . Consider the eigen-decomposition of S:

S=U3UT =
n∑

i=1

uiλiu
T
i

where U is the orthogonal matrix of eigenvectors and 3 is the diagonal matrix of

eigenvalues of S:

U=



| | |

u1 u2 · · · un

| | |


 3=




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn




The eigen-decomposition of K can be obtained as follows:

K= Sl =
(
U3UT

)l =U
(
3l
)
UT

where we used the fact that eigenvectors of S and Sl are identical, and further that

eigenvalues of Sl are given as (λi)
l (for all i = 1, . . . ,n), where λi is an eigenvalue of S.

For K=Sl to be a positive semidefinite matrix, all its eigenvalues must be non-negative,

which is guaranteed for all even path lengths. Because (λi)
l will be negative if l is odd

and λi is negative, odd path lengths lead to a positive semidefinite kernel only if S is

positive semidefinite.

Exponential Diffusion Kernel

Instead of fixing the path length a priori, we can obtain a new kernel between nodes of

a graph by considering paths of all possible lengths, but by damping the contribution

of longer paths, which leads to the exponential diffusion kernel, defined as

K=
∞∑

l=0

1

l!
β lSl

= I+βS+ 1

2!
β2S2+ 1

3!
β3S3+ ·· ·

= exp
{
βS
}

(5.15)

where β is a damping factor, and exp{βS} is the matrix exponential. The series on the

right hand side above converges for all β ≥ 0.
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Substituting S=U3UT =
∑n

i=1 λiuiu
T
i in Eq. (5.15), and utilizing the fact that

UUT =
∑n

i=1 uiu
T
i = I, we have

K= I+βS+ 1

2!
β2S2+ ·· ·

=
(

n∑

i=1

uiu
T
i

)
+
(

n∑

i=1

uiβλiu
T
i

)
+
(

n∑

i=1

ui

1

2!
β2λ2

i u
T
i

)
+ ·· ·

=
n∑

i=1

ui

(
1+βλi +

1

2!
β2λ2

i + ·· ·
)
uT

i

=
n∑

i=1

ui exp{βλi} uT
i

=U




exp{βλ1} 0 · · · 0

0 exp{βλ2} · · · 0
...

...
. . . 0

0 0 · · · exp{βλn}


UT (5.16)

Thus, the eigenvectors of K are the same as those for S, whereas its eigenvalues are

given as exp{βλi}, where λi is an eigenvalue of S. Further, K is symmetric because S

is symmetric, and its eigenvalues are real and non-negative because the exponential

of a real number is non-negative. K is thus a positive semidefinite kernel matrix. The

complexity of computing the diffusion kernel is O(n3) corresponding to the complexity

of computing the eigen-decomposition.

Von Neumann Diffusion Kernel

A related kernel based on powers of S is the von Neumann diffusion kernel, defined as

K=
∞∑

l=0

β lSl (5.17)

where β ≥ 0. Expanding Eq. (5.17), we have

K= I+βS+β2S2+β3S3+ ·· ·
= I+βS(I+βS+β2S2+ ·· · )
= I+βSK

Rearranging the terms in the preceding equation, we obtain a closed form expression

for the von Neumann kernel:

K−βSK= I

(I−βS)K= I

K= (I−βS)−1 (5.18)
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Plugging in the eigen-decomposition S=U3UT, and rewriting I=UUT, we have

K=
(
UUT−U(β3)UT

)−1

=
(
U(I−β3)UT

)−1

=U(I−β3)−1 UT

where (I− β3)−1 is the diagonal matrix whose ith diagonal entry is (1− βλi)
−1. The

eigenvectors of K and S are identical, but the eigenvalues of K are given as 1/(1−βλi).

For K to be a positive semidefinite kernel, all its eigenvalues should be non-negative,

which in turn implies that

(1−βλi)
−1 ≥ 0

1−βλi ≥ 0

β ≤ 1/λi

Further, the inverse matrix (I−β3)−1 exists only if

det(I−β3)=
n∏

i=1

(1−βλi) 6= 0

which implies that β 6= 1/λi for all i. Thus, for K to be a valid kernel, we require that

β < 1/λi for all i = 1, . . . ,n. The von Neumann kernel is therefore guaranteed to be

positive semidefinite if |β|< 1/ρ(S), where ρ(S)=maxi{|λi|} is called the spectral radius

of S, defined as the largest eigenvalue of S in absolute value.

Example 5.15. Consider the graph in Figure 5.2. Its adjacency and degree matrices

are given as

A=




0 0 1 1 0

0 0 1 0 1

1 1 0 1 0

1 0 1 0 1

0 1 0 1 0




1=




2 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 2




v1

v4 v5

v3 v2

Figure 5.2. Graph diffusion kernel.
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The negated Laplacian matrix for the graph is therefore

S=−L=A−D=




−2 0 1 1 0

0 −2 1 0 1

1 1 −3 1 0

1 0 1 −3 1

0 1 0 1 −2




The eigenvalues of S are as follows:

λ1 = 0 λ2 =−1.38 λ3 =−2.38 λ4 =−3.62 λ5 =−4.62

and the eigenvectors of S are

U=




u1 u2 u3 u4 u5

0.45 −0.63 0.00 0.63 0.00

0.45 0.51 −0.60 0.20 −0.37

0.45 −0.20 −0.37 −0.51 0.60

0.45 −0.20 0.37 −0.51 −0.60

0.45 0.51 0.60 0.20 0.37




Assuming β = 0.2, the exponential diffusion kernel matrix is given as

K= exp
{
0.2S

}
=U




exp{0.2λ1} 0 · · · 0

0 exp{0.2λ2} · · · 0
...

...
. . . 0

0 0 · · · exp{0.2λn}


UT

=




0.70 0.01 0.14 0.14 0.01

0.01 0.70 0.13 0.03 0.14

0.14 0.13 0.59 0.13 0.03

0.14 0.03 0.13 0.59 0.13

0.01 0.14 0.03 0.13 0.70




For the von Neumann diffusion kernel, we have

(I− 0.23)
−1 =




1 0.00 0.00 0.00 0.00

0 0.78 0.00 0.00 0.00

0 0.00 0.68 0.00 0.00

0 0.00 0.00 0.58 0.00

0 0.00 0.00 0.00 0.52



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For instance, because λ2 = −1.38, we have 1− βλ2 = 1+ 0.2× 1.38 = 1.28, and

therefore the second diagonal entry is (1−βλ2)
−1= 1/1.28= 0.78. The von Neumann

kernel is given as

K=U(I− 0.23)−1UT =




0.75 0.02 0.11 0.11 0.02

0.02 0.74 0.10 0.03 0.11

0.11 0.10 0.66 0.10 0.03

0.11 0.03 0.10 0.66 0.10

0.02 0.11 0.03 0.10 0.74




5.5 FURTHER READING

Kernel methods have been extensively studied in machine learning and data mining.

For an in-depth introduction and more advanced topics see Schölkopf and Smola

(2002) and Shawe-Taylor and Cristianini (2004). For applications of kernel methods

in bioinformatics see Schölkopf, Tsuda, and Vert (2004).

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT

Press.

Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods in Computational

Biology. Cambridge, MA: MIT Press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.

New York: Cambridge University Press.

5.6 EXERCISES

Q1. Prove that the dimensionality of the feature space for the inhomogeneous polynomial

kernel of degree q is

m=
(

d + q

q

)

Q2. Consider the data shown in Table 5.1. Assume the following kernel function:

K(xi ,xj )= ‖xi − xj‖2. Compute the kernel matrix K.

Table 5.1. Dataset for Q2

i xi

x1 (4,2.9)

x2 (2.5,1)

x3 (3.5,4)

x4 (2,2.1)
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Q3. Show that eigenvectors of S and Sl are identical, and further that eigenvalues of Sl

are given as (λi)
l (for all i = 1, . . . ,n), where λi is an eigenvalue of S, and S is some

n×n symmetric similarity matrix.

Q4. The von Neumann diffusion kernel is a valid positive semidefinite kernel if |β|< 1
ρ(S)

,

where ρ(S) is the spectral radius of S. Can you derive better bounds for cases when

β > 0 and when β < 0?

Q5. Given the three points x1 = (2.5,1)T , x2 = (3.5,4)T , and x3 = (2,2.1)T.

(a) Compute the kernel matrix for the Gaussian kernel assuming that σ 2 = 5.

(b) Compute the distance of the point φ(x1) from the mean in feature space.

(c) Compute the dominant eigenvector and eigenvalue for the kernel matrix

from (a).
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In data mining typically the data is very high dimensional, as the number of

attributes can easily be in the hundreds or thousands. Understanding the nature

of high-dimensional space, or hyperspace, is very important, especially because

hyperspace does not behave like the more familiar geometry in two or three

dimensions.

6.1 HIGH-DIMENSIONAL OBJECTS

Consider the n× d data matrix

D=




X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd




where each point xi ∈Rd and each attribute Xj ∈Rn.

Hypercube

Let the minimum and maximum values for each attribute Xj be given as

min(Xj )=min
i

{
xij

}
max(Xj )=max

i

{
xij

}

The data hyperspace can be considered as a d-dimensional hyper-rectangle, defined as

Rd =
d∏

j=1

[
min(Xj),max(Xj )

]

=
{
x= (x1,x2, . . . ,xd)

T
∣∣ xj ∈ [min(Xj ),max(Xj )] , for j = 1, . . . ,d

}

163
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Assume the data is centered to have mean µ = 0. Let m denote the largest absolute

value in D, given as

m= d
max
j=1

n
max
i=1

{
|xij |

}

The data hyperspace can be represented as a hypercube, centered at 0, with all sides of

length l = 2m, given as

Hd(l)=
{
x= (x1,x2, . . . ,xd)

T
∣∣ ∀i, xi ∈ [−l/2, l/2]

}

The hypercube in one dimension, H1(l), represents an interval, which in two dimen-

sions, H2(l), represents a square, and which in three dimensions, H3(l), represents a

cube, and so on. The unit hypercube has all sides of length l = 1, and is denoted as

Hd(1).

Hypersphere

Assume that the data has been centered, so that µ = 0. Let r denote the largest

magnitude among all points:

r =max
i

{
‖xi‖

}

The data hyperspace can also be represented as a d-dimensional hyperball centered at

0 with radius r , defined as

Bd(r)=
{
x | ‖x‖ ≤ r

}

or Bd(r)=
{
x= (x1,x2, . . . ,xd)

∣∣
d∑

j=1

x2
j ≤ r2

}

The surface of the hyperball is called a hypersphere, and it consists of all the points

exactly at distance r from the center of the hyperball, defined as

Sd(r)=
{
x | ‖x‖ = r

}

or Sd(r)=
{
x= (x1,x2, . . . ,xd)

∣∣
d∑

j=1

(xj )
2 = r2

}

Because the hyperball consists of all the surface and interior points, it is also called a

closed hypersphere.

Example 6.1. Consider the 2-dimensional, centered, Iris dataset, plotted in

Figure 6.1. The largest absolute value along any dimension is m = 2.06, and the

point with the largest magnitude is (2.06,0.75), with r = 2.19. In two dimensions, the

hypercube representing the data space is a square with sides of length l = 2m= 4.12.

The hypersphere marking the extent of the space is a circle (shown dashed) with

radius r = 2.19.
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Figure 6.1. Iris data hyperspace: hypercube (solid; with l= 4.12) and hypersphere (dashed; with r= 2.19).

6.2 HIGH-DIMENSIONAL VOLUMES

Hypercube

The volume of a hypercube with edge length l is given as

vol(Hd(l))= ld

Hypersphere

The volume of a hyperball and its corresponding hypersphere is identical because the

volume measures the total content of the object, including all internal space. Consider

the well known equations for the volume of a hypersphere in lower dimensions

vol(S1(r))= 2r (6.1)

vol(S2(r))= πr2 (6.2)

vol(S3(r))=
4

3
πr3 (6.3)

As per the derivation in Appendix 6.7, the general equation for the volume of a

d-dimensional hypersphere is given as

vol(Sd(r))=Kdr
d =

(
π

d
2

Ŵ
(

d

2
+ 1

)
)

rd (6.4)
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where

Kd =
πd/2

Ŵ( d

2
+ 1)

(6.5)

is a scalar that depends on the dimensionality d , and Ŵ is the gamma function

[Eq. (3.17)], defined as (for α > 0)

Ŵ(α)=
∞∫

0

xα−1e−xdx (6.6)

By direct integration of Eq. (6.6), we have

Ŵ(1)= 1 and Ŵ

(
1

2

)
=
√

π (6.7)

The gamma function also has the following property for any α > 1:

Ŵ(α)= (α− 1)Ŵ(α− 1) (6.8)

For any integer n≥ 1, we immediately have

Ŵ(n)= (n− 1)! (6.9)

Turning our attention back to Eq. (6.4), when d is even, then d

2
+ 1 is an integer,

and by Eq. (6.9) we have

Ŵ

(
d

2
+ 1

)
=
(

d

2

)
!

and when d is odd, then by Eqs. (6.8) and (6.7), we have

Ŵ

(
d

2
+ 1

)
=
(

d

2

)(
d − 2

2

)(
d − 4

2

)
· · ·
(

d − (d− 1)

2

)
Ŵ

(
1

2

)
=
(

d!!

2(d+1)/2

)√
π

where d!! denotes the double factorial (or multifactorial), given as

d!!=
{

1 if d = 0 or d = 1

d · (d− 2)!! if d ≥ 2

Putting it all together we have

Ŵ

(
d

2
+ 1

)
=





(
d

2

)
! if d is even

√
π
(

d!!

2(d+1)/2

)
if d is odd

(6.10)

Plugging in values of Ŵ(d/2+ 1) in Eq. (6.4) gives us the equations for the volume

of the hypersphere in different dimensions.



6.2 High-dimensional Volumes 167

Example 6.2. By Eq. (6.10), we have for d = 1, d = 2 and d = 3:

Ŵ(1/2+ 1)= 1

2

√
π

Ŵ(2/2+ 1)= 1!= 1

Ŵ(3/2+ 1)= 3

4

√
π

Thus, we can verify that the volume of a hypersphere in one, two, and three

dimensions is given as

vol(S1(r))=
√

π
1
2

√
π

r = 2r

vol(S2(r))=
π

1
r2 = πr2

vol(S3(r))=
π3/2

3
4

√
π

r3 = 4

3
πr3

which match the expressions in Eqs. (6.1), (6.2), and (6.3), respectively.

Surface Area The surface area of the hypersphere can be obtained by differentiating

its volume with respect to r , given as

area(Sd(r))=
d

dr
vol(Sd(r))=

(
π

d
2

Ŵ
(

d

2
+ 1

)
)

drd−1 =
(

2π
d
2

Ŵ
(

d

2

)
)

rd−1

We can quickly verify that for two dimensions the surface area of a circle is given as

2πr , and for three dimensions the surface area of sphere is given as 4πr2.

Asymptotic Volume An interesting observation about the hypersphere volume is

that as dimensionality increases, the volume first increases up to a point, and then

starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere

with r = 1,

lim
d→∞

vol(Sd(1))= lim
d→∞

π
d
2

Ŵ( d

2
+ 1)
→ 0

Example 6.3. Figure 6.2 plots the volume of the unit hypersphere in Eq. (6.4) with

increasing dimensionality. We see that initially the volume increases, and achieves

the highest volume for d = 5 with vol(S5(1)) = 5.263. Thereafter, the volume drops

rapidly and essentially becomes zero by d = 30.
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Figure 6.2. Volume of a unit hypersphere.

6.3 HYPERSPHERE INSCRIBED WITHIN HYPERCUBE

We next look at the space enclosed within the largest hypersphere that can be

accommodated within a hypercube (which represents the dataspace). Consider a

hypersphere of radius r inscribed in a hypercube with sides of length 2r . When we

take the ratio of the volume of the hypersphere of radius r to the hypercube with side

length l = 2r , we observe the following trends.

In two dimensions, we have

vol(S2(r))

vol(H2(2r))
= πr2

4r2
= π

4
= 78.5%

Thus, an inscribed circle occupies π

4
of the volume of its enclosing square, as illustrated

in Figure 6.3a.

In three dimensions, the ratio is given as

vol(S3(r))

vol(H3(2r))
=

4
3
πr3

8r3
= π

6
= 52.4%

An inscribed sphere takes up only π

6
of the volume of its enclosing cube, as shown in

Figure 6.3b, which is quite a sharp decrease over the 2-dimensional case.

For the general case, as the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd(2r))
= lim

d→∞

πd/2

2dŴ( d

2
+ 1)
→ 0

This means that as the dimensionality increases, most of the volume of the hypercube

is in the “corners,” whereas the center is essentially empty. The mental picture that
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−r 0 r

(a)

−r

0

r
(b)

Figure 6.3. Hypersphere inscribed inside a hypercube: in (a) two and (b) three dimensions.

(a) (b) (c) (d)

Figure 6.4. Conceptual view of high-dimensional space: (a) two, (b) three, (c) four, and (d) higher

dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals. The radius of the inscribed circle

accurately reflects the difference between the volume of the hypercube and the inscribed hypersphere in d

dimensions.

emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated

in Figure 6.4.

6.4 VOLUME OF THIN HYPERSPHERE SHELL

Let us now consider the volume of a thin hypersphere shell of width ǫ bounded by an

outer hypersphere of radius r , and an inner hypersphere of radius r − ǫ. The volume

of the thin shell is given as the difference between the volumes of the two bounding

hyperspheres, as illustrated in Figure 6.5.

Let Sd(r,ǫ) denote the thin hypershell of width ǫ. Its volume is given as

vol(Sd(r,ǫ))= vol(Sd(r))− vol(Sd(r − ǫ))=Kdr
d −Kd(r − ǫ)d .
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r

r −
ǫ

ǫ

Figure 6.5. Volume of a thin shell (for ǫ > 0).

Let us consider the ratio of the volume of the thin shell to the volume of the outer

sphere:

vol(Sd(r,ǫ))

vol(Sd(r))
= Kdr

d −Kd(r − ǫ)d

Kdrd
= 1−

(
1− ǫ

r

)d

Example 6.4. For example, for a circle in two dimensions, with r = 1 and ǫ = 0.01 the

volume of the thin shell is 1−(0.99)2= 0.0199≃ 2%. As expected, in two-dimensions,

the thin shell encloses only a small fraction of the volume of the original hypersphere.

For three dimensions this fraction becomes 1− (0.99)3= 0.0297≃ 3%, which is still a

relatively small fraction.

Asymptotic Volume

As d increases, in the limit we obtain

lim
d→∞

vol(Sd(r,ǫ))

vol(Sd(r))
= lim

d→∞
1−

(
1− ǫ

r

)d

→ 1

That is, almost all of the volume of the hypersphere is contained in the thin shell as

d→∞. This means that in high-dimensional spaces, unlike in lower dimensions, most

of the volume is concentrated around the surface (within ǫ) of the hypersphere, and

the center is essentially void. In other words, if the data is distributed uniformly in

the d-dimensional space, then all of the points essentially lie on the boundary of the

space (which is a d − 1 dimensional object). Combined with the fact that most of the

hypercube volume is in the corners, we can observe that in high dimensions, data tends

to get scattered on the boundary and corners of the space.
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6.5 DIAGONALS IN HYPERSPACE

Another counterintuitive behavior of high-dimensional spaces deals with the diag-

onals. Let us assume that we have a d-dimensional hypercube, with origin 0d =
(01,02, . . . ,0d), and bounded in each dimension in the range [−1,1]. Then each “corner”

of the hyperspace is a d-dimensional vector of the form (±11,±12, . . . ,±1d)
T. Let

ei = (01, . . . ,1i, . . . ,0d)
T denote the d-dimensional canonical unit vector in dimension

i, and let 1 denote the d-dimensional diagonal vector (11,12, . . . ,1d)
T.

Consider the angle θd between the diagonal vector 1 and the first axis e1, in d

dimensions:

cosθd =
eT

1 1

‖e1‖ ‖1‖
= eT

1 1√
eT

1 e1

√
1T1
= 1√

1
√

d
= 1√

d

Example 6.5. Figure 6.6 illustrates the angle between the diagonal vector 1 and e1,

for d = 2 and d = 3. In two dimensions, we have cosθ2 = 1√
2

whereas in three

dimensions, we have cosθ3 = 1√
3
.

Asymptotic Angle

As d increases, the angle between the d-dimensional diagonal vector 1 and the first

axis vector e1 is given as

lim
d→∞

cosθd = lim
d→∞

1√
d
→ 0

which implies that

lim
d→∞

θd→
π

2
= 90◦

−1

0

1

−1 0 1

1

e1
θ

(a)

−1

0

1 −1

0

1

−1

0

1 1

e1

θ

(b)

Figure 6.6. Angle between diagonal vector 1 and e1: in (a) two and (b) three dimensions.



172 High-dimensional Data

This analysis holds for the angle between the diagonal vector 1d and any of the d

principal axis vectors ei (i.e., for all i ∈ [1,d]). In fact, the same result holds for any

diagonal vector and any principal axis vector (in both directions). This implies that in

high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all

the coordinates axes! Because there are 2d corners in a d-dimensional hyperspace,

there are 2d diagonal vectors from the origin to each of the corners. Because the

diagonal vectors in opposite directions define a new axis, we obtain 2d−1 new axes,

each of which is essentially orthogonal to all of the d principal coordinate axes! Thus,

in effect, high-dimensional space has an exponential number of orthogonal “axes.” A

consequence of this strange property of high-dimensional space is that if there is a

point or a group of points, say a cluster of interest, near a diagonal, these points will

get projected into the origin and will not be visible in lower dimensional projections.

6.6 DENSITY OF THE MULTIVARIATE NORMAL

Let us consider how, for the standard multivariate normal distribution, the density of

points around the mean changes in d dimensions. In particular, consider the probability

of a point being within a fraction α > 0, of the peak density at the mean.

For a multivariate normal distribution [Eq. (2.33)], with µ= 0d (the d-dimensional

zero vector), and 6 = Id (the d× d identity matrix), we have

f (x)= 1

(
√

2π)d
exp

{
−xTx

2

}
(6.11)

At the mean µ= 0d , the peak density is f (0d) = 1

(
√

2π)d
. Thus, the set of points x with

density at least α fraction of the density at the mean, with 0 < α < 1, is given as

f (x)

f (0)
≥ α

which implies that

exp

{
−xTx

2

}
≥ α

or xTx≤−2ln(α)

and thus

d∑

i=1

(xi)
2 ≤−2ln(α) (6.12)

It is known that if the random variables X1, X2, . . ., Xk are independent and

identically distributed, and if each variable has a standard normal distribution, then

their squared sum X2+X2
2+·· ·+X2

k follows a χ2 distribution with k degrees of freedom,

denoted as χ2
k . Because the projection of the standard multivariate normal onto any

attribute Xj is a standard univariate normal, we conclude that xTx=
∑d

i=1(xi)
2 has a χ2

distribution with d degrees of freedom. The probability that a point x is within α times

the density at the mean can be computed from the χ2
d density function using Eq. (6.12),
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as follows:

P

(
f (x)

f (0)
≥ α

)
= P

(
xTx≤−2ln(α)

)

=
−2ln(α)∫

0

f
χ2
d
(xTx)

= F
χ2
d
(−2ln(α)) (6.13)

where f
χ2
q
(x) is the chi-squared probability density function [Eq. (3.16)] with q degrees

of freedom:

f
χ2
q
(x)= 1

2q/2Ŵ(q/2)
x

q

2
−1

e
− x

2

and F
χ2
q
(x) is its cumulative distribution function.

As dimensionality increases, this probability decreases sharply, and eventually

tends to zero, that is,

lim
d→∞

P
(
xTx≤−2ln(α)

)
→ 0 (6.14)

Thus, in higher dimensions the probability density around the mean decreases very

rapidly as one moves away from the mean. In essence the entire probability mass

migrates to the tail regions.

Example 6.6. Consider the probability of a point being within 50% of the density at

the mean, that is, α = 0.5. From Eq. (6.13) we have

P
(
xTx≤−2ln(0.5)

)
= F

χ2
d
(1.386)

We can compute the probability of a point being within 50% of the peak density

by evaluating the cumulative χ2 distribution for different degrees of freedom (the

number of dimensions). For d = 1, we find that the probability is F
χ2

1
(1.386)= 76.1%.

For d = 2 the probability decreases to F
χ2

2
(1.386)= 50%, and for d = 3 it reduces to

29.12%. Looking at Figure 6.7, we can see that only about 24% of the density is in the

tail regions for one dimension, but for two dimensions more than 50% of the density

is in the tail regions.

Figure 6.8 plots the χ2
d distribution and shows the probability P

(
xTx≤ 1.386

)
for

two and three dimensions. This probability decreases rapidly with dimensionality; by

d = 10, it decreases to 0.075%, that is, 99.925% of the points lie in the extreme or tail

regions.

Distance of Points from the Mean

Let us consider the average distance of a point x from the center of the standard

multivariate normal. Let r2 denote the square of the distance of a point x to the center

µ= 0, given as

r2 = ‖x− 0‖2 = xTx=
d∑

i=1

x2
i
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Figure 6.7. Density contour for α fraction of the density at the mean: in (a) one and (b) two dimensions.
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Figure 6.8. Probability P(xTx≤−2ln(α)), with α = 0.5.
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xTx follows a χ2 distribution with d degrees of freedom, which has mean d and variance

2d . It follows that the mean and variance of the random variable r2 is

µr2 = d σ 2
r2 = 2d

By the central limit theorem, as d→∞, r2 is approximately normal with mean d and

variance 2d , which implies that r2 is concentrated about its mean value of d . As a

consequence, the distance r of a point x to the center of the standard multivariate

normal is likewise approximately concentrated around its mean
√

d .

Next, to estimate the spread of the distance r around its mean value, we need to

derive the standard deviation of r from that of r2. Assuming that σr is much smaller

compared to r , then using the fact that d log r

dr
= 1

r
, after rearranging the terms, we have

dr

r
= d logr

= 1

2
d logr2

Using the fact that d log r2

dr2 = 1

r2 , and rearranging the terms, we obtain

dr

r
= 1

2

dr2

r2

which implies that dr = 1
2r

dr2. Setting the change in r2 equal to the standard deviation

of r2, we have dr2 = σr2 =
√

2d, and setting the mean radius r =
√

d , we have

σr = dr = 1

2
√

d

√
2d = 1√

2

We conclude that for large d , the radius r (or the distance of a point x from the

origin 0) follows a normal distribution with mean
√

d and standard deviation 1/
√

2.

Nevertheless, the density at the mean distance
√

d , is exponentially smaller than that

at the peak density because

f (x)

f (0)
= exp

{
−xTx/2

}
= exp{−d/2}

Combined with the fact that the probability mass migrates away from the mean in

high dimensions, we have another interesting observation, namely that, whereas the

density of the standard multivariate normal is maximized at the center 0, most of the

probability mass (the points) is concentrated in a small band around the mean distance

of
√

d from the center.

6.7 APPENDIX: DERIVATION OF HYPERSPHERE VOLUME

The volume of the hypersphere can be derived via integration using spherical polar

coordinates. We consider the derivation in two and three dimensions, and then for a

general d .
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Figure 6.9. Polar coordinates in two dimensions.

Volume in Two Dimensions

As illustrated in Figure 6.9, in d = 2 dimensions, the point x = (x1,x2) ∈ R
2 can be

expressed in polar coordinates as follows:

x1 = r cosθ1 = rc1

x2 = r sinθ1 = rs1

where r = ‖x‖, and we use the notation cosθ1 = c1 and sinθ1 = s1 for convenience.

The Jacobian matrix for this transformation is given as

J(θ1)=
( ∂x1

∂r

∂x1
∂θ1

∂x2
∂r

∂x2
∂θ1

)
=
(

c1 −rs1

s1 rc1

)

The determinant of the Jacobian matrix is called the Jacobian. For J(θ1), the Jacobian

is given as

det(J(θ1))= rc2
1+ rs2

1 = r(c2
1+ s2

1)= r (6.15)

Using the Jacobian in Eq. (6.15), the volume of the hypersphere in two dimensions

can be obtained by integration over r and θ1 (with r > 0, and 0≤ θ1 ≤ 2π)

vol(S2(r))=
∫

r

∫

θ1

∣∣∣det(J(θ1))

∣∣∣ dr dθ1

=
r∫

0

2π∫

0

r dr dθ1 =
r∫

0

r dr

2π∫

0

dθ1

= r2

2

∣∣∣∣
r

0

· θ1

∣∣∣
2π

0
= πr2
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Figure 6.10. Polar coordinates in three dimensions.

Volume in Three Dimensions

As illustrated in Figure 6.10, in d = 3 dimensions, the point x= (x1,x2,x3) ∈R3 can be

expressed in polar coordinates as follows:

x1 = r cosθ1 cosθ2 = rc1c2

x2 = r cosθ1 sinθ2 = rc1s2

x3 = r sinθ1 = rs1

where r = ‖x‖, and we used the fact that the dotted vector that lies in the X1–X2 plane

in Figure 6.10 has magnitude r cosθ1.

The Jacobian matrix is given as

J(θ1,θ2)=




∂x1
∂r

∂x1
∂θ1

∂x1
∂θ2

∂x2
∂r

∂x2
∂θ1

∂x2
∂θ2

∂x3
∂r

∂x3
∂θ1

∂x3
∂θ2


=




c1c2 −rs1c2 −rc1s2

c1s2 −rs1s2 rc1c2

s1 rc1 0




The Jacobian is then given as

det(J(θ1,θ2))= s1(−rs1)(c1)det(J(θ2))− rc1c1c1 det(J(θ2))

=−r2c1(s
2
1 + c2

2)=−r2c1 (6.16)

In computing this determinant we made use of the fact that if a column of a matrix A

is multiplied by a scalar s, then the resulting determinant is s det(A). We also relied

on the fact that the (3,1)-minor of J(θ1,θ2), obtained by deleting row 3 and column

1 is actually J(θ2) with the first column multiplied by −rs1 and the second column
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multiplied by c1. Likewise, the (3,2)-minor of J(θ1,θ2)) is J(θ2) with both the columns

multiplied by c1.

The volume of the hypersphere for d = 3 is obtained via a triple integral with r > 0,

−π/2≤ θ1 ≤ π/2, and 0≤ θ2 ≤ 2π

vol(S3(r))=
∫

r

∫

θ1

∫

θ2

∣∣∣det(J(θ1,θ2))

∣∣∣ dr dθ1 dθ2

=
r∫

0

π/2∫

−π/2

2π∫

0

r2 cosθ1 dr dθ1 dθ2 =
r∫

0

r2 dr

π/2∫

−π/2

cosθ1dθ1

2π∫

0

dθ2

= r3

3

∣∣∣∣
r

0

· sinθ1

∣∣∣
π/2

−π/2
· θ2

∣∣∣
2π

0
= r3

3
· 2 · 2π = 4

3
πr3 (6.17)

Volume in d Dimensions

Before deriving a general expression for the hypersphere volume in d dimensions, let

us consider the Jacobian in four dimensions. Generalizing the polar coordinates from

three dimensions in Figure 6.10 to four dimensions, we obtain

x1 = r cosθ1 cosθ2 cosθ3 = rc2c2c3

x2 = r cosθ1 cosθ2 sinθ3 = rc1c2s3

x3 = r cosθ1 sinθ2 = rc1s1

x4 = r sinθ1 = rs1

The Jacobian matrix is given as

J(θ1,θ2,θ3)=




∂x1
∂r

∂x1
∂θ1

∂x1
∂θ2

∂x1
∂θ3

∂x2
∂r

∂x2
∂θ1

∂x2
∂θ2

∂x2
∂θ3

∂x3
∂r

∂x3
∂θ1

∂x3
∂θ2

∂x3
∂θ3

∂x4
∂r

∂x4
∂θ1

∂x4
∂θ2

∂x4
∂θ3



=




c1c2c3 −rs1c2c3 −rc1s2c3 rc1c2s3

c1c2s3 −rs1c2s3 −rc1s2s3 rc1c2c3

c1s2 −rs1s2 rc1c2 0

s1 rc1 0 0




Utilizing the Jacobian in three dimensions [Eq. (6.16)], the Jacobian in four dimensions

is given as

det(J(θ1,θ2,θ3))= s1(−rs1)(c1)(c1)det(J(θ2,θ3))− rc1(c1)(c1)(c1)det(J(θ2,θ3))

= r3s2
1c

2
1c2+ r3c4

1c2 = r3c2
1c2(s

2
1 + c2

1)= r3c2
1c2

Jacobian in d Dimensions By induction, we can obtain the d-dimensional Jacobian as

follows:

det(J(θ1,θ2, . . . ,θd−1))= (−1)drd−1cd−2
1 cd−3

2 . . . cd−2
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The volume of the hypersphere is given by the d-dimensional integral with r > 0,

−π/2≤ θi ≤ π/2 for all i = 1, . . . ,d − 2, and 0≤ θd−1 ≤ 2π :

vol(Sd(r))=
∫

r

∫

θ1

∫

θ2

. . .

∫

θd−1

∣∣∣det(J(θ1,θ2, . . . ,θd−1))

∣∣∣ dr dθ1 dθ2 . . .dθd−1

=
r∫

0

rd−1dr

π/2∫

−π/2

cd−2
1 dθ1 . . .

π/2∫

−π/2

cd−2dθd−2

2π∫

0

dθd−1 (6.18)

Consider one of the intermediate integrals:

π/2∫

−π/2

(cosθ)kdθ = 2

π/2∫

0

cosk θdθ (6.19)

Let us substitute u= cos2 θ , then we have θ = cos−1(u1/2), and the Jacobian is

J= ∂θ

∂u
=−1

2
u−1/2(1−u)−1/2 (6.20)

Substituting Eq. (6.20) in Eq. (6.19), we get the new integral:

2

π/2∫

0

cosk θdθ =
1∫

0

u(k−1)/2(1−u)−1/2du

=B

(
k+ 1

2
,

1

2

)
=

Ŵ
(

k+1
2

)
Ŵ
(

1
2

)

Ŵ
(

k

2
+ 1

) (6.21)

where B(α,β) is the beta function, given as

B(α,β)=
1∫

0

uα−1(1−u)β−1du

and it can be expressed in terms of the gamma function [Eq. (6.6)] via the identity

B(α,β)= Ŵ(α)Ŵ(β)

Ŵ(α+β)

Using the fact that Ŵ(1/2) = √π , and Ŵ(1) = 1, plugging Eq. (6.21) into Eq. (6.18),

we get

vol(Sd(r))=
rd

d

Ŵ
(

d−1
2

)
Ŵ
(

1
2

)

Ŵ
(

d

2

) Ŵ
(

d−2
2

)
Ŵ
(

1
2

)

Ŵ
(

d−1
2

) . . .
Ŵ (1)Ŵ

(
1
2

)

Ŵ
(

3
2

) 2π

=
πŴ

(
1
2

)d/2−1
rd

d

2
Ŵ
(

d

2

)

=
(

πd/2

Ŵ
(

d

2
+ 1

)
)

rd

which matches the expression in Eq. (6.4).
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6.8 FURTHER READING

For an introduction to the geometry of d-dimensional spaces see Kendall (1961) and

also Scott (1992, Section 1.5). The derivation of the mean distance for the multivariate

normal is from MacKay (2003, p. 130).

Kendall, M. G. (1961). A Course in the Geometry of n Dimensions. New York: Hafner.

MacKay, D. J. (2003). Information Theory, Inference and Learning Algorithms.

New York: Cambridge University Press.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualiza-

tion. New York: John Wiley & Sons.

6.9 EXERCISES

Q1. Given the gamma function in Eq. (6.6), show the following:

(a) Ŵ(1)= 1

(b) Ŵ
(

1
2

)
=√π

(c) Ŵ(α)= (α− 1)Ŵ(α− 1)

Q2. Show that the asymptotic volume of the hypersphere Sd (r) for any value of radius r

eventually tends to zero as d increases.

Q3. The ball with center c ∈Rd and radius r is defined as

Bd(c, r)=
{
x ∈Rd | δ(x,c)≤ r

}

where δ(x,c) is the distance between x and c, which can be specified using the

Lp-norm:

Lp(x,c)=
(

d∑

i=1

|xi − ci |p
) 1

p

where p 6= 0 is any real number. The distance can also be specified using the

L∞-norm:

L∞(x,c)=max
i

{
|xi − ci |

}

Answer the following questions:

(a) For d = 2, sketch the shape of the hyperball inscribed inside the unit square, using

the Lp-distance with p= 0.5 and with center c= (0.5,0.5)T .

(b) With d = 2 and c= (0.5,0.5)T , using the L∞-norm, sketch the shape of the ball of

radius r = 0.25 inside a unit square.

(c) Compute the formula for the maximum distance between any two points in

the unit hypercube in d dimensions, when using the Lp-norm. What is the

maximum distance for p= 0.5 when d = 2? What is the maximum distance for the

L∞-norm?
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ǫ

ǫ

Figure 6.11. For Q4.

Q4. Consider the corner hypercubes of length ǫ ≤ 1 inside a unit hypercube. The

2-dimensional case is shown in Figure 6.11. Answer the following questions:

(a) Let ǫ = 0.1. What is the fraction of the total volume occupied by the corner cubes

in two dimensions?

(b) Derive an expression for the volume occupied by all of the corner hypercubes of

length ǫ < 1 as a function of the dimension d. What happens to the fraction of the

volume in the corners as d→∞?

(c) What is the fraction of volume occupied by the thin hypercube shell of width ǫ < 1

as a fraction of the total volume of the outer (unit) hypercube, as d→∞? For

example, in two dimensions the thin shell is the space between the outer square

(solid) and inner square (dashed).

Q5. Prove Eq. (6.14), that is, limd→∞P
(
xTx≤−2ln(α)

)
→ 0, for any α ∈ (0,1) and x∈Rd .

Q6. Consider the conceptual view of high-dimensional space shown in Figure 6.4. Derive

an expression for the radius of the inscribed circle, so that the area in the spokes

accurately reflects the difference between the volume of the hypercube and the

inscribed hypersphere in d dimensions. For instance, if the length of a half-diagonal

is fixed at 1, then the radius of the inscribed circle is 1√
2

in Figure 6.4a.

Q7. Consider the unit hypersphere (with radius r = 1). Inside the hypersphere inscribe

a hypercube (i.e., the largest hypercube you can fit inside the hypersphere). An

example in two dimensions is shown in Figure 6.12. Answer the following questions:

Figure 6.12. For Q7.
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(a) Derive an expression for the volume of the inscribed hypercube for any given

dimensionality d. Derive the expression for one, two, and three dimensions, and

then generalize to higher dimensions.

(b) What happens to the ratio of the volume of the inscribed hypercube to the

volume of the enclosing hypersphere as d →∞? Again, give the ratio in one,

two and three dimensions, and then generalize.

Q8. Assume that a unit hypercube is given as [0,1]d , that is, the range is [0,1] in each

dimension. The main diagonal in the hypercube is defined as the vector from (0,0)=

(

d−1︷ ︸︸ ︷
0, . . . ,0,0) to (1,1) = (

d−1︷ ︸︸ ︷
1, . . . ,1,1). For example, when d = 2, the main diagonal goes

from (0,0) to (1,1). On the other hand, the main anti-diagonal is defined as the

vector from (1,0) = (

d−1︷ ︸︸ ︷
1, . . . ,1,0) to (0,1) = (

d−1︷ ︸︸ ︷
0, . . . ,0,1) For example, for d = 2, the

anti-diagonal is from (1,0) to (0,1).

(a) Sketch the diagonal and anti-diagonal in d = 3 dimensions, and compute the angle

between them.

(b) What happens to the angle between the main diagonal and anti-diagonal as d→
∞. First compute a general expression for the d dimensions, and then take the

limit as d→∞.

Q9. Draw a sketch of a hypersphere in four dimensions.



CHAPTER 7 Dimensionality Reduction

We saw in Chapter 6 that high-dimensional data has some peculiar characteristics,

some of which are counterintuitive. For example, in high dimensions the center of

the space is devoid of points, with most of the points being scattered along the

surface of the space or in the corners. There is also an apparent proliferation of

orthogonal axes. As a consequence high-dimensional data can cause problems for

data mining and analysis, although in some cases high-dimensionality can help, for

example, for nonlinear classification. Nevertheless, it is important to check whether

the dimensionality can be reduced while preserving the essential properties of the full

data matrix. This can aid data visualization as well as data mining. In this chapter we

study methods that allow us to obtain optimal lower-dimensional projections of the

data.

7.1 BACKGROUND

Let the data D consist of n points over d attributes, that is, it is an n × d matrix,

given as

D=




X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd




Each point xi = (xi1,xi2, . . . ,xid)
T is a vector in the ambient d-dimensional vector space

spanned by the d standard basis vectors e1,e2, . . . ,ed , where ei corresponds to the

ith attribute Xi . Recall that the standard basis is an orthonormal basis for the data

space, that is, the basis vectors are pairwise orthogonal, eT
i ej = 0, and have unit length

‖ei‖ = 1.

As such, given any other set of d orthonormal vectors u1,u2, . . . ,ud , with uT
i uj = 0

and ‖ui‖ = 1 (or uT
i ui = 1), we can re-express each point x as the linear combination

x= a1u1+ a2u2+ ·· ·+ adud (7.1)

183
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where the vector a = (a1,a2, . . . ,ad)
T represents the coordinates of x in the new basis.

The above linear combination can also be expressed as a matrix multiplication:

x=Ua (7.2)

where U is the d× d matrix, whose ith column comprises the ith basis vector ui :

U=



| | |

u1 u2 · · · ud

| | |




The matrix U is an orthogonal matrix, whose columns, the basis vectors, are

orthonormal, that is, they are pairwise orthogonal and have unit length

uT
i uj =

{
1 if i = j

0 if i 6= j

Because U is orthogonal, this means that its inverse equals its transpose:

U−1 =UT

which implies that UTU= I, where I is the d× d identity matrix.

Multiplying Eq. (7.2) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UTx=UTUa

a=UTx (7.3)

Example 7.1. Figure 7.1a shows the centered Iris dataset, with n= 150 points, in the

d = 3 dimensional space comprising the sepal length (X1), sepal width (X2), and

petal length (X3) attributes. The space is spanned by the standard basis vectors

e1 =




1

0

0


 e2 =




0

1

0


 e3 =




0

0

1




Figure 7.1b shows the same points in the space comprising the new basis vectors

u1 =



−0.390

0.089

−0.916


 u2 =



−0.639

−0.742

0.200


 u3 =



−0.663

0.664

0.346




For example, the new coordinates of the centered point x = (−0.343,−0.754,

0.241)T can be computed as

a=UTx=



−0.390 0.089 −0.916

−0.639 −0.742 0.200

−0.663 0.664 0.346





−0.343

−0.754

0.241


=



−0.154

0.828

−0.190




One can verify that x can be written as the linear combination

x=−0.154u1+ 0.828u2− 0.190u3
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Figure 7.1. Iris data: optimal basis in three dimensions.

Because there are potentially infinite choices for the set of orthonormal basis

vectors, one natural question is whether there exists an optimal basis, for a suitable

notion of optimality. Further, it is often the case that the input dimensionality d is

very large, which can cause various problems owing to the curse of dimensionality (see

Chapter 6). It is natural to ask whether we can find a reduced dimensionality subspace

that still preserves the essential characteristics of the data. That is, we are interested

in finding the optimal r-dimensional representation of D, with r ≪ d . In other words,

given a point x, and assuming that the basis vectors have been sorted in decreasing

order of importance, we can truncate its linear expansion [Eq. (7.1)] to just r terms, to

obtain

x′ = a1u1+ a2u2+ ·· ·+ arur =
r∑

i=1

aiui (7.4)

Here x′ is the projection of x onto the first r basis vectors, which can be written in

matrix notation as follows:

x′ =



| | |

u1 u2 · · · ur

| | |







a1

a2

...

ar


=Urar (7.5)
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where Ur is the matrix comprising the first r basis vectors, and ar is vector comprising

the first r coordinates. Further, because a=UTx from Eq. (7.3), restricting it to the first

r terms, we get

ar =UT
r x (7.6)

Plugging this into Eq. (7.5), the projection of x onto the first r basis vectors can be

compactly written as

x′ =UrU
T
r x= Prx (7.7)

where Pr =UrU
T
r is the orthogonal projection matrix for the subspace spanned by the

first r basis vectors. That is, Pr is symmetric and P2
r = Pr . This is easy to verify because

PT
r = (UrU

T
r )T =UrU

T
r = Pr , and P2

r = (UrU
T
r )(UrU

T
r )=UrU

T
r = Pr , where we use the

observation that UT
r Ur = Ir×r , the r × r identity matrix. The projection matrix Pr can

also be written as the decomposition

Pr =UrU
T
r =

r∑

i=1

uiu
T
i (7.8)

From Eqs. (7.1) and (7.4), the projection of x onto the remaining dimensions

comprises the error vector

ǫ =
d∑

i=r+1

aiui = x− x′

It is worth noting that that x′ and ǫ are orthogonal vectors:

x′Tǫ =
r∑

i=1

d∑

j=r+1

aiajuT
i uj = 0

This is a consequence of the basis being orthonormal. In fact, we can make an even

stronger statement. The subspace spanned by the first r basis vectors

Sr = span(u1, . . . ,ur )

and the subspace spanned by the remaining basis vectors

Sd−r = span(ur+1, . . . ,ud)

are orthogonal subspaces, that is, all pairs of vectors x ∈ Sr and y ∈ Sd−r must be

orthogonal. The subspace Sd−r is also called the orthogonal complement of Sr .

Example 7.2. Continuing Example 7.1, approximating the centered point x =
(−0.343,−0.754,0.241)T by using only the first basis vector u1 = (−0.390,0.089,

−0.916)T, we have

x′ = a1u1 =−0.154u1=




0.060

−0.014

0.141



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The projection of x on u1 could have been obtained directly from the projection

matrix

P1 = u1u
T
1 =



−0.390

0.089

−0.916


(−0.390 0.089 −0.916

)

=




0.152 −0.035 0.357

−0.035 0.008 −0.082

0.357 −0.082 0.839




That is

x′ = P1x=




0.060

−0.014

0.141




The error vector is given as

ǫ = a2u2+ a3u3 = x− x′ =



−0.40

−0.74

0.10




One can verify that x′ and ǫ are orthogonal, i.e.,

x′Tǫ =
(
0.060 −0.014 0.141

)


−0.40

−0.74

0.10


= 0

The goal of dimensionality reduction is to seek an r-dimensional basis that gives

the best possible approximation x′i over all the points xi ∈ D. Alternatively, we may

seek to minimize the error ǫi = xi − x′i over all the points.

7.2 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a technique that seeks a r-dimensional basis

that best captures the variance in the data. The direction with the largest projected

variance is called the first principal component. The orthogonal direction that captures

the second largest projected variance is called the second principal component, and

so on. As we shall see, the direction that maximizes the variance is also the one that

minimizes the mean squared error.

7.2.1 Best Line Approximation

We will start with r = 1, that is, the one-dimensional subspace or line u that best

approximates D in terms of the variance of the projected points. This will lead to the

general PCA technique for the best 1≤ r ≤ d dimensional basis for D.

Without loss of generality, we assume that u has magnitude ‖u‖2 = uTu = 1;

otherwise it is possible to keep on increasing the projected variance by simply
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increasing the magnitude of u. We also assume that the data has been centered so

that it has mean µ= 0.

The projection of xi on the vector u is given as

x′i =
(

uTxi

uTu

)
u= (uTxi)u= aiu

where the scalar

ai = uTxi

gives the coordinate of x′i along u. Note that because the mean point is µ = 0, its

coordinate along u is µu = 0.

We have to choose the direction u such that the variance of the projected points is

maximized. The projected variance along u is given as

σ 2
u =

1

n

n∑

i=1

(ai −µu)
2

= 1

n

n∑

i=1

(uTxi)
2

= 1

n

n∑

i=1

uT
(
xix

T
i

)
u

= uT

(
1

n

n∑

i=1

xix
T
i

)
u

= uT6u (7.9)

where 6 is the covariance matrix for the centered data D.

To maximize the projected variance, we have to solve a constrained optimization

problem, namely to maximize σ 2
u subject to the constraint that uTu = 1. This can

be solved by introducing a Lagrangian multiplier α for the constraint, to obtain the

unconstrained maximization problem

max
u

J(u)= uT6u−α(uTu− 1) (7.10)

Setting the derivative of J(u) with respect to u to the zero vector, we obtain

∂

∂u
J(u)= 0

∂

∂u

(
uT6u−α(uTu− 1)

)
= 0

26u− 2αu= 0

6u= αu (7.11)

This implies that α is an eigenvalue of the covariance matrix 6, with the associated

eigenvector u. Further, taking the dot product with u on both sides of Eq. (7.11) yields

uT6u= uTαu
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From Eq. (7.9), we then have

σ 2
u = αuTu

or σ 2
u = α (7.12)

To maximize the projected variance σ 2
u , we should thus choose the largest eigenvalue

of 6. In other words, the dominant eigenvector u1 specifies the direction of most

variance, also called the first principal component, that is, u = u1. Further, the largest

eigenvalue λ1 specifies the projected variance, that is, σ 2
u = α = λ1.

Minimum Squared Error Approach

We now show that the direction that maximizes the projected variance is also the one

that minimizes the average squared error. As before, assume that the dataset D has

been centered by subtracting the mean from each point. For a point xi ∈D, let x′i denote

its projection along the direction u, and let ǫi = xi − x′i denote the error vector. The

mean squared error (MSE) optimization condition is defined as

MSE(u)= 1

n

n∑

i=1

‖ǫi‖2 (7.13)

= 1

n

n∑

i=1

‖xi − x′i‖2

= 1

n

n∑

i=1

(xi − x′i)
T(xi − x′i)

= 1

n

n∑

i=1

(
‖xi‖2− 2xT

i x′i + (x′i)
Tx′i

)
(7.14)

Noting that x′i = (uTxi)u, we have

= 1

n

n∑

i=1

(
‖xi‖2− 2xT

i (uTxi)u+
(
(uTxi)u

)T
(uTxi)u

)

= 1

n

n∑

i=1

(
‖xi‖2− 2(uTxi)(x

T
i u)+ (uTxi)(x

T
i u)uTu

)

= 1

n

n∑

i=1

(
‖xi‖2− (uTxi)(x

T
i u)

)

= 1

n

n∑

i=1

‖xi‖2−
1

n

n∑

i=1

uT(xix
T
i )u

= 1

n

n∑

i=1

‖xi‖2−uT

(
1

n

n∑

i=1

xix
T
i

)
u

=
n∑

i=1

‖xi‖2
n
−uT6u (7.15)
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Note that by Eq. (1.4) the total variance of the centered data (i.e., with µ = 0) is

given as

var(D)= 1

n

n∑

i=1

‖xi − 0‖2 = 1

n

n∑

i=1

‖xi‖2

Further, by Eq. (2.28), we have

var(D)= tr(6)=
d∑

i=1

σ 2
i

Thus, we may rewrite Eq. (7.15) as

MSE(u)= var(D)−uT6u=
d∑

i=1

σ 2
i −uT6u

Because the first term, var(D), is a constant for a given dataset D, the vector u that

minimizes MSE(u) is thus the same one that maximizes the second term, the projected

variance uT6u. Because we know that u1, the dominant eigenvector of 6, maximizes

the projected variance, we have

MSE(u1)= var(D)−uT
1 6u1 = var(D)−uT

1 λ1u1 = var(D)−λ1 (7.16)

Thus, the principal component u1, which is the direction that maximizes the projected

variance, is also the direction that minimizes the mean squared error.

Example 7.3. Figure 7.2 shows the first principal component, that is, the best

one-dimensional approximation, for the three dimensional Iris dataset shown in

Figure 7.1a. The covariance matrix for this dataset is given as

6 =




0.681 −0.039 1.265

−0.039 0.187 −0.320

1.265 −0.320 3.092




The variance values σ 2
i for each of the original dimensions are given along the

main diagonal of 6. For example, σ 2
1 = 0.681, σ 2

2 = 0.187, and σ 2
3 = 3.092. The

largest eigenvalue of 6 is λ1 = 3.662, and the corresponding dominant eigenvector

is u1 = (−0.390,0.089,−0.916)T. The unit vector u1 thus maximizes the projected

variance, which is given as J(u1) = α = λ1 = 3.662. Figure 7.2 plots the principal

component u1. It also shows the error vectors ǫi , as thin gray line segments.

The total variance of the data is given as

var(D)= 1

n

n∑

i=1

‖x‖2 = 1

150
· 594.04= 3.96
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Figure 7.2. Best one-dimensional or line approximation.

We can also directly obtain the total variance as the trace of the covariance matrix:

var(D)= tr(6)= σ 2
1 +σ 2

2 +σ 2
3 = 0.681+ 0.187+ 3.092= 3.96

Thus, using Eq. (7.16), the minimum value of the mean squared error is given as

MSE(u1)= var(D)−λ1 = 3.96− 3.662= 0.298

7.2.2 Best 2-dimensional Approximation

We are now interested in the best two-dimensional approximation to D. As before,

assume that D has already been centered, so that µ = 0. We already computed the

direction with the most variance, namely u1, which is the eigenvector corresponding to

the largest eigenvalue λ1 of 6. We now want to find another direction v, which also

maximizes the projected variance, but is orthogonal to u1. According to Eq. (7.9) the

projected variance along v is given as

σ 2
v = vT6v

We further require that v be a unit vector orthogonal to u1, that is,

vTu1 = 0

vTv= 1
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The optimization condition then becomes

max
v

J(v)= vT6v−α(vTv− 1)−β(vTu1− 0) (7.17)

Taking the derivative of J(v) with respect to v, and setting it to the zero vector, gives

26v− 2αv−βu1= 0 (7.18)

If we multiply on the left by uT
1 we get

2uT
1 6v− 2αuT

1 v−βuT
1 u1 = 0

2vT6u1−β = 0,which implies that

β = 2vTλ1u1 = 2λ1v
Tu1 = 0

In the derivation above we used the fact that uT
1 6v= vT6u1, and that v is orthogonal

to u1. Plugging β = 0 into Eq. (7.18) gives us

26v− 2αv= 0

6v= αv

This means that v is another eigenvector of 6. Also, as in Eq. (7.12), we have σ 2
v =

α. To maximize the variance along v, we should choose α = λ2, the second largest

eigenvalue of 6, with the second principal component being given by the corresponding

eigenvector, that is, v= u2.

Total Projected Variance

Let U2 be the matrix whose columns correspond to the two principal components,

given as

U2 =



| |

u1 u2

| |




Given the point xi ∈D its coordinates in the two-dimensional subspace spanned by u1

and u2 can be computed via Eq. (7.6), as follows:

ai =UT
2 xi

Assume that each point xi ∈ Rd in D has been projected to obtain its coordinates

ai ∈R2, yielding the new dataset A. Further, because D is assumed to be centered, with

µ = 0, the coordinates of the projected mean are also zero because UT
2 µ = UT

2 0 = 0.
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The total variance for A is given as

var(A)= 1

n

n∑

i=1

‖ai − 0‖2

= 1

n

n∑

i=1

(
UT

2 xi

)T (
UT

2 xi

)

= 1

n

n∑

i=1

xT
i

(
U2UT

2

)
xi

= 1

n

n∑

i=1

xT
i P2xi (7.19)

where P2 is the orthogonal projection matrix [Eq. (7.8)] given as

P2 =U2U
T
2 = u1u

T
1 +u2u

T
2

Substituting this into Eq. (7.19), the projected total variance is given as

var(A)= 1

n

n∑

i=1

xT
i P2xi (7.20)

= 1

n

n∑

i=1

xT
i

(
u1u

T
1 +u2u

T
2

)
xi

= 1

n

n∑

i=1

(uT
1 xi)(x

T
i u1)+

1

n

n∑

i=1

(uT
2 xi)(x

T
i u2)

= uT
1 6u1+uT

2 6u2 (7.21)

Because u1 and u2 are eigenvectors of 6, we have 6u1 = λ1u1 and 6u2 = λ2u2, so that

var(A)= uT
1 6u1+uT

2 6u2 = uT
1 λ1u1+uT

2 λ2u2 = λ1+λ2 (7.22)

Thus, the sum of the eigenvalues is the total variance of the projected points, and the

first two principal components maximize this variance.

Mean Squared Error

We now show that the first two principal components also minimize the mean square

error objective. The mean square error objective is given as

MSE= 1

n

n∑

i=1

∥∥xi − x′i
∥∥2

= 1

n

n∑

i=1

(
‖xi‖2− 2xT

i x′i + (x′i)
Tx′i

)
, using Eq. (7.14)

= var(D)+ 1

n

n∑

i=1

(
−2xT

i P2xi + (P2xi)
TP2xi

)
, using Eq. (7.7) that x′i = P2xi
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= var(D)− 1

n

n∑

i=1

(
xT

i P2xi

)

= var(D)− var(A), using Eq. (7.20) (7.23)

Thus, the MSE objective is minimized precisely when the total projected variance

var(A) is maximized. From Eq. (7.22), we have

MSE= var(D)−λ1−λ2

Example 7.4. For the Iris dataset from Example 7.1, the two largest eigenvalues are

λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors:

u1 =



−0.390

0.089

−0.916


 u2 =



−0.639

−0.742

0.200




The projection matrix is given as

P2 =U2U
T
2 =



| |

u1 u2

| |



(

— uT
1 —

— uT
2 —

)
= u1u

T
1 +u2u

T
2

=




0.152 −0.035 0.357

−0.035 0.008 −0.082

0.357 −0.082 0.839


+




0.408 0.474 −0.128

0.474 0.551 −0.148

−0.128 −0.148 0.04




=




0.560 0.439 0.229

0.439 0.558 −0.230

0.229 −0.230 0.879




Thus, each point xi can be approximated by its projection onto the first two principal

components x′i =P2xi . Figure 7.3a plots this optimal 2-dimensional subspace spanned

by u1 and u2. The error vector ǫi for each point is shown as a thin line segment. The

gray points are behind the 2-dimensional subspace, whereas the white points are in

front of it. The total variance captured by the subspace is given as

λ1+λ2 = 3.662+ 0.239= 3.901

The mean squared error is given as

MSE= var(D)−λ1−λ2 = 3.96− 3.662− 0.239= 0.059

Figure 7.3b plots a nonoptimal 2-dimensional subspace. As one can see the optimal

subspace maximizes the variance, and minimizes the squared error, whereas the

nonoptimal subspace captures less variance, and has a high mean squared error value,

which can be pictorially seen from the lengths of the error vectors (line segments). In

fact, this is the worst possible 2-dimensional subspace; its MSE is 3.662.
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Figure 7.3. Best two-dimensional approximation.

7.2.3 Best r-dimensional Approximation

We are now interested in the best r-dimensional approximation to D, where 2 < r ≤ d .

Assume that we have already computed the first j − 1 principal components or

eigenvectors, u1,u2, . . . ,uj−1, corresponding to the j − 1 largest eigenvalues of 6,

for 1≤ j ≤ r . To compute the j th new basis vector v, we have to ensure that it is

normalized to unit length, that is, vTv= 1, and is orthogonal to all previous components

ui , i.e., uT
i v= 0, for 1≤ i < j . As before, the projected variance along v is given as

σ 2
v = vT6v

Combined with the constraints on v, this leads to the following maximization problem

with Lagrange multipliers:

max
v

J(v)= vT6v−α(vTv− 1)−
j−1∑

i=1

βi(u
T
i v− 0)

Taking the derivative of J(v) with respect to v and setting it to the zero vector gives

26v− 2αv−
j−1∑

i=1

βiui = 0 (7.24)
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If we multiply on the left by uT
k , for 1≤ k < j , we get

2uT
k 6v− 2αuT

k v−βku
T
k uk −

j−1∑

i=1
i 6=k

βiu
T
k ui = 0

2vT6uk−βk = 0

βk = 2vTλkuk = 2λkv
Tuk = 0

where we used the fact that 6uk = λkuk, as uk is the eigenvector corresponding to the

kth largest eigenvalue λk of 6. Thus, we find that βi = 0 for all i < j in Eq. (7.24), which

implies that

6v= αv

To maximize the variance along v, we set α = λj , the j th largest eigenvalue of 6, with

v= uj giving the j th principal component.

In summary, to find the best r-dimensional approximation to D, we compute

the eigenvalues of 6. Because 6 is positive semidefinite, its eigenvalues must all be

non-negative, and we can thus sort them in decreasing order as follows:

λ1 ≥ λ2 ≥ ·· ·λr ≥ λr+1 · · · ≥ λd ≥ 0

We then select the r largest eigenvalues, and their corresponding eigenvectors to form

the best r-dimensional approximation.

Total Projected Variance

Let Ur be the r-dimensional basis vector matrix

Ur =



| | |

u1 u2 · · · ur

| | |




with the projection matrix given as

Pr =UrU
T
r =

r∑

i=1

uiu
T
i

Let A denote the dataset formed by the coordinates of the projected points in the

r-dimensional subspace, that is, ai =UT
r xi , and let x′i =Prxi denote the projected point

in the original d-dimensional space. Following the derivation for Eqs. (7.19), (7.21),

and (7.22), the projected variance is given as

var(A)= 1

n

n∑

i=1

xT
i Prxi =

r∑

i=1

uT
i 6ui =

r∑

i=1

λi

Thus, the total projected variance is simply the sum of the r largest eigenvalues of 6.
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Mean Squared Error

Based on the derivation for Eq. (7.23), the mean squared error objective in r dimen-

sions can be written as

MSE= 1

n

n∑

i=1

∥∥xi − x′i
∥∥2

= var(D)− var(A)

= var(D)−
r∑

i=1

uT
i 6ui

= var(D)−
r∑

i=1

λi

The first r-principal components maximize the projected variance var(A), and thus

they also minimize the MSE.

Total Variance

Note that the total variance of D is invariant to a change in basis vectors. Therefore,

we have the following identity:

var(D)=
d∑

i=1

σ 2
i =

d∑

i=1

λi

Choosing the Dimensionality

Often we may not know how many dimensions, r , to use for a good approximation.

One criteria for choosing r is to compute the fraction of the total variance captured by

the first r principal components, computed as

f (r)= λ1+λ2+ ·· ·+λr

λ1+λ2+ ·· ·+λd

=
∑r

i=1 λi∑d

i=1 λi

=
∑r

i=1 λi

var(D)
(7.25)

Given a certain desired variance threshold, say α, starting from the first principal

component, we keep on adding additional components, and stop at the smallest value

r , for which f (r)≥ α. In other words, we select the fewest number of dimensions such

that the subspace spanned by those r dimensions captures at least α fraction of the

total variance. In practice, α is usually set to 0.9 or higher, so that the reduced dataset

captures at least 90% of the total variance.

Algorithm 7.1 gives the pseudo-code for the principal component analysis

algorithm. Given the input data D ∈ R
n×d , it first centers it by subtracting the mean

from each point. Next, it computes the eigenvectors and eigenvalues of the covariance

matrix 6. Given the desired variance threshold α, it selects the smallest set of

dimensions r that capture at least α fraction of the total variance. Finally, it computes

the coordinates of each point in the new r-dimensional principal component subspace,

to yield the new data matrix A ∈Rn×r .
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ALGORITHM 7.1. Principal Component Analysis

PCA (D,α):

µ= 1
n

∑n

i=1 xi // compute mean1

Z=D− 1 ·µT // center the data2

6 = 1
n

(
ZTZ

)
// compute covariance matrix3

(λ1,λ2, . . . ,λd )= eigenvalues(6) // compute eigenvalues4

U=
(
u1 u2 · · · ud

)
= eigenvectors(6) // compute eigenvectors5

f (r)=
∑r

i=1 λi∑d
i=1 λi

, for all r = 1,2, . . . ,d // fraction of total variance
6

Choose smallest r so that f (r)≥ α // choose dimensionality7

Ur =
(
u1 u2 · · · ur

)
// reduced basis8

A= {ai | ai =UT
r xi, for i = 1, . . . ,n} // reduced dimensionality data9

Example 7.5. Given the 3-dimensional Iris dataset in Figure 7.1a, its covariance

matrix is

6 =




0.681 −0.039 1.265

−0.039 0.187 −0.320

1.265 −0.32 3.092




The eigenvalues and eigenvectors of 6 are given as

λ1 = 3.662 λ2 = 0.239 λ3 = 0.059

u1 =



−0.390

0.089

−0.916


 u2 =



−0.639

−0.742

0.200


 u3 =



−0.663

0.664

0.346




The total variance is therefore λ1+λ2+λ3= 3.662+0.239+0.059= 3.96. The optimal

3-dimensional basis is shown in Figure 7.1b.

To find a lower dimensional approximation, let α = 0.95. The fraction of total

variance for different values of r is given as

r 1 2 3

f (r) 0.925 0.985 1.0

For example, for r = 1, the fraction of total variance is given as f (1)= 3.662
3.96
= 0.925.

Thus, we need at least r = 2 dimensions to capture 95% of the total variance.

This optimal 2-dimensional subspace is shown as the shaded plane in Figure 7.3a.

The reduced dimensionality dataset A is shown in Figure 7.4. It consists of the

point coordinates ai = UT
2 xi in the new 2-dimensional principal components basis

comprising u1 and u2.



7.2 Principal Component Analysis 199

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

−4 −3 −2 −1 0 1 2 3

u1

u2

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC

bC bC

bC
bC bC

bC bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC

bC

bC
bC

bC

bC

bCbC bC

bC

bCbC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC
bC

bC

bC bC

bC

bC

bC
bC

bC
bCbC

bC

bC
bC

bC

bC

bC

bC

bC
bC

bC

bC bCbC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC
bC

bC

bC

bC

bC

bCbC

bC

bCbC
bC

bC
bC

bC

bC

bC
bC

bC
bC

bC

bC

bC

bC

bC
bC

bC
bC

bC

bC

bC

bC

bC
bC

bC
bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

bC

bC

bCbC
bC

bC

bC

bC

bC

bC

Figure 7.4. Reduced dimensionality dataset: Iris principal components.

7.2.4 Geometry of PCA

Geometrically, when r = d , PCA corresponds to a orthogonal change of basis, so that

the total variance is captured by the sum of the variances along each of the principal

directions u1,u2, . . . ,ud , and further, all covariances are zero. This can be seen by

looking at the collective action of the full set of principal components, which can be

arranged in the d× d orthogonal matrix

U=



| | |

u1 u2 · · · ud

| | |




with U−1 =UT.

Each principal component ui corresponds to an eigenvector of the covariance

matrix 6, that is,

6ui = λiui for all 1≤ i ≤ d

which can be written compactly in matrix notation as follows:

6



| | |

u1 u2 · · · ud

| | |


=



| | |

λ1u1 λ2u2 · · · λdud

| | |




6U=U




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd




6U=U3 (7.26)
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If we multiply Eq. (7.26) on the left by U−1 =UT we obtain

UT6U=UTU3=3=




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd




This means that if we change the basis to U, we change the covariance matrix 6 to a

similar matrix 3, which in fact is the covariance matrix in the new basis. The fact that

3 is diagonal confirms that after the change of basis, all of the covariances vanish, and

we are left with only the variances along each of the principal components, with the

variance along each new direction ui being given by the corresponding eigenvalue λi .

It is worth noting that in the new basis, the equation

xT6−1x= 1 (7.27)

defines a d-dimensional ellipsoid (or hyper-ellipse). The eigenvectors ui of 6, that is,

the principal components, are the directions for the principal axes of the ellipsoid. The

square roots of the eigenvalues, that is,
√

λi , give the lengths of the semi-axes.

Multiplying Eq. (7.26) on the right by U−1 =UT, we have

6 =U3UT (7.28)

Assuming that 6 is invertible or nonsingular, we have

6−1 = (U3UT)−1 =
(
U−1

)T
3−1U−1 =U3−1UT

where

3−1 =




1
λ1

0 · · · 0

0 1
λ2
· · · 0

...
...

. . .
...

0 0 · · · 1
λd




Substituting 6−1 in Eq. (7.27), and using the fact that x = Ua from Eq. (7.2), where

a= (a1,a2, . . . ,ad)
T represents the coordinates of x in the new basis, we get

xT6−1x= 1
(
aTUT

)
U3−1UT

(
Ua
)
= 1

aT3−1a= 1

d∑

i=1

a2
i

λi

= 1

which is precisely the equation for an ellipse centered at 0, with semi-axes lengths
√

λi .

Thus xT6−1x = 1, or equivalently aT3−1a = 1 in the new principal components basis,

defines an ellipsoid in d-dimensions, where the semi-axes lengths equal the standard

deviations (squared root of the variance,
√

λi) along each axis. Likewise, the equation

xT6−1x= s, or equivalently aT3−1a= s, for different values of the scalar s, represents

concentric ellipsoids.
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Example 7.6. Figure 7.5b shows the ellipsoid xT6−1x = aT3−1a = 1 in the new

principal components basis. Each semi-axis length corresponds to the standard

deviation
√

λi along that axis. Because all pairwise covariances are zero in the

principal components basis, the ellipsoid is axis-parallel, that is, each of its axes

coincides with a basis vector.
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(a) Elliptic contours in standard basis

bC

bC
bC

bC

bC

bC

bC

bC

bC bC

bCbC

bC
bC

bC
bCbC

bC

bC

bC

bC bC

bC
bC bC

bC

bC

bC

bCbC

bC
bC

bC
bC

bC

bC
bC

bC

bC
bCbC bC

bC
bC

bC

bC

bC

bC

bC
bC

bC
bC

bC

bC

bC

bC bC
bC

bC

bC

bCbC

bC bC

bC bC
bC

bCbC
bC

bC
bC

bC

bCbC bC
bC

bC

bC

bC

bC

bC

bC
bCbC

bC

bC

bC

bC

bC

bC
bC

bC

bC
bC

bC

bC

bC

bC

bC bCbC
bC

bC

bC

bC
bC

bC

bCbC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC bC

bC

bC bC

bC bC

bC

bC

bC
bC

bC

bC

bC

bC
bC
bCbC

bC
bC

bC

bC

bC

bC bC bC

bC

bC

bC

bC

bC

u1

u2

u3

(b) Axis parallel ellipsoid in principal components basis

Figure 7.5. Iris data: standard and principal components basis in three dimensions.
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On the other hand, in the original standard d-dimensional basis for D, the

ellipsoid will not be axis-parallel, as shown by the contours of the ellipsoid in

Figure 7.5a. Here the semi-axis lengths correspond to half the value range in each

direction; the length was chosen so that the ellipsoid encompasses most of the points.

7.3 KERNEL PRINCIPAL COMPONENT ANALYSIS

Principal component analysis can be extended to find nonlinear “directions” in the data

using kernel methods. Kernel PCA finds the directions of most variance in the feature

space instead of the input space. That is, instead of trying to find linear combinations

of the input dimensions, kernel PCA finds linear combinations in the high-dimensional

feature space obtained as some nonlinear transformation of the input dimensions.

Thus, the linear principal components in the feature space correspond to nonlinear

directions in the input space. As we shall see, using the kernel trick, all operations

can be carried out in terms of the kernel function in input space, without having to

transform the data into feature space.

Example 7.7. Consider the nonlinear Iris dataset shown in Figure 7.6, obtained via a

nonlinear transformation applied on the centered Iris data. In particular, the sepal

length (A1) and sepal width attributes (A2) were transformed as follows:

X1 = 0.2A2
1+A2

2+ 0.1A1A2

X2 =A2

The points show a clear quadratic (nonlinear) relationship between the two variables.

Linear PCA yields the following two directions of most variance:

λ1 = 0.197 λ2 = 0.087

u1 =
(

0.301

0.953

)
u2 =

(
−0.953

0.301

)

These two principal components are illustrated in Figure 7.6. Also shown in the figure

are lines of constant projections onto the principal components, that is, the set of all

points in the input space that have the same coordinates when projected onto u1

and u2, respectively. For instance, the lines of constant projections in Figure 7.6a

correspond to the solutions of uT
1 x = s for different values of the coordinate s.

Figure 7.7 shows the coordinates of each point in the principal components space

comprising u1 and u2. It is clear from the figures that u1 and u2 do not fully capture

the nonlinear relationship between X1 and X2. We shall see later in this section that

kernel PCA is able to capture this dependence better.

Let φ correspond to a mapping from the input space to the feature space. Each

point in feature space is given as the image φ(xi) of the point xi in input space. In

the input space, the first principal component captures the direction with the most

projected variance; it is the eigenvector corresponding to the largest eigenvalue of the
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Figure 7.6. Nonlinear Iris dataset: PCA in input space.
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Figure 7.7. Projection onto principal components.

covariance matrix. Likewise, in feature space, we can find the first kernel principal

component u1 (with uT
1 u1 = 1), by solving for the eigenvector corresponding to the

largest eigenvalue of the covariance matrix in feature space:

6φu1 = λ1u1 (7.29)
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where 6φ, the covariance matrix in feature space, is given as

6φ =
1

n

n∑

i=1

φ(xi)φ(xi)
T (7.30)

Here we assume that the points are centered, that is, φ(xi) = φ(xi)−µφ , where µφ is

the mean in feature space.

Plugging in the expansion of 6φ from Eq. (7.30) into Eq. (7.29), we get

(
1

n

n∑

i=1

φ(xi)φ(xi)
T

)
u1 = λ1u1 (7.31)

1

n

n∑

i=1

φ(xi)
(
φ(xi)

Tu1

)
= λ1u1

n∑

i=1

(
φ(xi)

Tu1

n λ1

)
φ(xi)= u1

n∑

i=1

ciφ(xi)= u1 (7.32)

where ci = φ(xi )
Tu1

nλ1
is a scalar value. From Eq. (7.32) we see that the best direction in

the feature space, u1, is just a linear combination of the transformed points, where the

scalars ci show the importance of each point toward the direction of most variance.

We can now substitute Eq. (7.32) back into Eq. (7.31) to get

(
1

n

n∑

i=1

φ(xi)φ(xi)
T

)


n∑

j=1

cjφ(xj )


= λ1

n∑

i=1

ciφ(xi)

1

n

n∑

i=1

n∑

j=1

cjφ(xi)φ(xi)
Tφ(xj )= λ1

n∑

i=1

ciφ(xi)

n∑

i=1


φ(xi)

n∑

j=1

cjφ(xi)
Tφ(xj )


= nλ1

n∑

i=1

ciφ(xi)

In the preceding equation, we can replace the dot product in feature space, namely

φ(xi)
Tφ(xj ), by the corresponding kernel function in input space, namely K(xi,xj ),

which yields

n∑

i=1


φ(xi)

n∑

j=1

cjK(xi,xj )


= nλ1

n∑

i=1

ciφ(xi) (7.33)

Note that we assume that the points in feature space are centered, that is, we assume

that the kernel matrix K has already been centered using Eq. (5.14):

K=
(

I− 1

n
1n×n

)
K

(
I− 1

n
1n×n

)
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where I is the n× n identity matrix, and 1n×n is the n× n matrix all of whose elements

are 1.

We have so far managed to replace one of the dot products with the kernel

function. To make sure that all computations in feature space are only in terms of

dot products, we can take any point, say φ(xk) and multiply Eq. (7.33) by φ(xk)
T on

both sides to obtain

n∑

i=1


φ(xk)

Tφ(xi)

n∑

j=1

cjK(xi,xj )


= nλ1

n∑

i=1

ciφ(xk)
Tφ(xi)

n∑

i=1


K(xk,xi)

n∑

j=1

cjK(xi,xj )


= nλ1

n∑

i=1

ciK(xk,xi) (7.34)

Further, let Ki denote row i of the centered kernel matrix, written as the column

vector

Ki = (K(xi,x1) K(xi,x2) · · · K(xi,xn))
T

Let c denote the column vector of weights

c= (c1 c2 · · · cn)
T

We can plug Ki and c into Eq. (7.34), and rewrite it as

n∑

i=1

K(xk,xi)K
T
i c= nλ1KT

k c

In fact, because we can choose any of the n points, φ(xk), in the feature space, to

obtain Eq. (7.34), we have a set of n equations:

n∑

i=1

K(x1,xi)K
T
i c= nλ1KT

1 c

n∑

i=1

K(x2,xi)K
T
i c= nλ1KT

2 c

... =
...

n∑

i=1

K(xn,xi)K
T
i c= nλ1KT

n c

We can compactly represent all of these n equations as follows:

K2c= nλ1Kc

where K is the centered kernel matrix. Multiplying by K−1 on both sides, we obtain

K−1K2c= nλ1K−1Kc

Kc= nλ1c

Kc= η1c (7.35)
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where η1 = nλ1. Thus, the weight vector c is the eigenvector corresponding to the

largest eigenvalue η1 of the kernel matrix K.

Once c is found, we can plug it back into Eq. (7.32) to obtain the first kernel

principal component u1. The only constraint we impose is that u1 should be normalized

to be a unit vector, as follows:

uT
1 u1 = 1

n∑

i=1

n∑

j=1

cicjφ(xi)
Tφ(xj)= 1

cTKc= 1

Noting that Kc= η1c from Eq. (7.35), we get

cT(η1c)= 1

η1c
Tc= 1

‖c‖2 = 1

η1

However, because c is an eigenvector of K it will have unit norm. Thus, to ensure that

u1 is a unit vector, we have to scale the weight vector c so that its norm is ‖c‖ =
√

1
η1

,

which can be achieved by multiplying c by
√

1
η1

.

In general, because we do not map the input points into the feature space via φ,

it is not possible to directly compute the principal direction, as it is specified in terms

of φ(xi), as seen in Eq. (7.32). However, what matters is that we can project any point

φ(x) onto the principal direction u1, as follows:

uT
1 φ(x)=

n∑

i=1

ciφ(xi)
Tφ(x)=

n∑

i=1

ciK(xi,x)

which requires only kernel operations. When x = xi is one of the input points, the

projection of φ(xi) onto the principal component u1 can be written as the dot product

ai = uT
1 φ(xi)=KT

i c (7.36)

where Ki is the column vector corresponding to the ith row in the kernel matrix.

Thus, we have shown that all computations, either for the solution of the principal

component, or for the projection of points, can be carried out using only the kernel

function. Finally, we can obtain the additional principal components by solving for

the other eigenvalues and eigenvectors of Eq. (7.35). In other words, if we sort the

eigenvalues of K in decreasing order η1 ≥ η2 ≥ ·· · ≥ ηn ≥ 0, we can obtain the j th

principal component as the corresponding eigenvector cj , which has to be normalized

so that the norm is
∥∥cj

∥∥ =
√

1
ηj

, provided ηj > 0. Also, because ηj = nλj , the variance

along the j th principal component is given as λj =
ηj

n
. Algorithm 7.2 gives the

pseudo-code for the kernel PCA method.
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ALGORITHM 7.2. Kernel Principal Component Analysis

KERNELPCA (D,K,α):

K=
{
K(xi,xj )

}
i,j=1,...,n

// compute n×n kernel matrix1

K= (I− 1
n
1n×n)K(I− 1

n
1n×n) // center the kernel matrix2

(η1,η2, . . . ,ηd)= eigenvalues(K) // compute eigenvalues3 (
c1 c2 · · · cn

)
= eigenvectors(K) // compute eigenvectors4

λi = ηi

n
for all i = 1, . . . ,n // compute variance for each component5

ci =
√

1
ηi
· ci for all i = 1, . . . ,n // ensure that uT

i ui = 16

f (r)=
∑r

i=1 λi∑d
i=1 λi

, for all r = 1,2, . . . ,d // fraction of total variance
7

Choose smallest r so that f (r)≥ α // choose dimensionality8

Cr =
(
c1 c2 · · · cr

)
// reduced basis9

A= {ai | ai =CT
r Ki, for i = 1, . . . ,n} // reduced dimensionality data10

Example 7.8. Consider the nonlinear Iris data from Example 7.7 with n= 150 points.

Let us use the homogeneous quadratic polynomial kernel in Eq. (5.8):

K(xi,xj )=
(
xT

i xj

)2

The kernel matrix K has three nonzero eigenvalues:

η1 = 31.0 η2 = 8.94 η3 = 2.76

λ1 =
η1

150
= 0.2067 λ2 =

η2

150
= 0.0596 λ3 =

η3

150
= 0.0184

The corresponding eigenvectors c1, c2, and c3 are not shown because they lie in R
150.

Figure 7.8 shows the contour lines of constant projection onto the first three

kernel principal components. These lines are obtained by solving the equations uT
i x=∑n

j=1 cijK(xj ,x)= s for different projection values s, for each of the eigenvectors ci =
(ci1,ci2, . . . ,cin)

T of the kernel matrix. For instance, for the first principal component

this corresponds to the solutions x= (x1,x2)
T, shown as contour lines, of the following

equation:

1.0426x2
1+ 0.995x2

2+ 0.914x1x2 = s

for each chosen value of s. The principal components are also not shown in the figure,

as it is typically not possible or feasible to map the points into feature space, and thus

one cannot derive an explicit expression for ui . However, because the projection onto

the principal components can be carried out via kernel operations via Eq. (7.36),

Figure 7.9 shows the projection of the points onto the first two kernel principal

components, which capture λ1+λ2
λ1+λ2+λ3

= 0.2663
0.2847
= 93.5% of the total variance.

Incidentally, the use of a linear kernel K(xi,xj ) = xT
i xj yields exactly the same

principal components as shown in Figure 7.7.
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(a) λ1 = 0.2067
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Figure 7.8. Kernel PCA: homogeneous quadratic kernel.

7.4 SINGULAR VALUE DECOMPOSITION

Principal components analysis is a special case of a more general matrix decomposition

method called Singular Value Decomposition (SVD). We saw in Eq. (7.28) that PCA

yields the following decomposition of the covariance matrix:

6 =U3UT (7.37)
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Figure 7.9. Projected point coordinates: homogeneous quadratic kernel.

where the covariance matrix has been factorized into the orthogonal matrix U

containing its eigenvectors, and a diagonal matrix 3 containing its eigenvalues (sorted

in decreasing order). SVD generalizes the above factorization for any matrix. In

particular for an n× d data matrix D with n points and d columns, SVD factorizes

D as follows:

D= L1RT (7.38)

where L is a orthogonal n× n matrix, R is an orthogonal d × d matrix, and 1 is an

n× d “diagonal” matrix. The columns of L are called the left singular vectors, and the

columns of R (or rows of RT) are called the right singular vectors. The matrix 1 is

defined as

1(i,j)=
{

δi If i = j

0 If i 6= j

where i = 1, . . . ,n and j = 1, . . . ,d . The entries 1(i, i)= δi along the main diagonal of

1 are called the singular values of D, and they are all non-negative. If the rank of D is

r ≤min(n,d), then there will be only r nonzero singular values, which we assume are

ordered as follows:

δ1 ≥ δ2 ≥ ·· · ≥ δr > 0

One can discard those left and right singular vectors that correspond to zero singular

values, to obtain the reduced SVD as

D= Lr1rR
T
r (7.39)
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where Lr is the n × r matrix of the left singular vectors, Rr is the d × r matrix of

the right singular vectors, and 1r is the r × r diagonal matrix containing the positive

singular vectors. The reduced SVD leads directly to the spectral decomposition of D,

given as

D=Lr1rR
T
r

=



| | |
l1 l2 · · · lr

| | |







δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δr







— rT
1 —

— rT
2 —

—
... —

— rT
r —




=δ1l1r
T
1 + δ2l2r

T
2 + ·· ·+ δrlrr

T
r

=
r∑

i=1

δilir
T
i

The spectral decomposition represents D as a sum of rank one matrices of the form

δilir
T
i . By selecting the q largest singular values δ1,δ2, . . . ,δq and the corresponding left

and right singular vectors, we obtain the best rank q approximation to the original

matrix D. That is, if Dq is the matrix defined as

Dq =
q∑

i=1

δilir
T
i

then it can be shown that Dq is the rank q matrix that minimizes the expression

‖D−Dq‖F

where ‖A‖F is called the Frobenius Norm of the n× d matrix A, defined as

‖A‖F =

√√√√
n∑

i=1

d∑

j=1

A(i,j)2

7.4.1 Geometry of SVD

In general, any n× d matrix D represents a linear transformation, D : Rd → R
n, from

the space of d-dimensional vectors to the space of n-dimensional vectors because for

any x ∈Rd there exists y ∈Rn such that

Dx= y

The set of all vectors y ∈ R
n such that Dx = y over all possible x ∈ R

d is called the

column space of D, and the set of all vectors x ∈ Rd , such that DTy= x over all y ∈Rn,

is called the row space of D, which is equivalent to the column space of DT. In other

words, the column space of D is the set of all vectors that can be obtained as linear

combinations of columns of D, and the row space of D is the set of all vectors that can
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be obtained as linear combinations of the rows of D (or columns of DT). Also note that

the set of all vectors x ∈ Rd , such that Dx = 0 is called the null space of D, and finally,

the set of all vectors y ∈Rn, such that DTy= 0 is called the left null space of D.

One of the main properties of SVD is that it gives a basis for each of the four

fundamental spaces associated with the matrix D. If D has rank r , it means that it

has only r independent columns, and also only r independent rows. Thus, the r left

singular vectors l1, l2, . . . , lr corresponding to the r nonzero singular values of D in

Eq. (7.38) represent a basis for the column space of D. The remaining n−r left singular

vectors lr+1, . . . , ln represent a basis for the left null space of D. For the row space, the

r right singular vectors r1,r2, . . . ,rr corresponding to the r non-zero singular values,

represent a basis for the row space of D, and the remaining d− r right singular vectors

rj (j = r + 1, . . . ,d), represent a basis for the null space of D.

Consider the reduced SVD expression in Eq. (7.39). Right multiplying both sides

of the equation by Rr and noting that RT
r Rr = Ir , where Ir is the r × r identity matrix,

we have

DRr = Lr1rR
T
r Rr

DRr = Lr1r

DRr = Lr




δ1 0 · · · 0

0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δr




D



| | |
r1 r2 · · · rr

| | |


=



| | |

δ1l1 δ2l2 · · · δrlr

| | |




From the above, we conclude that

Dri = δili for all i = 1, . . . ,r

In other words, SVD is a special factorization of the matrix D, such that any basis

vector ri for the row space is mapped to the corresponding basis vector li in the column

space, scaled by the singular value δi . As such, we can think of the SVD as a mapping

from an orthonormal basis (r1,r2, . . . ,rr ) in R
d (the row space) to an orthonormal basis

(l1, l2, . . . , lr ) in R
n (the column space), with the corresponding axes scaled according to

the singular values δ1,δ2, . . . ,δr .

7.4.2 Connection between SVD and PCA

Assume that the matrix D has been centered, and assume that it has been factorized

via SVD [Eq. (7.38)] as D = L1RT. Consider the scatter matrix for D, given as DTD.

We have

DTD=
(
L1RT

)T (
L1RT

)

=R1TLTL1RT
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=R(1T1)RT

=R12
dRT (7.40)

where 12
d is the d × d diagonal matrix defined as 12

d(i, i) = δ2
i , for i = 1, . . . ,d . Only

r ≤min(d,n) of these eigenvalues are positive, whereas the rest are all zeros.

Because the covariance matrix of centered D is given as 6 = 1
n
DTD, and because

it can be decomposed as 6 =U3UT via PCA [Eq. (7.37)], we have

DTD= n6

= nU3UT

=U(n3)UT (7.41)

Equating Eq. (7.40) and Eq. (7.41), we conclude that the right singular vectors R are

the same as the eigenvectors of 6. Further, the corresponding singular values of D are

related to the eigenvalues of 6 by the expression

nλi = δ2
i

or, λi =
δ2
i

n
, for i = 1, . . . ,d (7.42)

Let us now consider the matrix DDT. We have

DDT =(L1RT)(L1RT)T

=L1RTR1TLT

=L(11T)LT

=L12
nLT

where 12
n is the n× n diagonal matrix given as 12

n(i, i) = δ2
i , for i = 1, . . . ,n. Only r of

these singular values are positive, whereas the rest are all zeros. Thus, the left singular

vectors in L are the eigenvectors of the matrix n×n matrix DDT, and the corresponding

eigenvalues are given as δ2
i .

Example 7.9. Let us consider the n×d centered Iris data matrix D from Example 7.1,

with n = 150 and d = 3. In Example 7.5 we computed the eigenvectors and

eigenvalues of the covariance matrix 6 as follows:

λ1 = 3.662 λ2 = 0.239 λ3 = 0.059

u1 =



−0.390

0.089

−0.916


 u2 =



−0.639

−0.742

0.200


 u3 =



−0.663

0.664

0.346



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Computing the SVD of D yields the following nonzero singular values and the

corresponding right singular vectors

δ1 = 23.437 δ2 = 5.992 δ3 = 2.974

r1 =



−0.390

0.089

−0.916


 r2 =




0.639

0.742

−0.200


 r3 =



−0.663

0.664

0.346




We do not show the left singular vectors l1, l2, l3 because they lie in R
150. Using

Eq. (7.42) one can verify that λi =
δ2
i

n
. For example,

λ1 =
δ2

1

n
= 23.4372

150
= 549.29

150
= 3.662

Notice also that the right singular vectors are equivalent to the principal components

or eigenvectors of 6, up to isomorphism. That is, they may potentially be reversed

in direction. For the Iris dataset, we have r1 = u1, r2 = −u2, and r3 = u3. Here the

second right singular vector is reversed in sign when compared to the second principal

component.

7.5 FURTHER READING

Principal component analysis was pioneered in Pearson (1901). For a comprehensive

description of PCA see Jolliffe (2002). Kernel PCA was first introduced in Schölkopf,

Smola, and Müller (1998). For further exploration of non-linear dimensionality

reduction methods see Lee and Verleysen (2007). The requisite linear algebra

background can be found in Strang (2006).

Jolliffe, I. (2002). Principal Component Analysis, 2nd ed. Springer Series in Statistics.

New York: Springer Science + Business Media.

Lee, J. A. and Verleysen, M. (2007). Nonlinear Dimensionality Reduction. New York:

Springer Science + Business Media.

Pearson, K. (1901). “On lines and planes of closest fit to systems of points in space.”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 2 (11): 559–572.

Schölkopf, B., Smola, A. J., and Müller, K.-R. (1998). “Nonlinear component analysis

as a kernel eigenvalue problem.” Neural Computation, 10 (5): 1299–1319.

Strang, G. (2006). Linear Algebra and Its Applications, 4th ed. Independence, KY:

Thomson Brooks/Cole, Cengage Learning.
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7.6 EXERCISES

Q1. Consider the following data matrix D:

X1 X2

8 −20

0 −1

10 −19

10 −20

2 0

(a) Compute the mean µ and covariance matrix 6 for D.

(b) Compute the eigenvalues of 6.

(c) What is the “intrinsic” dimensionality of this dataset (discounting some small

amount of variance)?

(d) Compute the first principal component.

(e) If the µ and 6 from above characterize the normal distribution from which the

points were generated, sketch the orientation/extent of the 2-dimensional normal

density function.

Q2. Given the covariance matrix 6 =
(

5 4

4 5

)
, answer the following questions:

(a) Compute the eigenvalues of 6 by solving the equation det(6−λI)= 0.

(b) Find the corresponding eigenvectors by solving the equation 6ui = λiui .

Q3. Compute the singular values and the left and right singular vectors of the following

matrix:

A=
(

1 1 0

0 0 1

)

Q4. Consider the data in Table 7.1. Define the kernel function as follows: K(xi ,xj ) =
‖xi − xj‖2. Answer the following questions:

(a) Compute the kernel matrix K.

(b) Find the first kernel principal component.

Table 7.1. Dataset for Q4

i xi

x1 (4,2.9)

x4 (2.5,1)

x7 (3.5,4)

x9 (2,2.1)

Q5. Given the two points x1 = (1,2)T, and x2 = (2,1)T , use the kernel function

K(xi ,xj )= (xT
i xj )2

to find the kernel principal component, by solving the equation Kc= η1c.
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CHAPTER 8 Itemset Mining

In many applications one is interested in how often two or more objects of interest

co-occur. For example, consider a popular website, which logs all incoming traffic to

its site in the form of weblogs. Weblogs typically record the source and destination

pages requested by some user, as well as the time, return code whether the request was

successful or not, and so on. Given such weblogs, one might be interested in finding

if there are sets of web pages that many users tend to browse whenever they visit the

website. Such “frequent” sets of web pages give clues to user browsing behavior and

can be used for improving the browsing experience.

The quest to mine frequent patterns appears in many other domains. The

prototypical application is market basket analysis, that is, to mine the sets of items that

are frequently bought together at a supermarket by analyzing the customer shopping

carts (the so-called “market baskets”). Once we mine the frequent sets, they allow us

to extract association rules among the item sets, where we make some statement about

how likely are two sets of items to co-occur or to conditionally occur. For example,

in the weblog scenario frequent sets allow us to extract rules like, “Users who visit

the sets of pages main, laptops and rebates also visit the pages shopping-cart

and checkout”, indicating, perhaps, that the special rebate offer is resulting in more

laptop sales. In the case of market baskets, we can find rules such as “Customers

who buy milk and cereal also tend to buy bananas,” which may prompt a grocery

store to co-locate bananas in the cereal aisle. We begin this chapter with algorithms

to mine frequent itemsets, and then show how they can be used to extract association

rules.

8.1 FREQUENT ITEMSETS AND ASSOCIATION RULES

Itemsets and Tidsets

Let I = {x1,x2, . . . ,xm} be a set of elements called items. A set X⊆ I is called an itemset.

The set of items I may denote, for example, the collection of all products sold at a

supermarket, the set of all web pages at a website, and so on. An itemset of cardinality

(or size) k is called a k-itemset. Further, we denote by I(k) the set of all k-itemsets,

that is, subsets of I with size k. Let T = {t1, t2, . . . , tn} be another set of elements called

217
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transaction identifiers or tids. A set T ⊆ T is called a tidset. We assume that itemsets

and tidsets are kept sorted in lexicographic order.

A transaction is a tuple of the form 〈t,X〉, where t ∈ T is a unique transaction

identifier, and X is an itemset. The set of transactions T may denote the set of all

customers at a supermarket, the set of all the visitors to a website, and so on. For

convenience, we refer to a transaction 〈t,X〉 by its identifier t .

Database Representation

A binary database D is a binary relation on the set of tids and items, that is, D⊆ T ×I.

We say that tid t ∈ T contains item x ∈ I iff (t,x)∈D. In other words, (t,x)∈D iff x ∈X

in the tuple 〈t,X〉. We say that tid t contains itemset X= {x1,x2, . . . ,xk} iff (t,xi)∈D for

all i = 1,2, . . . ,k.

Example 8.1. Figure 8.1a shows an example binary database. Here I =

{A,B,C,D,E}, and T = {1,2,3,4,5,6}. In the binary database, the cell in row t and

column x is 1 iff (t,x) ∈ D, and 0 otherwise. We can see that transaction 1 contains

item B, and it also contains the itemset BE, and so on.

For a set X, we denote by 2X the powerset of X, that is, the set of all subsets of X.

Let i : 2T → 2I be a function, defined as follows:

i(T)= {x | ∀t ∈ T, t contains x} (8.1)

where T⊆ T , and i(T) is the set of items that are common to all the transactions in the

tidset T. In particular, i(t) is the set of items contained in tid t ∈ T . Note that in this

chapter we drop the set notation for convenience (e.g., we write i(t) instead of i({t})).

It is sometimes convenient to consider the binary database D, as a transaction database

consisting of tuples of the form 〈t, i(t)〉, with t ∈ T . The transaction or itemset database

can be considered as a horizontal representation of the binary database, where we omit

items that are not contained in a given tid.

Let t : 2I→ 2T be a function, defined as follows:

t(X)= {t | t ∈ T and t contains X} (8.2)

where X ⊆ I, and t(X) is the set of tids that contain all the items in the itemset

X. In particular, t(x) is the set of tids that contain the single item x ∈ I. It is also

sometimes convenient to think of the binary database D, as a tidset database containing

a collection of tuples of the form 〈x, t(x)〉, with x ∈ I. The tidset database is a vertical

representation of the binary database, where we omit tids that do not contain a given

item.

Example 8.2. Figure 8.1b shows the corresponding transaction database for the

binary database in Figure 8.1a. For instance, the first transaction is 〈1,{A,B,D,E}〉,

where we omit item C since (1,C) 6∈ D. Henceforth, for convenience, we drop

the set notation for itemsets and tidsets if there is no confusion. Thus, we write

〈1,{A,B,D,E}〉 as 〈1,ABDE〉.
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D A B C D E

1 1 1 0 1 1

2 0 1 1 0 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 1

6 0 1 1 1 0

(a) Binary database

t i(t)

1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

(b) Transaction database

x A B C D E

1 1 2 1 1

3 2 4 3 2

t(x) 4 3 5 5 3

5 4 6 6 4

5 5

6

(c) Vertical database

Figure 8.1. An example database.

Figure 8.1c shows the corresponding vertical database for the binary database

in Figure 8.1a. For instance, the tuple corresponding to item A, shown in the first

column, is 〈A,{1,3,4,5}〉, which we write as 〈A,1345〉 for convenience; we omit tids

2 and 6 because (2,A) 6∈D and (6,A) 6∈D.

Support and Frequent Itemsets

The support of an itemset X in a dataset D, denoted sup(X,D), is the number of

transactions in D that contain X:

sup(X,D)=
∣

∣{t | 〈t, i(t)〉 ∈D and X⊆ i(t)}
∣

∣= |t(X)|

The relative support of X is the fraction of transactions that contain X:

rsup(X,D)=
sup(X,D)

|D|

It is an estimate of the joint probability of the items comprising X.

An itemset X is said to be frequent in D if sup(X,D) ≥ minsup, where minsup

is a user defined minimum support threshold. When there is no confusion about the

database D, we write support as sup(X), and relative support as rsup(X). If minsup

is specified as a fraction, then we assume that relative support is implied. We use the

set F to denote the set of all frequent itemsets, and F (k) to denote the set of frequent

k-itemsets.

Example 8.3. Given the example dataset in Figure 8.1, let minsup = 3 (in relative

support terms we mean minsup = 0.5). Table 8.1 shows all the 19 frequent itemsets

in the database, grouped by their support value. For example, the itemset BCE is

contained in tids 2, 4, and 5, so t(BCE) = 245 and sup(BCE) = |t(BCE)| = 3. Thus,

BCE is a frequent itemset. The 19 frequent itemsets shown in the table comprise the

set F . The sets of all frequent k-itemsets are

F (1) = {A,B,C,D,E}

F (2) = {AB,AD,AE,BC,BD,BE,CE,DE}

F (3) = {ABD,ABE,ADE,BCE,BDE}

F (4) = {ABDE}
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Table 8.1. Frequent itemsets with minsup= 3

sup itemsets

6 B

5 E,BE

4 A,C,D,AB,AE,BC,BD,ABE

3 AD,CE,DE,ABD,ADE,BCE,BDE,ABDE

Association Rules

An association rule is an expression X
s,c
−→Y, where X and Y are itemsets and they are

disjoint, that is, X,Y⊆ I, and X∩Y= ∅. Let the itemset X∪Y be denoted as XY. The

support of the rule is the number of transactions in which both X and Y co-occur as

subsets:

s = sup(X−→Y)= |t(XY)| = sup(XY)

The relative support of the rule is defined as the fraction of transactions where X and

Y co-occur, and it provides an estimate of the joint probability of X and Y:

rsup(X−→Y)=
sup(XY)

|D|
= P(X∧Y)

The confidence of a rule is the conditional probability that a transaction contains

Y given that it contains X:

c= conf(X−→Y)= P(Y|X)=
P(X∧Y)

P (X)
=

sup(XY)

sup(X)

A rule is frequent if the itemset XY is frequent, that is, sup(XY) ≥minsup and a rule

is strong if conf ≥ minconf, where minconf is a user-specified minimum confidence

threshold.

Example 8.4. Consider the association rule BC −→ E. Using the itemset support

values shown in Table 8.1, the support and confidence of the rule are as follows:

s = sup(BC−→E)= sup(BCE)= 3

c= conf(BC−→E)=
sup(BCE)

sup(BC)
= 3/4= 0.75

Itemset and Rule Mining

From the definition of rule support and confidence, we can observe that to generate

frequent and high confidence association rules, we need to first enumerate all the

frequent itemsets along with their support values. Formally, given a binary database

D and a user defined minimum support threshold minsup, the task of frequent itemset

mining is to enumerate all itemsets that are frequent, i.e., those that have support at

least minsup. Next, given the set of frequent itemsets F and a minimum confidence

value minconf, the association rule mining task is to find all frequent and strong

rules.
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8.2 ITEMSET MINING ALGORITHMS

We begin by describing a naive or brute-force algorithm that enumerates all the

possible itemsets X ⊆ I, and for each such subset determines its support in the input

dataset D. The method comprises two main steps: (1) candidate generation and (2)

support computation.

Candidate Generation

This step generates all the subsets of I, which are called candidates, as each itemset is

potentially a candidate frequent pattern. The candidate itemset search space is clearly

exponential because there are 2|I| potentially frequent itemsets. It is also instructive

to note the structure of the itemset search space; the set of all itemsets forms a lattice

structure where any two itemsets X and Y are connected by a link iff X is an immediate

subset of Y, that is, X ⊆ Y and |X| = |Y| − 1. In terms of a practical search strategy,

the itemsets in the lattice can be enumerated using either a breadth-first (BFS) or

depth-first (DFS) search on the prefix tree, where two itemsets X,Y are connected by a

link iff X is an immediate subset and prefix of Y. This allows one to enumerate itemsets

starting with an empty set, and adding one more item at a time.

Support Computation

This step computes the support of each candidate pattern X and determines if it is

frequent. For each transaction 〈t, i(t)〉 in the database, we determine if X is a subset of

i(t). If so, we increment the support of X.

The pseudo-code for the brute-force method is shown in Algorithm 8.1. It

enumerates each itemset X⊆ I, and then computes its support by checking if X⊆ i(t)

for each t ∈ T .

ALGORITHM 8.1. Algorithm BRUTEFORCE

BRUTEFORCE (D, I, minsup):

F←∅ // set of frequent itemsets1

foreach X⊆ I do2

sup(X)← COMPUTESUPPORT (X,D)3

if sup(X)≥minsup then4

F←F ∪
{

(X,sup(X))
}

5

return F6

COMPUTESUPPORT (X,D):

sup(X)← 07

foreach 〈t, i(t)〉 ∈D do8

if X⊆ i(t) then9

sup(X)← sup(X)+ 110

return sup(X)11
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∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 8.2. Itemset lattice and prefix-based search tree (in bold).

Example 8.5. Figure 8.2 shows the itemset lattice for the set of items I =

{A,B,C,D,E}. There are 2|I| = 25 = 32 possible itemsets including the empty

set. The corresponding prefix search tree is also shown (in bold). The brute-force

method explores the entire itemset search space, regardless of the minsup threshold

employed. If minsup = 3, then the brute-force method would output the set of

frequent itemsets shown in Table 8.1.

Computational Complexity

Support computation takes time O(|I| · |D|) in the worst case, and because there are

O(2|I|) possible candidates, the computational complexity of the brute-force method

is O(|I| · |D| · 2|I|). Because the database D can be very large, it is also important to

measure the input/output (I/O) complexity. Because we make one complete database

scan to compute the support of each candidate, the I/O complexity of BRUTEFORCE is

O(2|I|) database scans. Thus, the brute force approach is computationally infeasible for

even small itemset spaces, whereas in practice I can be very large (e.g., a supermarket

carries thousands of items). The approach is impractical from an I/O perspective

as well.
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We shall see next how to systematically improve on the brute force approach, by

improving both the candidate generation and support counting steps.

8.2.1 Level-wise Approach: Apriori Algorithm

The brute force approach enumerates all possible itemsets in its quest to determine

the frequent ones. This results in a lot of wasteful computation because many of

the candidates may not be frequent. Let X,Y ⊆ I be any two itemsets. Note that if

X ⊆ Y, then sup(X) ≥ sup(Y), which leads to the following two observations: (1) if

X is frequent, then any subset Y ⊆ X is also frequent, and (2) if X is not frequent,

then any superset Y⊇X cannot be frequent. The Apriori algorithm utilizes these two

properties to significantly improve the brute-force approach. It employs a level-wise

or breadth-first exploration of the itemset search space, and prunes all supersets of

any infrequent candidate, as no superset of an infrequent itemset can be frequent.

It also avoids generating any candidate that has an infrequent subset. In addition to

improving the candidate generation step via itemset pruning, the Apriori method also

significantly improves the I/O complexity. Instead of counting the support for a single

itemset, it explores the prefix tree in a breadth-first manner, and computes the support

of all the valid candidates of size k that comprise level k in the prefix tree.

Example 8.6. Consider the example dataset in Figure 8.1; let minsup= 3. Figure 8.3

shows the itemset search space for the Apriori method, organized as a prefix tree

where two itemsets are connected if one is a prefix and immediate subset of the

other. Each node shows an itemset along with its support, thus AC(2) indicates that

sup(AC) = 2. Apriori enumerates the candidate patterns in a level-wise manner,

as shown in the figure, which also demonstrates the power of pruning the search

space via the two Apriori properties. For example, once we determine that AC is

infrequent, we can prune any itemset that has AC as a prefix, that is, the entire

subtree under AC can be pruned. Likewise for CD. Also, the extension BCD from

BC can be pruned, since it has an infrequent subset, namely CD.

Algorithm 8.2 shows the pseudo-code for the Apriori method. Let C(k) denote the

prefix tree comprising all the candidate k-itemsets. The method begins by inserting the

single items into an initially empty prefix tree to populate C(1). The while loop (lines

5–11) first computes the support for the current set of candidates at level k via the

COMPUTESUPPORT procedure that generates k-subsets of each transaction in the

database D, and for each such subset it increments the support of the corresponding

candidate in C(k) if it exists. This way, the database is scanned only once per level,

and the supports for all candidate k-itemsets are incremented during that scan. Next,

we remove any infrequent candidate (line 9). The leaves of the prefix tree that

survive comprise the set of frequent k-itemsets F (k), which are used to generate the

candidate (k + 1)-itemsets for the next level (line 10). The EXTENDPREFIXTREE

procedure employs prefix-based extension for candidate generation. Given two

frequent k-itemsets Xa and Xb with a common k − 1 length prefix, that is, given two

sibling leaf nodes with a common parent, we generate the (k + 1)-length candidate

Xab =Xa ∪Xb. This candidate is retained only if it has no infrequent subset. Finally, if

a k-itemset Xa has no extension, it is pruned from the prefix tree, and we recursively
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∅

A(4) B(6) C(4) D(4) E(5)

AB(4) AC(2) AD(3) AE(4) BC(4) BD(4) BE(5) CD(2) CE(3) DE(3)

ABC ABD(3) ABE(4) ACD ACE ADE(3) BCD BCE(3) BDE(3) CDE

ABCD ABCE ABDE(3) ACDE BCDE

ABCDE

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 8.3. Apriori: prefix search tree and effect of pruning. Shaded nodes indicate infrequent itemsets,

whereas dashed nodes and lines indicate all of the pruned nodes and branches. Solid lines indicate frequent

itemsets.

prune any of its ancestors with no k-itemset extension, so that in C(k) all leaves are at

level k. If new candidates were added, the whole process is repeated for the next level.

This process continues until no new candidates are added.

Example 8.7. Figure 8.4 illustrates the Apriori algorithm on the example dataset

from Figure 8.1 using minsup = 3. All the candidates C(1) are frequent (see

Figure 8.4a). During extension all the pairwise combinations will be considered, since

they all share the empty prefix ∅ as their parent. These comprise the new prefix tree

C(2) in Figure 8.4b; because E has no prefix-based extensions, it is removed from the

tree. After support computation AC(2) and CD(2) are eliminated (shown in gray)

since they are infrequent. The next level prefix tree is shown in Figure 8.4c. The

candidate BCD is pruned due to the presence of the infrequent subset CD. All of the

candidates at level 3 are frequent. Finally, C(4) (shown in Figure 8.4d) has only one

candidate Xab =ABDE, which is generated from Xa =ABD and Xb =ABE because

this is the only pair of siblings. The mining process stops after this step, since no more

extensions are possible.

The worst-case computational complexity of the Apriori algorithm is still O(|I| ·

|D| · 2|I|), as all itemsets may be frequent. In practice, due to the pruning of the search
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ALGORITHM 8.2. Algorithm APRIORI

APRIORI (D, I, minsup):

F←∅1

C(1)←{∅} // Initial prefix tree with single items2

foreach i ∈ I do Add i as child of ∅ in C(1) with sup(i)← 03

k← 1 // k denotes the level4

while C(k) 6= ∅ do5

COMPUTESUPPORT (C(k),D)6

foreach leaf X ∈ C(k) do7

if sup(X)≥minsup then F←F ∪
{

(X,sup(X))
}

8

else remove X from C(k)
9

C(k+1)← EXTENDPREFIXTREE (C(k))10

k← k+ 111

return F (k)
12

COMPUTESUPPORT (C(k),D):

foreach 〈t, i(t)〉 ∈D do13

foreach k-subset X⊆ i(t) do14

if X ∈ C(k) then sup(X)← sup(X)+ 115

EXTENDPREFIXTREE (C(k)):

foreach leaf Xa ∈ C
(k) do16

foreach leaf Xb ∈ SIBLING(Xa),such that b > a do17

Xab←Xa ∪Xb18

// prune candidate if there are any infrequent subsets

if Xj ∈ C
(k), for all Xj ⊂Xab, such that |Xj | = |Xab|− 1 then19

Add Xab as child of Xa with sup(Xab)← 020

if no extensions from Xa then21

remove Xa, and all ancestors of Xa with no extensions, from C(k)
22

return C(k)
23

space the cost is much lower. However, in terms of I/O cost Apriori requires O(|I|)

database scans, as opposed to the O(2|I|) scans in the brute-force method. In practice,

it requires only l database scans, where l is the length of the longest frequent itemset.

8.2.2 Tidset Intersection Approach: Eclat Algorithm

The support counting step can be improved significantly if we can index the database

in such a way that it allows fast frequency computations. Notice that in the level-wise

approach, to count the support, we have to generate subsets of each transaction and

check whether they exist in the prefix tree. This can be expensive because we may end

up generating many subsets that do not exist in the prefix tree.
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(a) C(1)

∅(6)

A(4)
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(b) C(2)

∅(6)

A(4)

AB(4)

ABD(3) ABE(4)

AD(3)

ADE(3)

B(6)

BC(4)
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(c) C(3)
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A(4)

AB(4)
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ABDE(3)

(d) C(4)

Figure 8.4. Itemset mining: Apriori algorithm. The prefix search trees C(k) at each level are shown. Leaves

(unshaded) comprise the set of frequent k-itemsets F (k).

The Eclat algorithm leverages the tidsets directly for support computation. The

basic idea is that the support of a candidate itemset can be computed by intersecting the

tidsets of suitably chosen subsets. In general, given t(X) and t(Y) for any two frequent

itemsets X and Y, we have

t(XY)= t(X)∩ t(Y)

The support of candidate XY is simply the cardinality of t(XY), that is, sup(XY) =

|t(XY)|. Eclat intersects the tidsets only if the frequent itemsets share a common prefix,

and it traverses the prefix search tree in a DFS-like manner, processing a group of

itemsets that have the same prefix, also called a prefix equivalence class.

Example 8.8. For example, if we know that the tidsets for item A and C are t(A)=

1345 and t(C) = 2456, respectively, then we can determine the support of AC by

intersecting the two tidsets, to obtain t(AC) = t(A) ∩ t(C) = 1345 ∩ 2456 = 45.



8.2 Itemset Mining Algorithms 227

ALGORITHM 8.3. Algorithm ECLAT

// Initial Call: F←∅,P ←
{

〈i, t(i)〉 | i ∈ I, |t(i)| ≥minsup
}

ECLAT (P , minsup, F):

foreach 〈Xa, t(Xa)〉 ∈ P do1

F←F ∪
{

(Xa,sup(Xa))
}

2

Pa←∅3

foreach 〈Xb, t(Xb)〉 ∈ P , with Xb > Xa do4

Xab =Xa ∪Xb5

t(Xab)= t(Xa)∩ t(Xb)6

if sup(Xab)≥minsup then7

Pa← Pa ∪
{

〈Xab, t(Xab)〉
}

8

if Pa 6= ∅ then ECLAT (Pa , minsup, F)9

In this case, we have sup(AC) = |45| = 2. An example of a prefix equivalence

class is the set PA = {AB,AC,AD,AE}, as all the elements of PA share A as

the prefix.

The pseudo-code for Eclat is given in Algorithm 8.3. It employs a vertical

representation of the binary database D. Thus, the input is the set of tuples 〈i, t(i)〉

for all frequent items i ∈ I, which comprise an equivalence class P (they all share the

empty prefix); it is assumed that P contains only frequent itemsets. In general, given a

prefix equivalence class P , for each frequent itemset Xa ∈P , we try to intersect its tidset

with the tidsets of all other itemsets Xb ∈ P . The candidate pattern is Xab = Xa ∪Xb,

and we check the cardinality of the intersection t(Xa)∩ t(Xb) to determine whether it

is frequent. If so, Xab is added to the new equivalence class Pa that contains all itemsets

that share Xa as a prefix. A recursive call to Eclat then finds all extensions of the Xa

branch in the search tree. This process continues until no extensions are possible over

all branches.

Example 8.9. Figure 8.5 illustrates the Eclat algorithm. Here minsup = 3, and the

initial prefix equivalence class is

P∅ =
{

〈A,1345〉,〈B,123456〉,〈C,2456〉,〈D,1356〉,〈E,12345〉
}

Eclat intersects t(A) with each of t(B), t(C), t(D), and t(E) to obtain the tidsets for

AB, AC, AD and AE, respectively. Out of these AC is infrequent and is pruned

(marked gray). The frequent itemsets and their tidsets comprise the new prefix

equivalence class

PA =
{

〈AB,1345〉,〈AD,135〉,〈AE,1345〉
}

which is recursively processed. On return, Eclat intersects t(B) with t(C), t(D), and

t(E) to obtain the equivalence class

PB =
{

〈BC,2456〉,〈BD,1356〉,〈BE,12345〉
}
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Figure 8.5. Eclat algorithm: tidlist intersections (gray boxes indicate infrequent itemsets).

Other branches are processed in a similar manner; the entire search space that Eclat

explores is shown in Figure 8.5. The gray nodes indicate infrequent itemsets, whereas

the rest constitute the set of frequent itemsets.

The computational complexity of Eclat is O(|D| ·2|I|) in the worst case, since there

can be 2|I| frequent itemsets, and an intersection of two tidsets takes at most O(|D|)

time. The I/O complexity of Eclat is harder to characterize, as it depends on the size

of the intermediate tidsets. With t as the average tidset size, the initial database size

is O(t · |I|), and the total size of all the intermediate tidsets is O(t · 2|I|). Thus, Eclat

requires t·2|I|

t·|I|
=O(2|I|/|I|) database scans in the worst case.

Diffsets: Difference of Tidsets

The Eclat algorithm can be significantly improved if we can shrink the size of the

intermediate tidsets. This can be achieved by keeping track of the differences in

the tidsets as opposed to the full tidsets. Formally, let Xk = {x1,x2, . . . ,xk−1,xk} be a

k-itemset. Define the diffset of Xk as the set of tids that contain the prefix Xk−1 =

{x1, . . . ,xk−1} but do not contain the item xk, given as

d(Xk)= t(Xk−1) \ t(Xk)

Consider two k-itemsets Xa = {x1, . . . ,xk−1,xa} and Xb = {x1, . . . ,xk−1,xb} that share the

common (k−1)-itemset X= {x1,x2, . . . ,xk−1} as a prefix. The diffset of Xab=Xa∪Xb =

{x1, . . . ,xk−1,xa,xb} is given as

d(Xab)= t(Xa) \ t(Xab)= t(Xa) \ t(Xb) (8.3)

However, note that

t(Xa) \ t(Xb)= t(Xa)∩ t(Xb)
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and taking the union of the above with the emptyset t(X) ∩ t(X), we can obtain an

expression for d(Xab) in terms of d(Xa) and d(Xb) as follows:

d(Xab)= t(Xa) \ t(Xb)

= t(Xa)∩ t(Xb)

=
(

t(Xa)∩ t(Xb)
)

∪
(

t(X)∩ t(X)
)

=
(

(

t(Xa)∪ t(X)
)

∩
(

t(Xb)∪ t(X)
)

)

∩
(

t(Xa)∪ t(X)
)

∩
(

t(Xb)∪ t(X)
)

=
(

t(X)∩ t(Xb)
)

∩
(

t(X)∩ t(Xa)
)

∩T

= d(Xb) \d(Xa)

Thus, the diffset of Xab can be obtained from the diffsets of its subsets Xa and Xb, which

means that we can replace all intersection operations in Eclat with diffset operations.

Using diffsets the support of a candidate itemset can be obtained by subtracting the

diffset size from the support of the prefix itemset:

sup(Xab)= sup(Xa)−|d(Xab)|

which follows directly from Eq. (8.3).

The variant of Eclat that uses the diffset optimization is called dEclat, whose

pseudo-code is shown in Algorithm 8.4. The input comprises all the frequent single

items i ∈ I along with their diffsets, which are computed as

d(i)= t(∅) \ t(i)= T \ t(i)

Given an equivalence class P , for each pair of distinct itemsets Xa and Xb we generate

the candidate pattern Xab = Xa ∪Xb and check whether it is frequent via the use of

diffsets (lines 6–7). Recursive calls are made to find further extensions. It is important

ALGORITHM 8.4. Algorithm DECLAT

// Initial Call: F←∅,

P ←
{

〈i,d(i),sup(i)〉 | i ∈ I,d(i)= T \ t(i),sup(i)≥minsup
}

DECLAT (P , minsup, F):

foreach 〈Xa,d(Xa),sup(Xa)〉 ∈ P do1

F←F ∪
{

(Xa,sup(Xa))
}

2

Pa←∅3

foreach 〈Xb,d(Xb),sup(Xb)〉 ∈ P , with Xb > Xa do4

Xab =Xa ∪Xb5

d(Xab)= d(Xb) \d(Xa)6

sup(Xab)= sup(Xa)−|d(Xab)|7

if sup(Xab)≥minsup then8

Pa← Pa ∪
{

〈Xab,d(Xab),sup(Xab)〉
}

9

if Pa 6= ∅ then DECLAT (Pa , minsup, F)10
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to note that the switch from tidsets to diffsets can be made during any recursive call to

the method. In particular, if the initial tidsets have small cardinality, then the initial call

should use tidset intersections, with a switch to diffsets starting with 2-itemsets. Such

optimizations are not described in the pseudo-code for clarity.

Example 8.10. Figure 8.6 illustrates the dEclat algorithm. Here minsup = 3, and

the initial prefix equivalence class comprises all frequent items and their diffsets,

computed as follows:

d(A)= T \ 1345= 26

d(B)= T \ 123456= ∅

d(C)= T \ 2456= 13

d(D)= T \ 1356= 24

d(E)= T \ 12345= 6

where T = 123456. To process candidates with A as a prefix, dEclat computes the

diffsets for AB, AC, AD and AE. For instance, the diffsets of AB and AC are given as

d(AB)= d(B) \d(A)= ∅\ {2,6} = ∅

d(AC)= d(C) \d(A)= {1,3} \ {2,6} = 13

∅
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6
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Figure 8.6. dEclat algorithm: diffsets (gray boxes indicate infrequent itemsets).
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and their support values are

sup(AB)= sup(A)−|d(AB)| = 4− 0= 4

sup(AC)= sup(A)−|d(AC)| = 4− 2= 2

Whereas AB is frequent, we can prune AC because it is not frequent. The frequent

itemsets and their diffsets and support values comprise the new prefix equivalence

class:

PA =
{

〈AB,∅,4〉,〈AD,4,3〉,〈AE,∅,4〉
}

which is recursively processed. Other branches are processed in a similar manner.

The entire search space for dEclat is shown in Figure 8.6. The support of an itemset

is shown within brackets. For example, A has support 4 and diffset d(A)= 26.

8.2.3 Frequent Pattern Tree Approach: FPGrowth Algorithm

The FPGrowth method indexes the database for fast support computation via the use

of an augmented prefix tree called the frequent pattern tree (FP-tree). Each node in

the tree is labeled with a single item, and each child node represents a different item.

Each node also stores the support information for the itemset comprising the items on

the path from the root to that node. The FP-tree is constructed as follows. Initially the

tree contains as root the null item ∅. Next, for each tuple 〈t,X〉 ∈ D, where X = i(t),

we insert the itemset X into the FP-tree, incrementing the count of all nodes along the

path that represents X. If X shares a prefix with some previously inserted transaction,

then X will follow the same path until the common prefix. For the remaining items in

X, new nodes are created under the common prefix, with counts initialized to 1. The

FP-tree is complete when all transactions have been inserted.

The FP-tree can be considered as a prefix compressed representation of D.

Because we want the tree to be as compact as possible, we want the most frequent

items to be at the top of the tree. FPGrowth therefore reorders the items in decreasing

order of support, that is, from the initial database, it first computes the support of all

single items i ∈ I. Next, it discards the infrequent items, and sorts the frequent items

by decreasing support. Finally, each tuple 〈t,X〉 ∈ D is inserted into the FP-tree after

reordering X by decreasing item support.

Example 8.11. Consider the example database in Figure 8.1. We add each transac-

tion one by one into the FP-tree, and keep track of the count at each node. For

our example database the sorted item order is {B(6),E(5),A(4),C(4),D(4)}. Next,

each transaction is reordered in this same order; for example, 〈1,ABDE〉 becomes

〈1,BEAD〉. Figure 8.7 illustrates step-by-step FP-tree construction as each sorted

transaction is added to it. The final FP-tree for the database is shown in Figure 8.7f.

Once the FP-tree has been constructed, it serves as an index in lieu of the

original database. All frequent itemsets can be mined from the tree directly via the

FPGROWTH method, whose pseudo-code is shown in Algorithm 8.5. The method

accepts as input a FP-tree R constructed from the input database D, and the current

itemset prefix P , which is initially empty.
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(f) 〈6,BCD〉

Figure 8.7. Frequent pattern tree: bold edges indicate current transaction.

Given a FP-tree R, projected FP-trees are built for each frequent item i in R in

increasing order of support. To project R on item i, we find all the occurrences of i in

the tree, and for each occurrence, we determine the corresponding path from the root

to i (line 13). The count of item i on a given path is recorded in cnt (i) (line 14), and

the path is inserted into the new projected tree RX, where X is the itemset obtained by

extending the prefix P with the item i. While inserting the path, the count of each node

in RX along the given path is incremented by the path count cnt (i). We omit the item i

from the path, as it is now part of the prefix. The resulting FP-tree is a projection of the

itemset X that comprises the current prefix extended with item i (line 9). We then call

FPGROWTH recursively with projected FP-tree RX and the new prefix itemset X as the

parameters (line 16). The base case for the recursion happens when the input FP-tree

R is a single path. FP-trees that are paths are handled by enumerating all itemsets that

are subsets of the path, with the support of each such itemset being given by the least

frequent item in it (lines 2–6).
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ALGORITHM 8.5. Algorithm FPGROWTH

// Initial Call: R← FP-tree(D), P ←∅, F←∅

FPGROWTH (R, P , F , minsup):

Remove infrequent items from R1

if ISPATH(R) then // insert subsets of R into F2

foreach Y⊆R do3

X← P ∪Y4

sup(X)←minx∈Y{cnt (x)}5

F←F ∪
{

(X,sup(X))
}

6

else // process projected FP-trees for each frequent item i7

foreach i ∈R in increasing order of sup(i) do8

X← P ∪{i}9

sup(X)← sup(i) // sum of cnt (i) for all nodes labeled i10

F←F ∪
{

(X,sup(X))
}

11

RX←∅ // projected FP-tree for X12

foreach path ∈ PATHFROMROOT(i) do13

cnt (i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt (i)15

if RX 6= ∅ then FPGROWTH (RX, X, F , minsup)16

Example 8.12. We illustrate the FPGrowth method on the FP-tree R built in

Example 8.11, as shown in Figure 8.7f. Let minsup = 3. The initial prefix is P = ∅,

and the set of frequent items i in R are B(6), E(5), A(4), C(4), and D(4). FPGrowth

creates a projected FP-tree for each item, but in increasing order of support.

The projected FP-tree for item D is shown in Figure 8.8c. Given the initial

FP-tree R shown in Figure 8.7f, there are three paths from the root to a node labeled

D, namely

BCD, cnt (D)= 1

BEACD, cnt (D)= 1

BEAD, cnt (D)= 2

These three paths, excluding the last item i =D, are inserted into the new FP-tree RD

with the counts incremented by the corresponding cnt (D) values, that is, we insert

into RD, the paths BC with count of 1, BEAC with count of 1, and finally BEA

with count of 2, as shown in Figures 8.8a–c. The projected FP-tree for D is shown

in Figure 8.8c, which is processed recursively.

When we process RD, we have the prefix itemset P =D, and after removing the

infrequent item C (which has support 2), we find that the resulting FP-tree is a single

path B(4)–E(3)–A(3). Thus, we enumerate all subsets of this path and prefix them
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∅(1)

B(1)
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∅(4)

B(4)

C(1) E(3)
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C(1)

(c) Add BEA,cnt = 2

Figure 8.8. Projected frequent pattern tree for D.

with D, to obtain the frequent itemsets DB(4), DE(3), DA(3), DBE(3), DBA(3),

DEA(3), and DBEA(3). At this point the call from D returns.

In a similar manner, we process the remaining items at the top level. The

projected trees for C, A, and E are all single-path trees, allowing us to generate the

frequent itemsets {CB(4),CE(3),CBE(3)}, {AE(4),AB(4),AEB(4)}, and {EB(5)},

respectively. This process is illustrated in Figure 8.9.

8.3 GENERATING ASSOCIATION RULES

Given a collection of frequent itemsets F , to generate association rules we iterate over

all itemsets Z ∈ F , and calculate the confidence of various rules that can be derived

from the itemset. Formally, given a frequent itemset Z ∈ F , we look at all proper

subsets X⊂Z to compute rules of the form

X
s,c
−→Y, where Y=Z \X

where Z \X=Z−X. The rule must be frequent because

s = sup(XY)= sup(Z)≥minsup

Thus, we have to only check whether the rule confidence satisfies the minconf

threshold. We compute the confidence as follows:

c=
sup(X∪Y)

sup(X)
=

sup(Z)

sup(X)

If c ≥minconf, then the rule is a strong rule. On the other hand, if conf(X−→ Y) < c,

then conf(W −→ Z \W) < c for all subsets W ⊂ X, as sup(W) ≥ sup(X). We can thus

avoid checking subsets of X.

Algorithm 8.6 shows the pseudo-code for the association rule mining algorithm.

For each frequent itemset Z∈F , with size at least 2, we initialize the set of antecedents
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Figure 8.9. FPGrowth algorithm: frequent pattern tree projection.

A with all the nonempty subsets of Z (line 2). For each X ∈ A we check whether the

confidence of the rule X−→Z\X is at least minconf (line 7). If so, we output the rule.

Otherwise, we remove all subsets W⊂X from the set of possible antecedents (line 10).

Example 8.13. Consider the frequent itemset ABDE(3) from Table 8.1, whose

support is shown within the brackets. Assume that minconf= 0.9. To generate strong

association rules we initialize the set of antecedents to

A= {ABD(3),ABE(4),ADE(3),BDE(3),AB(3),AD(4),AE(4),

BD(4),BE(5),DE(3),A(4),B(6),D(4),E(5)}
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ALGORITHM 8.6. Algorithm ASSOCIATIONRULES

ASSOCIATIONRULES (F , minconf):

foreach Z ∈F , such that |Z| ≥ 2 do1

A←
{

X |X⊂Z,X 6= ∅
}

2

while A 6= ∅ do3

X←maximal element in A4

A←A \X// remove X from A5

c← sup(Z)/sup(X)6

if c ≥minconf then7

print X−→Y, sup(Z), c8

else9

A←A \
{

W |W⊂X
}

// remove all subsets of X from A10

The first subset is X = ABD, and the confidence of ABD −→ E is 3/3 = 1.0, so we

output it. The next subset is X=ABE, but the corresponding rule ABE−→D is not

strong since conf(ABE−→D)= 3/4= 0.75. We can thus remove from A all subsets

of ABE; the updated set of antecedents is therefore

A= {ADE(3),BDE(3),AD(4),BD(4),DE(3),D(4)}

Next, we select X =ADE, which yields a strong rule, and so do X= BDE and X =

AD. However, when we process X=BD, we find that conf(BD−→AE)= 3/4= 0.75,

and thus we can prune all subsets of BD from A, to yield

A= {DE(3)}

The last rule to be tried is DE −→ AB which is also strong. The final set of strong

rules that are output are as follows:

ABD−→E,conf= 1.0

ADE−→B,conf= 1.0

BDE−→A,conf= 1.0

AD−→BE,conf= 1.0

DE−→AB,conf= 1.0

8.4 FURTHER READING

The association rule mining problem was introduced in Agrawal, Imieliński, and

Swami (1993). The Apriori method was proposed in Agrawal and Srikant (1994), and

a similar approach was outlined independently in Mannila, Toivonen, and Verkamo
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(1994). The tidlist intersection based Eclat method is described in Zaki et al. (1997),

and the dEclat approach that uses diffset appears in Zaki and Gouda (2003). Finally,

the FPGrowth algorithm is described in Han, Pei, and Yin (2000). For an experimental

comparison between several of the frequent itemset mining algorithms see Goethals

and Zaki (2004). There is a very close connection between itemset mining and

association rules, and formal concept analysis (Ganter, Wille, and Franzke, 1997). For

example, association rules can be considered to be partial implications (Luxenburger,

1991) with frequency constraints.
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8.5 EXERCISES

Q1. Given the database in Table 8.2.

(a) Using minsup = 3/8, show how the Apriori algorithm enumerates all frequent

patterns from this dataset.

(b) With minsup= 2/8, show how FPGrowth enumerates the frequent itemsets.

Q2. Consider the vertical database shown in Table 8.3. Assuming that minsup = 3,

enumerate all the frequent itemsets using the Eclat method.
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Table 8.2. Transaction database for Q1

tid itemset

t1 ABCD

t2 ACDF

t3 ACDEG

t4 ABDF

t5 BCG

t6 DFG

t7 ABG

t8 CDFG

Table 8.3. Dataset for Q2

A B C D E

1 2 1 1 2

3 3 2 6 3

5 4 3 4

6 5 5 5

6 6

Q3. Given two k-itemsets Xa = {x1, . . . ,xk−1,xa} and Xb = {x1, . . . ,xk−1,xb} that share the

common (k− 1)-itemset X= {x1,x2, . . . ,xk−1} as a prefix, prove that

sup(Xab)= sup(Xa)−|d(Xab)|

where Xab =Xa ∪Xb, and d(Xab) is the diffset of Xab .

Q4. Given the database in Table 8.4. Show all rules that one can generate from the set

ABE.

Table 8.4. Dataset for Q4

tid itemset

t1 ACD

t2 BCE

t3 ABCE

t4 BDE

t5 ABCE

t6 ABCD

Q5. Consider the partition algorithm for itemset mining. It divides the database into k

partitions, not necessarily equal, such that D=∪k
i=1Di , where Di is partition i, and for

any i 6= j , we have Di∩Dj =∅. Also let ni = |Di | denote the number of transactions in

partition Di . The algorithm first mines only locally frequent itemsets, that is, itemsets

whose relative support is above the minsup threshold specified as a fraction. In the

second step, it takes the union of all locally frequent itemsets, and computes their

support in the entire database D to determine which of them are globally frequent.

Prove that if a pattern is globally frequent in the database, then it must be locally

frequent in at least one partition.
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Q6. Consider Figure 8.10. It shows a simple taxonomy on some food items. Each leaf is

a simple item and an internal node represents a higher-level category or item. Each

item (single or high-level) has a unique integer label noted under it. Consider the

database composed of the simple items shown in Table 8.5 Answer the following

questions:

b

vegetables

1

grain

14

bread 12

wheat

2

white

3

rye

4

rice

5

fruit

6

diary 15

yogurt

7

milk 13

whole

8

2%

9

skim

10

cheese

11

Figure 8.10. Item taxonomy for Q6.

Table 8.5. Dataset for Q6

tid itemset

1 2 3 6 7

2 1 3 4 8 11

3 3 9 11

4 1 5 6 7

5 1 3 8 10 11

6 3 5 7 9 11

7 4 6 8 10 11

8 1 3 5 8 11

(a) What is the size of the itemset search space if one restricts oneself to only itemsets

composed of simple items?

(b) Let X= {x1,x2, . . . ,xk} be a frequent itemset. Let us replace some xi ∈X with its

parent in the taxonomy (provided it exists) to obtain X′, then the support of the

new itemset X′ is:

i. more than support of X

ii. less than support of X

iii. not equal to support of X

iv. more than or equal to support of X

v. less than or equal to support of X
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(c) Use minsup= 7/8. Find all frequent itemsets composed only of high-level items

in the taxonomy. Keep in mind that if a simple item appears in a transaction, then

its high-level ancestors are all assumed to occur in the transaction as well.

Q7. Let D be a database with n transactions. Consider a sampling approach for mining

frequent itemsets, where we extract a random sample S⊂D, with say m transactions,

and we mine all the frequent itemsets in the sample, denoted as FS. Next, we make

one complete scan of D, and for each X ∈ FS, we find its actual support in the

whole database. Some of the itemsets in the sample may not be truly frequent in

the database; these are the false positives. Also, some of the true frequent itemsets

in the original database may never be present in the sample at all; these are the false

negatives.

Prove that if X is a false negative, then this case can be detected by counting

the support in D for every itemset belonging to the negative border of FS, denoted

Bd−(FS), which is defined as the set of minimal infrequent itemsets in sample S.

Formally,

Bd−(FS)= inf
{

Y | sup(Y) < minsup and ∀Z⊂Y,sup(Z)≥minsup
}

where inf returns the minimal elements of the set.

Q8. Assume that we want to mine frequent patterns from relational tables. For example

consider Table 8.6, with three attributes A, B, and C, and six records. Each attribute

has a domain from which it draws its values, for example, the domain of A is dom(A)=

{a1,a2,a3}. Note that no record can have more than one value of a given attribute.

Table 8.6. Data for Q8

tid A B C

1 a1 b1 c1

2 a2 b3 c2

3 a2 b3 c3

4 a2 b1 c1

5 a2 b3 c3

6 a3 b3 c3

We define a relational pattern P over some k attributes X1,X2, . . . ,Xk to be a

subset of the Cartesian product of the domains of the attributes, i.e., P ⊆ dom(X1)×

dom(X2)× ·· ·× dom(Xk). That is, P = P1×P2× ·· ·×Pk , where each Pi ⊆ dom(Xi).

For example, {a1,a2} × {c1} is a possible pattern over attributes A and C, whereas

{a1}× {b1}× {c1} is another pattern over attributes A, B and C.

The support of relational pattern P = P1×P2× ·· ·×Pk in dataset D is defined as

the number of records in the dataset that belong to it; it is given as

sup(P )=
∣

∣{r = (r1, r2, . . . , rn) ∈D : ri ∈ Pi for all Pi in P }
∣

∣

For example, sup({a1,a2}×{c1})= 2, as both records 1 and 4 contribute to its support.

Note, however that the pattern {a1} × {c1} has a support of 1, since only record 1

belongs to it. Thus, relational patterns do not satisfy the Apriori property that we
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used for frequent itemsets, that is, subsets of a frequent relational pattern can be

infrequent.

We call a relational pattern P =P1×P2×·· ·×Pk over attributes X1, . . . ,Xk as valid

iff for all u ∈ Pi and all v ∈ Pj , the pair of values (Xi = u,Xj = v) occurs together in

some record. For example, {a1,a2}×{c1} is a valid pattern since both (A= a1,C= c1)

and (A = a2,C = c1) occur in some records (namely, records 1 and 4, respectively),

whereas {a1,a2}×{c2} is not a valid pattern, since there is no record that has the values

(A= a1,C= c2). Thus, for a pattern to be valid every pair of values in P from distinct

attributes must belong to some record.

Given that minsup= 2, find all frequent, valid, relational patterns in the dataset in

Table 8.6.

Q9. Given the following multiset dataset:

tid multiset

1 ABCA

2 ABABA

3 CABBA

Using minsup= 2, answer the following:

(a) Find all frequent multisets. Recall that a multiset is still a set (i.e., order is not

important), but it allows multiple occurrences of an item.

(b) Find all minimal infrequent multisets, that is, those multisets that have no

infrequent sub-multisets.
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The search space for frequent itemsets is usually very large and it grows exponentially

with the number of items. In particular, a low minimum support value may result

in an intractable number of frequent itemsets. An alternative approach, studied in

this chapter, is to determine condensed representations of the frequent itemsets that

summarize their essential characteristics. The use of condensed representations can

not only reduce the computational and storage demands, but it can also make it easier

to analyze the mined patterns. In this chapter we discuss three of these representations:

closed, maximal, and nonderivable itemsets.

9.1 MAXIMAL AND CLOSED FREQUENT ITEMSETS

Given a binary database D⊆ T × I, over the tids T and items I, let F denote the set

of all frequent itemsets, that is,

F =
{

X |X⊆ I and sup(X)≥minsup
}

Maximal Frequent Itemsets

A frequent itemset X ∈F is called maximal if it has no frequent supersets. Let M be

the set of all maximal frequent itemsets, given as

M=
{

X |X ∈F and 6 ∃Y⊃X, such that Y ∈F
}

The set M is a condensed representation of the set of all frequent itemset F , because

we can determine whether any itemset X is frequent or not using M. If there exists a

maximal itemset Z such that X⊆ Z, then X must be frequent; otherwise X cannot be

frequent. On the other hand, we cannot determine sup(X) using M alone, although we

can lower-bound it, that is, sup(X)≥ sup(Z) if X⊆Z ∈M.

Example 9.1. Consider the dataset given in Figure 9.1a. Using any of the algorithms

discussed in Chapter 8 and minsup = 3, we obtain the frequent itemsets shown

in Figure 9.1b. Notice that there are 19 frequent itemsets out of the 25 − 1 = 31

possible nonempty itemsets. Out of these, there are only two maximal itemsets,

242
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Tid Itemset

1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

(a) Transaction database

sup Itemsets

6 B

5 E,BE

4 A,C,D,AB,AE,BC,BD,ABE

3 AD,CE,DE,ABD,ADE,BCE,BDE,ABDE

(b) Frequent itemsets (minsup= 3)

Figure 9.1. An example database.

ABDE and BCE. Any other frequent itemset must be a subset of one of the maximal

itemsets. For example, we can determine that ABE is frequent, since ABE⊂ABDE,

and we can establish that sup(ABE)≥ sup(ABDE)= 3.

Closed Frequent Itemsets

Recall that the function t : 2I→ 2T [Eq. (8.2)] maps itemsets to tidsets, and the function

i : 2T → 2I [Eq. (8.1)] maps tidsets to itemsets. That is, given T⊆T , and X⊆I, we have

t(X)= {t ∈ T | t contains X}

i(T)= {x ∈ I | ∀t ∈ T, t contains x}

Define by c : 2I→ 2I the closure operator, given as

c(X)= i ◦ t(X)= i(t(X))

The closure operator c maps itemsets to itemsets, and it satisfies the following three
properties:

• Extensive: X⊆ c(X)

• Monotonic: If Xi ⊆Xj , then c(Xi)⊆ c(Xj )

• Idempotent: c(c(X)) = c(X)

An itemset X is called closed if c(X)=X, that is, if X is a fixed point of the closure

operator c. On the other hand, if X 6= c(X), then X is not closed, but the set c(X) is called

its closure. From the properties of the closure operator, both X and c(X) have the same

tidset. It follows that a frequent set X ∈ F is closed if it has no frequent superset with

the same frequency because by definition, it is the largest itemset common to all the

tids in the tidset t(X). The set of all closed frequent itemsets is thus defined as

C =
{

X |X ∈F and 6 ∃Y⊃X such that sup(X)= sup(Y)
}

(9.1)
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Put differently, X is closed if all supersets of X have strictly less support, that is,

sup(X) > sup(Y), for all Y⊃X.

The set of all closed frequent itemsets C is a condensed representation, as we can

determine whether an itemset X is frequent, as well as the exact support of X using C

alone. The itemset X is frequent if there exists a closed frequent itemset Z ∈ C such

that X⊆Z. Further, the support of X is given as

sup(X)=max
{

sup(Z)|Z ∈ C,X⊆Z
}

The following relationship holds between the set of all, closed, and maximal

frequent itemsets:

M⊆ C ⊆F

Minimal Generators

A frequent itemset X is a minimal generator if it has no subsets with the same support:

G =
{

X |X ∈F and 6 ∃Y⊂X, such that sup(X)= sup(Y)
}

In other words, all subsets of X have strictly higher support, that is, sup(X) < sup(Y),

for all Y ⊂ X. The concept of minimum generator is closely related to the notion

of closed itemsets. Given an equivalence class of itemsets that have the same tidset,

a closed itemset is the unique maximum element of the class, whereas the minimal

generators are the minimal elements of the class.

Example 9.2. Consider the example dataset in Figure 9.1a. The frequent closed (as

well as maximal) itemsets using minsup = 3 are shown in Figure 9.2. We can see,

for instance, that the itemsets AD, DE, ABD, ADE, BDE, and ABDE, occur in the

same three transactions, namely 135, and thus constitute an equivalence class. The

largest itemset among these, namely ABDE, is the closed itemset. Using the closure

operator yields the same result; we have c(AD)= i(t(AD))= i(135)=ABDE, which

indicates that the closure of AD is ABDE. To verify that ABDE is closed note that

c(ABDE)= i(t(ABDE))= i(135)=ABDE. The minimal elements of the equivalence

class, namely AD and DE, are the minimal generators. No subset of these itemsets

shares the same tidset.

The set of all closed frequent itemsets, and the corresponding set of minimal

generators, is as follows:

Tidset C G

1345 ABE A

123456 B B

1356 BD D

12345 BE E

2456 BC C

135 ABDE AD,DE

245 BCE CE
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A

1345

B

123456

D

1356

E

12345

C

2456

AD

135

DE

135

AB

1345

AE

1345

BD

1356

BE

12345

BC

2456

CE

245

ABD

135

ADE

135

BDE

135

ABE

1345

BCE

245

ABDE

135

Figure 9.2. Frequent, closed, minimal generators, and maximal frequent itemsets. Itemsets that are boxed

and shaded are closed, whereas those within boxes (but unshaded) are the minimal generators; maximal

itemsets are shown boxed with double lines.

Out of the closed itemsets, the maximal ones are ABDE and BCE. Consider itemset

AB. Using C we can determine that

sup(AB)=max{sup(ABE),sup(ABDE)} =max{4,3} = 4

9.2 MINING MAXIMAL FREQUENT ITEMSETS: GENMAX ALGORITHM

Mining maximal itemsets requires additional steps beyond simply determining the
frequent itemsets. Assuming that the set of maximal frequent itemsets is initially
empty, that is, M = ∅, each time we generate a new frequent itemset X, we have to
perform the following maximality checks

• Subset Check: 6 ∃Y ∈M, such that X ⊂ Y. If such a Y exists, then clearly X is not

maximal. Otherwise, we add X to M, as a potentially maximal itemset.

• Superset Check: 6 ∃Y∈M, such that Y⊂X. If such a Y exists, then Y cannot be maximal,

and we have to remove it from M.

These two maximality checks take O(|M|) time, which can get expensive, especially

as M grows; thus for efficiency reasons it is crucial to minimize the number of times

these checks are performed. As such, any of the frequent itemset mining algorithms
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from Chapter 8 can be extended to mine maximal frequent itemsets by adding the

maximality checking steps. Here we consider the GenMax method, which is based

on the tidset intersection approach of Eclat (see Section 8.2.2). We shall see that it

never inserts a nonmaximal itemset into M. It thus eliminates the superset checks and

requires only subset checks to determine maximality.

Algorithm 9.1 shows the pseudo-code for GenMax. The initial call takes as input

the set of frequent items along with their tidsets, 〈i, t(i)〉, and the initially empty set

of maximal itemsets, M. Given a set of itemset–tidset pairs, called IT-pairs, of the

form 〈X, t(X)〉, the recursive GenMax method works as follows. In lines 1–3, we check

if the entire current branch can be pruned by checking if the union of all the itemsets,

Y=
⋃

Xi , is already subsumed by (or contained in) some maximal pattern Z∈M. If so,

no maximal itemset can be generated from the current branch, and it is pruned. On the

other hand, if the branch is not pruned, we intersect each IT-pair 〈Xi, t(Xi)〉with all the

other IT-pairs 〈Xj , t(Xj )〉, with j > i, to generate new candidates Xij , which are added

to the IT-pair set Pi (lines 6–9). If Pi is not empty, a recursive call to GENMAX is made

to find other potentially frequent extensions of Xi . On the other hand, if Pi is empty,

it means that Xi cannot be extended, and it is potentially maximal. In this case, we add

Xi to the set M, provided that Xi is not contained in any previously added maximal set

Z ∈M (line 12). Note also that, because of this check for maximality before inserting

any itemset into M, we never have to remove any itemsets from it. In other words,

all itemsets in M are guaranteed to be maximal. On termination of GenMax, the

set M contains the final set of all maximal frequent itemsets. The GenMax approach

also includes a number of other optimizations to reduce the maximality checks and to

improve the support computations. Further, GenMax utilizes diffsets (differences of

tidsets) for fast support computation, which were described in Section 8.2.2. We omit

these optimizations here for clarity.

ALGORITHM 9.1. Algorithm GENMAX

// Initial Call: M←∅, P ←
{

〈i, t(i)〉 | i ∈ I,sup(i)≥minsup
}

GENMAX (P , minsup, M):

Y←
⋃

Xi1

if ∃Z ∈M, such that Y⊆Z then2

return // prune entire branch3

foreach 〈Xi, t(Xi)〉 ∈ P do4

Pi←∅5

foreach 〈Xj , t(Xj )〉 ∈ P , with j > i do6

Xij←Xi ∪Xj7

t(Xij)= t(Xi) ∩ t(Xj)8

if sup(Xij )≥minsup then Pi← Pi ∪{〈Xij , t(Xij )〉}9

if Pi 6= ∅ then GENMAX (Pi , minsup, M)10

else if 6 ∃Z ∈M,Xi ⊆Z then11

M=M∪Xi // add Xi to maximal set12
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Example 9.3. Figure 9.3 shows the execution of GenMax on the example database

from Figure 9.1a using minsup= 3. Initially the set of maximal itemsets is empty. The

root of the tree represents the initial call with all IT-pairs consisting of frequent single

items and their tidsets. We first intersect t(A) with the tidsets of the other items. The

set of frequent extensions from A are

PA =
{

〈AB,1345〉,〈AD,135〉,〈AE,1345〉
}

Choosing Xi =AB, leads to the next set of extensions, namely

PAB =
{

〈ABD,135〉,〈ABE,1345〉
}

Finally, we reach the left-most leaf corresponding to PABD = {〈ABDE,135〉}. At this

point, we add ABDE to the set of maximal frequent itemsets because it has no other

extensions, so that M= {ABDE}.

The search then backtracks one level, and we try to process ABE, which is also

a candidate to be maximal. However, it is contained in ABDE, so it is pruned.

Likewise, when we try to process PAD = {〈ADE,135〉} it will get pruned because it

is also subsumed by ABDE, and similarly for AE. At this stage, all maximal itemsets

starting with A have been found, and we next proceed with the B branch. The

left-most B branch, namely BCE, cannot be extended further. Because BCE is not

A B C D E

1345 123456 2456 1356 12345

AB AD AE

1345 135 1345

PA

ABD ABE

135 1345

PAB

ABDE

135

PABD

ADE

135

PAD

BC BD BE

2456 1356 12345

PB

BCE

245

PBC

BDE

135

PBD

CE

245

PC

DE

135

PD

Figure 9.3. Mining maximal frequent itemsets. Maximal itemsets are shown as shaded ovals, whereas pruned

branches are shown with the strike-through. Infrequent itemsets are not shown.
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a subset of any maximal itemset in M, we insert it as a maximal itemset, so that

M= {ABDE,BCE}. Subsequently, all remaining branches are subsumed by one of

these two maximal itemsets, and are thus pruned.

9.3 MINING CLOSED FREQUENT ITEMSETS: CHARM ALGORITHM

Mining closed frequent itemsets requires that we perform closure checks, that is,

whether X= c(X). Direct closure checking can be very expensive, as we would have to

verify that X is the largest itemset common to all the tids in t(X), that is, X=
⋂

t∈t(X) i(t).

Instead, we will describe a vertical tidset intersection based method called CHARM

that performs more efficient closure checking. Given a collection of IT-pairs {〈Xi, t(Xi)〉},

the following three properties hold:

Property (1) If t(Xi) = t(Xj ), then c(Xi) = c(Xj ) = c(Xi ∪Xj ), which implies that we

can replace every occurrence of Xi with Xi ∪Xj and prune the branch

under Xj because its closure is identical to the closure of Xi ∪Xj .

Property (2) If t(Xi) ⊂ t(Xj), then c(Xi) 6= c(Xj ) but c(Xi) = c(Xi ∪Xj ), which means

that we can replace every occurrence of Xi with Xi ∪Xj , but we cannot

prune Xj because it generates a different closure. Note that if t(Xi) ⊃

t(Xj) then we simply interchange the role of Xi and Xj .

Property (3) If t(Xi) 6= t(Xj), then c(Xi) 6= c(Xj ) 6= c(Xi ∪Xj ). In this case we cannot

remove either Xi or Xj , as each of them generates a different closure.

Algorithm 9.2 presents the pseudo-code for Charm, which is also based on the

Eclat algorithm described in Section 8.2.2. It takes as input the set of all frequent single

items along with their tidsets. Also, initially the set of all closed itemsets, C, is empty.

Given any IT-pair set P = {〈Xi, t(Xi)〉}, the method first sorts them in increasing order

of support. For each itemset Xi we try to extend it with all other items Xj in the sorted

order, and we apply the above three properties to prune branches where possible. First

we make sure that Xij =Xi∪Xj is frequent, by checking the cardinality of t(Xij ). If yes,

then we check properties 1 and 2 (lines 8 and 12). Note that whenever we replace Xi

with Xij =Xi ∪Xj , we make sure to do so in the current set P , as well as the new set

Pi . Only when property 3 holds do we add the new extension Xij to the set Pi (line 14).

If the set Pi is not empty, then we make a recursive call to Charm. Finally, if Xi is

not a subset of any closed set Z with the same support, we can safely add it to the set

of closed itemsets, C (line 18). For fast support computation, Charm uses the diffset

optimization described in Section 8.2.2; we omit it here for clarity.

Example 9.4. We illustrate the Charm algorithm for mining frequent closed itemsets

from the example database in Figure 9.1a, using minsup = 3. Figure 9.4 shows the

sequence of steps. The initial set of IT-pairs, after support based sorting, is shown

at the root of the search tree. The sorted order is A, C, D, E, and B. We first

process extensions from A, as shown in Figure 9.4a. Because AC is not frequent,
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ALGORITHM 9.2. Algorithm CHARM

// Initial Call: C←∅, P ←
{

〈i, t(i)〉 : i ∈ I,sup(i)≥minsup
}

CHARM (P , minsup, C):

Sort P in increasing order of support (i.e., by increasing |t(Xi)|)1

foreach 〈Xi, t(Xi)〉 ∈ P do2

Pi←∅3

foreach 〈Xj , t(Xj )〉 ∈ P , with j > i do4

Xij =Xi ∪Xj5

t(Xij)= t(Xi) ∩ t(Xj)6

if sup(Xij )≥minsup then7

if t(Xi)= t(Xj) then // Property 18

Replace Xi with Xij in P and Pi9

Remove 〈Xj , t(Xj )〉 from P10

else11

if t(Xi)⊂ t(Xj) then // Property 212

Replace Xi with Xij in P and Pi13

else // Property 314

Pi← Pi ∪
{

〈Xij , t(Xij )〉
}

15

if Pi 6= ∅ then CHARM (Pi , minsup, C)16

if 6 ∃Z ∈ C, such that Xi ⊆Z and t(Xi)= t(Z) then17

C = C ∪Xi // Add Xi to closed set18

it is pruned. AD is frequent and because t(A) 6= t(D), we add 〈AD,135〉 to the set

PA (property 3). When we combine A with E, property 2 applies, and we simply

replace all occurrences of A in both P and PA with AE, which is illustrated with the

strike-through. Likewise, because t(A) ⊂ t(B) all current occurrences of A, actually

AE, in both P and PA are replaced by AEB. The set PA thus contains only one itemset

{〈ADEB,135〉}. When CHARM is invoked with PA as the IT-pair, it jumps straight to

line 18, and adds ADEB to the set of closed itemsets C. When the call returns, we

check whether AEB can be added as a closed itemset. AEB is a subset of ADEB,

but it does not have the same support, thus AEB is also added to C. At this point all

closed itemsets containing A have been found.

The Charm algorithm proceeds with the remaining branches as shown in

Figure 9.4b. For instance, C is processed next. CD is infrequent and thus pruned.

CE is frequent and it is added to PC as a new extension (via property 3). Because

t(C) ⊂ t(B), all occurrences of C are replaced by CB, and PC = {〈CEB,245〉}. CEB

and CB are both found to be closed. The computation proceeds in this manner until

all closed frequent itemsets are enumerated. Note that when we get to DEB and

perform the closure check, we find that it is a subset of ADEB and also has the same

support; thus DEB is not closed.
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A AE AEB

1345

C

2456

D

1356

E

12345

B

123456

AD ADE ADEB

135

PA

(a) Process A

A AE AEB C CB D DB E EB B

1345 2456 1356 12345 123456

AD ADE ADEB

135

PA

CE CEB

245

PC

DE DEB

135

PD

(b) Charm

Figure 9.4. Mining closed frequent itemsets. Closed itemsets are shown as shaded ovals. Strike-through

represents itemsets Xi replaced by Xi ∪Xj during execution of the algorithm. Infrequent itemsets are not

shown.

9.4 NONDERIVABLE ITEMSETS

An itemset is called nonderivable if its support cannot be deduced from the supports

of its subsets. The set of all frequent nonderivable itemsets is a summary or condensed

representation of the set of all frequent itemsets. Further, it is lossless with respect to

support, that is, the exact support of all other frequent itemsets can be deduced from it.

Generalized Itemsets

Let T be a set of tids, let I be a set of items, and let X be a k-itemset, that is, X =

{x1,x2, . . . ,xk}. Consider the tidsets t(xi) for each item xi ∈X. These k-tidsets induce a

partitioning of the set of all tids into 2k regions, some of which may be empty, where

each partition contains the tids for some subset of items Y ⊆ X, but for none of the

remaining items Z = Y \X. Each such region is therefore the tidset of a generalized

itemset comprising items in X or their negations. As such a generalized itemset can be

represented as YZ, where Y consists of regular items and Z consists of negated items.

We define the support of a generalized itemset YZ as the number of transactions that
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t(ACD)= ∅ t(ACD)= 2

t(ACD)= ∅

t(ACD)= 4

t(ACD)= 13 t(ACD)= 6

t(ACD)= 5

t(ACD)= ∅

t(A) t(C)

t(D)

Figure 9.5. Tidset partitioning induced by t(A), t(C), and t(D).

contain all items in Y but no item in Z:

sup(YZ)=
∣

∣{t ∈ T |Y⊆ i(t) and Z∩ i(t)= ∅}
∣

∣

Example 9.5. Consider the example dataset in Figure 9.1a. Let X=ACD. We have

t(A)= 1345, t(C)= 2456, and t(D)= 1356. These three tidsets induce a partitioning

on the space of all tids, as illustrated in the Venn diagram shown in Figure 9.5. For

example, the region labeled t(ACD) = 4 represents those tids that contain A and

C but not D. Thus, the support of the generalized itemset ACD is 1. The tids that

belong to all the eight regions are shown. Some regions are empty, which means that

the support of the corresponding generalized itemset is 0.

Inclusion–Exclusion Principle

Let YZ be a generalized itemset, and let X = Y ∪ Z = YZ. The inclusion–exclusion

principle allows one to directly compute the support of YZ as a combination of the

supports for all itemsets W, such that Y⊆W⊆X:

sup(YZ)=
∑

Y⊆W⊆X

−1|W\Y| · sup(W) (9.2)
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Example 9.6. Let us compute the support of the generalized itemset ACD = CAD,

where Y=C, Z=AD and X=YZ=ACD. In the Venn diagram shown in Figure 9.5,

we start with all the tids in t(C), and remove the tids contained in t(AC) and t(CD).

However, we realize that in terms of support this removes sup(ACD) twice, so we

need to add it back. In other words, the support of CAD is given as

sup(CAD)= sup(C)− sup(AC)− sup(CD)+ sup(ACD)

= 4− 2− 2+ 1= 1

But, this is precisely what the inclusion–exclusion formula gives:

sup(CAD)= (−1)0 sup(C)+ W=C, |W \Y| = 0

(−1)1 sup(AC)+ W=AC, |W \Y| = 1

(−1)1 sup(CD)+ W=CD, |W \Y| = 1

(−1)2 sup(ACD) W=ACD, |W \Y| = 2

= sup(C)− sup(AC)− sup(CD)+ sup(ACD)

We can see that the support of CAD is a combination of the support values over all

itemsets W such that C⊆W⊆ACD.

Support Bounds for an Itemset

Notice that the inclusion–exclusion formula in Eq. (9.2) for the support of YZ has

terms for all subsets between Y and X = YZ. Put differently, for a given k-itemset

X, there are 2k generalized itemsets of the form YZ, with Y ⊆ X and Z = X \ Y,

and each such generalized itemset has a term for sup(X) in the inclusion–exclusion

equation; this happens when W = X. Because the support of any (generalized)

itemset must be non-negative, we can derive a bound on the support of X from

each of the 2k generalized itemsets by setting sup(YZ) ≥ 0. However, note that

whenever |X \ Y| is even, the coefficient of sup(X) is +1, but when |X \ Y| is odd,

the coefficient of sup(X) is −1 in Eq. (9.2). Thus, from the 2k possible subsets Y ⊆

X, we derive 2k−1 lower bounds and 2k−1 upper bounds for sup(X), obtained after

setting sup(YZ) ≥ 0, and rearranging the terms in the inclusion–exclusion formula,

so that sup(X) is on the left hand side and the the remaining terms are on the right

hand side

Upper Bounds (|X \Y| is odd): sup(X)≤
∑

Y⊆W⊂X

−1(|X\Y|+1)sup(W) (9.3)

Lower Bounds (|X \Y| is even): sup(X)≥
∑

Y⊆W⊂X

−1(|X\Y|+1)sup(W) (9.4)

Note that the only difference in the two equations is the inequality, which depends on

the starting subset Y.
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Example 9.7. Consider Figure 9.5, which shows the partitioning induced by the

tidsets of A, C, and D. We wish to determine the support bounds for X=ACD using

each of the generalized itemsets YZ where Y ⊆ X. For example, if Y = C, then the

inclusion-exclusion principle [Eq. (9.2)] gives us

sup(CAD)= sup(C)− sup(AC)− sup(CD)+ sup(ACD)

Setting sup(CAD)≥ 0, and rearranging the terms, we obtain

sup(ACD)≥−sup(C)+ sup(AC)+ sup(CD)

which is precisely the expression from the lower-bound formula in Eq. (9.4) because

|X \Y| = |ACD−C| = |AD| = 2 is even.

As another example, let Y= ∅. Setting sup(ACD)≥ 0, we have

sup(ACD)= sup(∅)− sup(A)− sup(C)− sup(D)+

sup(AC)+ sup(AD)+ sup(CD)− sup(ACD)≥ 0

=⇒ sup(ACD)≤ sup(∅)− sup(A)− sup(C)− sup(D)+

sup(AC)+ sup(AD)+ sup(CD)

Notice that this rule gives an upper bound on the support of ACD, which also follows

from Eq. (9.3) because |X \Y| = 3 is odd.

In fact, from each of the regions in Figure 9.5, we get one bound, and out of the

eight possible regions, exactly four give upper bounds and the other four give lower

bounds for the support of ACD:

sup(ACD) ≥ 0 when Y=ACD

≤ sup(AC) when Y=AC

≤ sup(AD) when Y=AD

≤ sup(CD) when Y=CD

≥ sup(AC)+ sup(AD)− sup(A) when Y=A

≥ sup(AC)+ sup(CD)− sup(C) when Y=C

≥ sup(AD)+ sup(CD)− sup(D) when Y=D

≤ sup(AC)+ sup(AD)+ sup(CD)−

sup(A)− sup(C)− sup(D)+ sup(∅) when Y= ∅

This derivation of the bounds is schematically summarized in Figure 9.6. For instance,

at level 2 the inequality is ≥, which implies that if Y is any itemset at this level, we

will obtain a lower bound. The signs at different levels indicate the coefficient of the

corresponding itemset in the upper or lower bound computations via Eq. (9.3) and

Eq. (9.4). Finally, the subset lattice shows which intermediate terms W have to be

considered in the summation. For instance, if Y=A, then the intermediate terms are

W ∈ {AC,AD,A}, with the corresponding signs {+1,+1,−1}, so that we obtain the

lower bound rule:

sup(ACD)≥ sup(AC)+ sup(AD)− sup(A)
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subset lattice

ACD sign inequality level

AC AD CD 1 ≤ 1

A C D −1 ≥ 2

∅ 1 ≤ 3

Figure 9.6. Support bounds from subsets.

Nonderivable Itemsets

Given an itemset X, and Y⊆X, let IE(Y) denote the summation

IE(Y)=
∑

Y⊆W⊂X

−1(|X\Y|+1) · sup(W)

Then, the sets of all upper and lower bounds for sup(X) are given as

UB(X)=
{

IE(Y)
∣

∣Y⊆X, |X \Y| is odd
}

LB(X)=
{

IE(Y)
∣

∣Y⊆X, |X \Y| is even
}

An itemset X is called nonderivable if max{LB(X)} 6=min{UB(X)}, which implies that

the support of X cannot be derived from the support values of its subsets; we know

only the range of possible values, that is,

sup(X) ∈
[

max{LB(X)},min{UB(X)}
]

On the other hand, X is derivable if sup(X)=max{LB(X)} =min{UB(X)} because in

this case sup(X) can be derived exactly using the supports of its subsets. Thus, the set

of all frequent nonderivable itemsets is given as

N =
{

X ∈F |max{LB(X)} 6=min{UB(X)}
}

where F is the set of all frequent itemsets.

Example 9.8. Consider the set of upper bound and lower bound formulas for

sup(ACD) outlined in Example 9.7. Using the tidset information in Figure 9.5, the
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support lower bounds are

sup(ACD)≥ 0

≥ sup(AC)+ sup(AD)− sup(A)= 2+ 3− 4= 1

≥ sup(AC)+ sup(CD)− sup(C)= 2+ 2− 4= 0

≥ sup(AD)+ sup(CD)− sup(D)= 3+ 2− 4= 0

and the upper bounds are

sup(ACD)≤ sup(AC)= 2

≤ sup(AD)= 3

≤ sup(CD)= 2

≤ sup(AC)+ sup(AD)+ sup(CD)− sup(A)− sup(C)−

sup(D)+ sup(∅)= 2+ 3+ 2− 4− 4− 4+ 6= 1

Thus, we have

LB(ACD)= {0,1} max{LB(ACD)} = 1

UB(ACD)= {1,2,3} min{UB(ACD)} = 1

Because max{LB(ACD)} =min{UB(ACD)} we conclude that ACD is derivable.

Note that is it not essential to derive all the upper and lower bounds before

one can conclude whether an itemset is derivable. For example, let X = ABDE.

Considering its immediate subsets, we can obtain the following upper bound values:

sup(ABDE)≤ sup(ABD)= 3

≤ sup(ABE)= 4

≤ sup(ADE)= 3

≤ sup(BDE)= 3

From these upper bounds, we know for sure that sup(ABDE) ≤ 3. Now, let us

consider the lower bound derived from Y=AB:

sup(ABDE)≥ sup(ABD)+ sup(ABE)− sup(AB)= 3+ 4− 4= 3

At this point we know that sup(ABDE) ≥ 3, so without processing any further

bounds, we can conclude that sup(ABDE) ∈ [3,3], which means that ABDE is

derivable.

For the example database in Figure 9.1a, the set of all frequent nonderivable

itemsets, along with their support bounds, is

N =
{

A[0,6],B[0,6],C[0,6],D[0,6],E[0,6],

AD[2,4],AE[3,4],CE[3,4],DE[3,4]
}

Notice that single items are always nonderivable by definition.
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9.5 FURTHER READING

The concept of closed itemsets is based on the elegant lattice theoretic framework of

formal concept analysis (Ganter, Wille, and Franzke, 1997). The Charm algorithm for

mining frequent closed itemsets appears in Zaki and Hsiao (2005), and the GenMax

method for mining maximal frequent itemsets is described in Gouda and Zaki (2005).

For an Apriori style algorithm for maximal patterns, called MaxMiner, that uses very

effective support lower bound based itemset pruning see Bayardo (1998). The notion

of minimal generators was proposed in Bastide et al. (2000); they refer to them as key

patterns. Nonderivable itemset mining task was introduced in Calders and Goethals

(2007).
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9.6 EXERCISES

Q1. True or False:

(a) Maximal frequent itemsets are sufficient to determine all frequent itemsets with

their supports.

(b) An itemset and its closure share the same set of transactions.

(c) The set of all maximal frequent sets is a subset of the set of all closed frequent

itemsets.

(d) The set of all maximal frequent sets is the set of longest possible frequent

itemsets.

Q2. Given the database in Table 9.1

(a) Show the application of the closure operator on AE, that is, compute c(AE). Is

AE closed?

(b) Find all frequent, closed, and maximal itemsets using minsup= 2/6.

Q3. Given the database in Table 9.2, find all minimal generators using minsup= 1.
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Table 9.1. Dataset for Q2

Tid Itemset

t1 ACD

t2 BCE

t3 ABCE

t4 BDE

t5 ABCE

t6 ABCD

Table 9.2. Dataset for Q3

Tid Itemset

1 ACD

2 BCD

3 AC

4 ABD

5 ABCD

6 BCD

ABCD(3)

BC(5) ABD(6)

B(8)

Figure 9.7. Closed itemset lattice for Q4.

Q4. Consider the frequent closed itemset lattice shown in Figure 9.7. Assume that the

item space is I = {A,B,C,D,E}. Answer the following questions:

(a) What is the frequency of CD?

(b) Find all frequent itemsets and their frequency, for itemsets in the subset interval

[B,ABD].

(c) Is ADE frequent? If yes, show its support. If not, why?

Q5. Let C be the set of all closed frequent itemsets and M the set of all maximal frequent

itemsets for some database. Prove that M⊆ C.

Q6. Prove that the closure operator c= i◦ t satisfies the following properties (X and Y are

some itemsets):

(a) Extensive: X⊆ c(X)

(b) Monotonic: If X⊆Y then c(X)⊆ c(Y)

(c) Idempotent: c(X)= c(c(X))
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Table 9.3. Dataset for Q7

Tid Itemset

1 ACD

2 BCD

3 ACD

4 ABD

5 ABCD

6 BC

Q7. Let δ be an integer. An itemset X is called a δ-free itemset iff for all subsets Y⊂X, we

have sup(Y)− sup(X) > δ. For any itemset X, we define the δ-closure of X as follows:

δ-closure(X)=
{

Y | X⊂Y,sup(X)− sup(Y)≤ δ, and Y is maximal
}

Consider the database shown in Table 9.3. Answer the following questions:

(a) Given δ = 1, compute all the δ-free itemsets.

(b) For each of the δ-free itemsets, compute its δ-closure for δ = 1.

Q8. Given the lattice of frequent itemsets (along with their supports) shown in Figure 9.8,

answer the following questions:

(a) List all the closed itemsets.

(b) Is BCD derivable? What about ABCD? What are the bounds on their supports.

∅(6)

A(6) B(5) C(4) D(3)

AB(5) AC(4) AD(3) BC(3) BD(2) CD(2)

ABC(3) ABD(2) ACD(2) BCD(1)

ABCD(1)

Figure 9.8. Frequent itemset lattice for Q8.

Q9. Prove that if an itemset X is derivable, then so is any superset Y ⊃ X. Using this

observation describe an algorithm to mine all nonderivable itemsets.



CHAPTER 10 Sequence Mining

Many real-world applications such as bioinformatics, Web mining, and text mining

have to deal with sequential and temporal data. Sequence mining helps discover

patterns across time or positions in a given dataset. In this chapter we consider methods

to mine frequent sequences, which allow gaps between elements, as well as methods to

mine frequent substrings, which do not allow gaps between consecutive elements.

10.1 FREQUENT SEQUENCES

Let 6 denote an alphabet, defined as a finite set of characters or symbols, and let |6|

denote its cardinality. A sequence or a string is defined as an ordered list of symbols,

and is written as s = s1s2 . . . sk , where si ∈ 6 is a symbol at position i, also denoted as

s[i]. Here |s| = k denotes the length of the sequence. A sequence with length k is also

called a k-sequence. We use the notation s[i : j ]= sisi+1 · · · sj−1sj to denote the substring

or sequence of consecutive symbols in positions i through j , where j > i. Define the

prefix of a sequence s as any substring of the form s[1 : i]= s1s2 . . . si , with 0≤ i≤n. Also,

define the suffix of s as any substring of the form s[i : n]= sisi+1 . . . sn, with 1≤ i ≤ n+1.

Note that s[1 : 0] is the empty prefix, and s[n+ 1 : n] is the empty suffix. Let 6⋆ be the

set of all possible sequences that can be constructed using the symbols in 6, including

the empty sequence ∅ (which has length zero).

Let s = s1s2 . . . sn and r = r1r2 . . . rm be two sequences over 6. We say that r is a

subsequence of s denoted r⊆ s, if there exists a one-to-one mapping φ : [1,m]→ [1,n],

such that r[i] = s[φ(i)] and for any two positions i,j in r, i < j =⇒ φ(i) < φ(j). In

other words, each position in r is mapped to a different position in s, and the order of

symbols is preserved, even though there may be intervening gaps between consecutive

elements of r in the mapping. If r ⊆ s, we also say that s contains r. The sequence r is

called a consecutive subsequence or substring of s provided r1r2 . . . rm = sj sj+1 . . . sj+m−1,

i.e., r[1 : m]= s[j : j +m−1], with 1≤ j ≤ n−m+1. For substrings we do not allow any

gaps between the elements of r in the mapping.

Example 10.1. Let 6 = {A,C,G,T}, and let s = ACTGAACG. Then r1 = CGAAG

is a subsequence of s, and r2 =CTGA is a substring of s. The sequence r3 =ACT is a

prefix of s, and so is r4 =ACTGA, whereas r5 =GAACG is one of the suffixes of s.

259
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Given a database D = {s1,s2, . . . ,sN} of N sequences, and given some sequence r,

the support of r in the database D is defined as the total number of sequences in D that

contain r

sup(r)=
∣

∣

∣

{

si ∈D|r⊆ si

}

∣

∣

∣

The relative support of r is the fraction of sequences that contain r

rsup(r)= sup(r)/N

Given a user-specified minsup threshold, we say that a sequence r is frequent in

database D if sup(r) ≥ minsup. A frequent sequence is maximal if it is not a

subsequence of any other frequent sequence, and a frequent sequence is closed if it

is not a subsequence of any other frequent sequence with the same support.

10.2 MINING FREQUENT SEQUENCES

For sequence mining the order of the symbols matters, and thus we have to consider

all possible permutations of the symbols as the possible frequent candidates. Contrast

this with itemset mining, where we had only to consider combinations of the items. The

sequence search space can be organized in a prefix search tree. The root of the tree, at

level 0, contains the empty sequence, with each symbol x ∈6 as one of its children. As

such, a node labeled with the sequence s= s1s2 . . . sk at level k has children of the form

s′ = s1s2 . . . sksk+1 at level k+1. In other words, s is a prefix of each child s′, which is also

called an extension of s.

Example 10.2. Let 6 = {A,C,G,T} and let the sequence database D consist of the

three sequences shown in Table 10.1. The sequence search space organized as a prefix

search tree is illustrated in Figure 10.1. The support of each sequence is shown within

brackets. For example, the node labeled A has three extensions AA, AG, and AT,

out of which AT is infrequent if minsup= 3.

The subsequence search space is conceptually infinite because it comprises all

sequences in 6∗, that is, all sequences of length zero or more that can be created using

symbols in 6. In practice, the database D consists of bounded length sequences. Let l

denote the length of the longest sequence in the database, then, in the worst case, we

will have to consider all candidate sequences of length up to l, which gives the following

Table 10.1. Example sequence database

Id Sequence

s1 CAGAAGT

s2 TGACAG

s3 GAAGT
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ALGORITHM 10.1. Algorithm GSP

GSP (D, 6, minsup):

F←∅1

C(1)←{∅} // Initial prefix tree with single symbols2

foreach s ∈6 do Add s as child of ∅ in C(1) with sup(s)← 03

k← 1 // k denotes the level4

while C(k) 6= ∅ do5

COMPUTESUPPORT (C(k),D)6

foreach leaf s ∈ C(k) do7

if sup(r)≥minsup then F←F ∪
{

(r,sup(r))
}

8

else remove s from C(k)
9

C(k+1)← EXTENDPREFIXTREE (C(k))10

k← k+ 111

return F (k)
12

COMPUTESUPPORT (C(k),D):

foreach si ∈D do13

foreach r ∈ C(k) do14

if r⊆ si then sup(r)← sup(r)+ 115

EXTENDPREFIXTREE (C(k)):

foreach leaf ra ∈ C
(k) do16

foreach leaf rb ∈CHILDREN(PARENT(ra)) do17

rab← ra + rb[k] // extend ra with last item of rb18

// prune if there are any infrequent subsequences

if rc ∈ C
(k), for all rc ⊂ rab, such that |rc| = |rab|− 1 then19

Add rab as child of ra with sup(rab)← 020

if no extensions from ra then21

remove ra , and all ancestors of ra with no extensions, from C(k)
22

return C(k)
23

bound on the size of the search space:

|6|1+|6|2+ ·· ·+ |6|l =O(|6|l) (10.1)

since at level k there are |6|k possible subsequences of length k.

10.2.1 Level-wise Mining: GSP

We can devise an effective sequence mining algorithm that searches the sequence

prefix tree using a level-wise or breadth-first search. Given the set of frequent

sequences at level k, we generate all possible sequence extensions or candidates at

level k+ 1. We next compute the support of each candidate and prune those that are

not frequent. The search stops when no more frequent extensions are possible.
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∅(3)

A(3)

AA(3)

AAA(1) AAG(3)

AAGG

AG(3)

AGA(1) AGG(1)

AT(2)

C(2) G(3)

GA(3)

GAA(3)

GAAA GAAG(3)

GAG(3)

GAGA GAGG

GG(3)

GGA(0) GGG(0)

GT(2)

T(3)

TA(1) TG(1) TT(0)

Figure 10.1. Sequence search space: shaded ovals represent candidates that are infrequent; those without

support in brackets can be pruned based on an infrequent subsequence. Unshaded ovals represent frequent

sequences.

The pseudo-code for the level-wise, generalized sequential pattern (GSP) mining

method is shown in Algorithm 10.1. It uses the antimonotonic property of support to

prune candidate patterns, that is, no supersequence of an infrequent sequence can be

frequent, and all subsequences of a frequent sequence must be frequent. The prefix

search tree at level k is denoted C(k). Initially C(1) comprises all the symbols in 6.

Given the current set of candidate k-sequences C(k), the method first computes their

support (line 6). For each database sequence si ∈ D, we check whether a candidate

sequence r ∈ C(k) is a subsequence of si . If so, we increment the support of r. Once the

frequent sequences at level k have been found, we generate the candidates for level

k+ 1 (line 10). For the extension, each leaf ra is extended with the last symbol of any

other leaf rb that shares the same prefix (i.e., has the same parent), to obtain the new

candidate (k+ 1)-sequence rab = ra + rb[k] (line 18). If the new candidate rab contains

any infrequent k-sequence, we prune it.

Example 10.3. For example, let us mine the database shown in Table 10.1 using

minsup = 3. That is, we want to find only those subsequences that occur in all

three database sequences. Figure 10.1 shows that we begin by extending the empty

sequence ∅ at level 0, to obtain the candidates A, C, G, and T at level 1. Out of these

C can be pruned because it is not frequent. Next we generate all possible candidates

at level 2. Notice that using A as the prefix we generate all possible extensions

AA, AG, and AT. A similar process is repeated for the other two symbols G and

T. Some candidate extensions can be pruned without counting. For example, the

extension GAAA obtained from GAA can be pruned because it has an infrequent

subsequence AAA. The figure shows all the frequent sequences (unshaded), out of

which GAAG(3) and T(3) are the maximal ones.

The computational complexity of GSP is O(|6|l) as per Eq. (10.1), where l is the

length of the longest frequent sequence. The I/O complexity is O(l ·D) because we

compute the support of an entire level in one scan of the database.
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10.2.2 Vertical Sequence Mining: Spade

The Spade algorithm uses a vertical database representation for sequence mining.

The idea is to record for each symbol the sequence identifiers and the positions

where it occurs. For each symbol s ∈ 6, we keep a set of tuples of the form

〈i,pos(s)〉, where pos(s) is the set of positions in the database sequence si ∈ D

where symbol s appears. Let L(s) denote the set of such sequence-position tuples

for symbol s, which we refer to as the poslist. The set of poslists for each symbol

s ∈ 6 thus constitutes a vertical representation of the input database. In general,

given k-sequence r, its poslist L(r) maintains the list of positions for the occurrences

of the last symbol r[k] in each database sequence si , provided r ⊆ si . The support

of sequence r is simply the number of distinct sequences in which r occurs, that is,

sup(r)= |L(r)|.

Example 10.4. In Table 10.1, the symbol A occurs in s1 at positions 2, 4, and 5.

Thus, we add the tuple 〈1,{2,4,5}〉 to L(A). Because A also occurs at positions 3

and 5 in sequence s2, and at positions 2 and 3 in s3, the complete poslist for A is

{〈1,{2,4,5}〉,〈2,{3,5}〉,〈1,{2,3}〉}. We have sup(A) = 3, as its poslist contains three

tuples. Figure 10.2 shows the poslist for each symbol, as well as other sequences.

For example, for sequence GT, we find that it is a subsequence of s1 and s3.

∅

A

1 2,4,5
2 3,5
3 2,3

C

1 1
2 4

G

1 3,6
2 2,6
3 1,4

T

1 7
2 1
3 5

AA

1 4,5
2 5
3 3

AG

1 3,6
2 6
3 4

AT

1 7
3 5

GA

1 4,5
2 3,5
3 2,3

GG

1 6
2 6
3 4

GT

1 7
3 5

TA

2 3,5
TG

2 2,6

AAA

1 5

AAG

1 6
2 6
3 4

AGA

1 5
AGG

1 6

GAA

1 5
2 5
3 3

GAG

1 6
2 6
3 4

GAAG

1 6
2 6
3 4

Figure 10.2. Sequence mining via Spade: infrequent sequences with at least one occurrence are shown

shaded; those with zero support are not shown.
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Even though there are two occurrences of GT in s1, the last symbol T occurs at

position 7 in both occurrences, thus the poslist for GT has the tuple 〈1,7〉. The

full poslist for GT is L(GT) = {〈1,7〉,〈3,5〉}. The support of GT is sup(GT) =

|L(GT)| = 2.

Support computation in Spade is done via sequential join operations. Given

the poslists for any two k-sequences ra and rb that share the same (k − 1) length

prefix, the idea is to perform sequential joins on the poslists to compute the support

for the new (k + 1) length candidate sequence rab = ra + rb[k]. Given a tuple
〈

i,pos
(

rb[k]
)〉

∈ L(rb), we first check if there exists a tuple
〈

i,pos
(

ra[k]
)〉

∈ L(ra), that

is, both sequences must occur in the same database sequence si . Next, for each

position p ∈ pos
(

rb[k]
)

, we check whether there exists a position q ∈ pos
(

ra[k]
)

such that q < p. If yes, this means that the symbol rb[k] occurs after the last

position of ra and thus we retain p as a valid occurrence of rab. The poslist L(rab)

comprises all such valid occurrences. Notice how we keep track of positions only

for the last symbol in the candidate sequence. This is because we extend sequences

from a common prefix, so there is no need to keep track of all the occurrences

of the symbols in the prefix. We denote the sequential join as L(rab) = L(ra) ∩

L(rb).

The main advantage of the vertical approach is that it enables different search

strategies over the sequence search space, including breadth or depth-first search.

Algorithm 10.2 shows the pseudo-code for Spade. Given a set of sequences P that

share the same prefix, along with their poslists, the method creates a new prefix

equivalence class Pa for each sequence ra ∈ P by performing sequential joins with

every sequence rb ∈ P , including self-joins. After removing the infrequent extensions,

the new equivalence class Pa is then processed recursively.

ALGORITHM 10.2. Algorithm SPADE

// Initial Call: F←∅, k← 0,

P ←
{

〈s,L(s)〉 | s ∈6,sup(s)≥minsup
}

SPADE (P , minsup, F , k):

foreach ra ∈ P do1

F←F ∪
{

(ra,sup(ra))
}

2

Pa←∅3

foreach rb ∈ P do4

rab = ra + rb[k]5

L(rab)= L(ra)∩L(rb)6

if sup(rab)≥minsup then7

Pa← Pa ∪
{

〈rab,L(rab)〉
}

8

if Pa 6= ∅ then SPADE (P, minsup, F , k+ 1)9
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Example 10.5. Consider the poslists for A and G shown in Figure 10.2. To obtain

L(AG), we perform a sequential join over the poslists L(A) and L(G). For the tuples

〈1,{2,4,5}〉 ∈ L(A) and 〈1,{3,6}〉 ∈ L(G), both positions 3 and 6 for G, occur after

some occurrence of A, for example, at position 2. Thus, we add the tuple 〈1,{3,6}〉 to

L(AG). The complete poslist for AG is L(AG)= {〈1,{3,6}〉,〈2,6〉,〈3,4〉}.

Figure 10.2 illustrates the complete working of the Spade algorithm, along with

all the candidates and their poslists.

10.2.3 Projection-Based Sequence Mining: PrefixSpan

Let D denote a database, and let s ∈ 6 be any symbol. The projected database with

respect to s, denoted Ds , is obtained by finding the the first occurrence of s in si , say at

position p. Next, we retain in Ds only the suffix of si starting at position p+1. Further,

any infrequent symbols are removed from the suffix. This is done for each sequence

si ∈D.

Example 10.6. Consider the three database sequences in Table 10.1. Given that the

symbol G first occurs at position 3 in s1 = CAGAAGT, the projection of s1 with

respect to G is the suffix AAGT. The projected database for G, denoted DG is

therefore given as: {s1 : AAGT, s2 : AAG, s3 : AAGT}.

The main idea in PrefixSpan is to compute the support for only the individual

symbols in the projected database Ds , and then to perform recursive projections on

the frequent symbols in a depth-first manner. The PrefixSpan method is outlined in

Algorithm 10.3. Here r is a frequent subsequence, and Dr is the projected dataset for r.

Initially r is empty and Dr is the entire input dataset D. Given a database of (projected)

sequences Dr, PrefixSpan first finds all the frequent symbols in the projected dataset.

For each such symbol s, we extend r by appending s to obtain the new frequent

subsequence rs . Next, we create the projected dataset Ds by projecting Dr on symbol

s. A recursive call to PrefixSpan is then made with rs and Ds .

ALGORITHM 10.3. Algorithm PREFIXSPAN

// Initial Call: Dr←D, r←∅, F←∅

PREFIXSPAN (Dr, r, minsup, F):

foreach s ∈6 such that sup(s,Dr)≥minsup do1

rs = r+ s // extend r by symbol s2

F←F ∪
{

(rs ,sup(s,Dr))
}

3

Ds←∅ // create projected data for symbol s4

foreach si ∈Dr do5

s′i← projection of si w.r.t symbol s6

Remove any infrequent symbols from s′i7

Add s′i to Ds if s′i 6= ∅8

if Ds 6= ∅ then PREFIXSPAN (Ds , rs , minsup, F)9
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Example 10.7. Figure 10.3 shows the projection-based PrefixSpan mining approach

for the example dataset in Table 10.1 using minsup = 3. Initially we start with the

whole database D, which can also be denoted as D∅. We compute the support of each

symbol, and find that C is not frequent (shown crossed out). Among the frequent

symbols, we first create a new projected dataset DA. For s1, we find that the first A

occurs at position 2, so we retain only the suffix GAAGT. In s2, the first A occurs

at position 3, so the suffix is CAG. After removing C (because it is infrequent), we

are left with only AG as the projection of s2 on A. In a similar manner we obtain the

projection for s3 as AGT. The left child of the root shows the final projected dataset

DA. Now the mining proceeds recursively. Given DA, we count the symbol supports

in DA, finding that only A and G are frequent, which will lead to the projection DAA

and then DAG, and so on. The complete projection-based approach is illustrated in

Figure 10.3.

D∅

s1 CAGAAGT

s2 TGACAG

s3 GAAGT

A(3), C(2), G(3), T(3)

DA

s1 GAAGT

s2 AG

s3 AGT

A(3), G(3), T(2)

DAA

s1 AG

s2 G

s3 G

A(1), G(3)

DAAG

∅

DAG

s1 AAG

A(1), G(1)

DG

s1 AAGT

s2 AAG

s3 AAGT

A(3), G(3), T(2)

DGA

s1 AG

s2 AG

s3 AG

A(3), G(3)

DGAA

s1 G

s2 G

s3 G

G(3)

DGAAG

∅

DGAG

∅

DGG

∅

DT

s2 GAAG

A(1), G(1)

Figure 10.3. Projection-based sequence mining: PrefixSpan.
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10.3 SUBSTRING MINING VIA SUFFIX TREES

We now look at efficient methods for mining frequent substrings. Let s be a sequence

having length n, then there are at most O(n2) possible distinct substrings contained in

s. To see this consider substrings of length w, of which there are n−w+1 possible ones

in s. Adding over all substring lengths we get

n
∑

w=1

(n−w+ 1)= n+ (n− 1)+ ·· ·+ 2+ 1=O(n2)

This is a much smaller search space compared to subsequences, and consequently we

can design more efficient algorithms for solving the frequent substring mining task. In

fact, we can mine all the frequent substrings in worst case O(Nn2) time for a dataset

D= {s1,s2, . . . ,sN} with N sequences.

10.3.1 Suffix Tree

Let 6 denote the alphabet, and let $ 6∈6 be a terminal character used to mark the end of

a string. Given a sequence s, we append the terminal character so that s= s1s2 . . . snsn+1,

where sn+1 = $, and the j th suffix of s is given as s[j : n+ 1]= sj sj+1 . . . sn+1. The suffix

tree of the sequences in the database D, denoted T , stores all the suffixes for each si ∈D

in a tree structure, where suffixes that share a common prefix lie on the same path from

the root of the tree. The substring obtained by concatenating all the symbols from the

root node to a node v is called the node label of v, and is denoted as L(v). The substring

that appears on an edge (va,vb) is called an edge label, and is denoted as L(va,vb). A

suffix tree has two kinds of nodes: internal and leaf nodes. An internal node in the

suffix tree (except for the root) has at least two children, where each edge label to a

child begins with a different symbol. Because the terminal character is unique, there

are as many leaves in the suffix tree as there are unique suffixes over all the sequences.

Each leaf node corresponds to a suffix shared by one or more sequences in D.

It is straightforward to obtain a quadratic time and space suffix tree construction

algorithm. Initially, the suffix tree T is empty. Next, for each sequence si ∈ D, with

|si | = ni , we generate all its suffixes si[j : ni + 1], with 1 ≤ j ≤ ni , and insert each of

them into the tree by following the path from the root until we either reach a leaf or

there is a mismatch in one of the symbols along an edge. If we reach a leaf, we insert

the pair (i,j) into the leaf, noting that this is the j th suffix of sequence si . If there is

a mismatch in one of the symbols, say at position p ≥ j , we add an internal vertex

just before the mismatch, and create a new leaf node containing (i,j) with edge label

si[p : ni + 1].

Example 10.8. Consider the database in Table 10.1 with three sequences. In

particular, let us focus on s1 = CAGAAGT. Figure 10.4 shows what the suffix tree

T looks like after inserting the j th suffix of s1 into T . The first suffix is the entire

sequence s1 appended with the terminal symbol; thus the suffix tree contains a single

leaf containing (1,1) under the root (Figure 10.4a). The second suffix is AGAAGT$,

and Figure 10.4b shows the resulting suffix tree, which now has two leaves. The third
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Figure 10.4. Suffix tree construction: (a)–(g) show the successive changes to the tree, after we add the jth

suffix of s1 =CAGAAGT$ for j= 1, . . . ,7.

suffix GAAGT$ begins with G, which has not yet been observed, so it creates a new

leaf in T under the root. The fourth suffix AAGT$ shares the prefix A with the second

suffix, so it follows the path beginning with A from the root. However, because there

is a mismatch at position 2, we create an internal node right before it and insert the

leaf (1,4), as shown in Figure 10.4d. The suffix tree obtained after inserting all of

the suffixes of s1 is shown in Figure 10.4g, and the complete suffix tree for all three

sequences is shown in Figure 10.5.
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Figure 10.5. Suffix tree for all three sequences in Table 10.1. Internal nodes store support information.

Leaves also record the support (not shown).

In terms of the time and space complexity, the algorithm sketched above requires

O(Nn2) time and space, where N is the number of sequences in D, and n is the longest

sequence length. The time complexity follows from the fact that the method always

inserts a new suffix starting from the root of the suffix tree. This means that in the

worst case it compares O(n) symbols per suffix insertion, giving the worst case bound

of O(n2) over all n suffixes. The space complexity comes from the fact that each suffix

is explicitly represented in the tree, taking n+ (n− 1)+ ·· · + 1=O(n2) space. Over all

the N sequences in the database, we obtain O(Nn2) as the worst case time and space

bounds.

Frequent Substrings

Once the suffix tree is built, we can compute all the frequent substrings by checking

how many different sequences appear in a leaf node or under an internal node. The

node labels for the nodes with support at least minsup yield the set of frequent

substrings; all the prefixes of such node labels are also frequent. The suffix tree can

also support ad hoc queries for finding all the occurrences in the database for any

query substring q. For each symbol in q, we follow the path from the root until all

symbols in q have been seen, or until there is a mismatch at any position. If q is

found, then the set of leaves under that path is the list of occurrences of the query

q. On the other hand, if there is mismatch that means the query does not occur

in the database. In terms of the query time complexity, because we have to match

each character in q, we immediately get O(|q|) as the time bound (assuming that

|6| is a constant), which is independent of the size of the database. Listing all the

matches takes additional time, for a total time complexity of O(|q| + k), if there are k

matches.
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Example 10.9. Consider the suffix tree shown in Figure 10.5, which stores all the

suffixes for the sequence database in Table 10.1. To facilitate frequent substring

enumeration, we store the support for each internal as well as leaf node, that is,

we store the number of distinct sequence ids that occur at or under each node. For

example, the leftmost child of the root node on the path labeled A has support 3

because there are three distinct sequences under that subtree. If minsup = 3, then

the frequent substrings are A, AG, G, GA, and T. Out of these, the maximal ones are

AG, GA, and T. If minsup = 2, then the maximal frequent substrings are GAAGT

and CAG.

For ad hoc querying consider q=GAA. Searching for symbols in q starting from

the root leads to the leaf node containing the occurrences (1,3) and (3,1), which

means that GAA appears at position 3 in s1 and at position 1 in s3. On the other

hand if q = CAA, then the search terminates with a mismatch at position 3 after

following the branch labeled CAG from the root. This means that q does not occur

in the database.

10.3.2 Ukkonen’s Linear Time Algorithm

We now present a linear time and space algorithm for constructing suffix trees. We first

consider how to build the suffix tree for a single sequence s= s1s2 . . . snsn+1, with sn+1 =

$. The suffix tree for the entire dataset of N sequences can be obtained by inserting

each sequence one by one.

Achieving Linear Space

Let us see how to reduce the space requirements of a suffix tree. If an algorithm

stores all the symbols on each edge label, then the space complexity is O(n2), and we

cannot achieve linear time construction either. The trick is to not explicitly store all the

edge labels, but rather to use an edge-compression technique, where we store only the

starting and ending positions of the edge label in the input string s. That is, if an edge

label is given as s[i : j ], then we represent is as the interval [i,j ].

Example 10.10. Consider the suffix tree for s1=CAGAAGT$ shown in Figure 10.4g.

The edge label CAGAAGT$ for the suffix (1,1) can be represented via the interval

[1,8] because the edge label denotes the substring s1[1 : 8]. Likewise, the edge

label AAGT$ leading to suffix (1,2) can be compressed as [4,8] because AAGT$ =

s1[4 : 8]. The complete suffix tree for s1 with compressed edge labels is shown in

Figure 10.6.

In terms of space complexity, note that when we add a new suffix to the tree T , it

can create at most one new internal node. As there are n suffixes, there are n leaves

in T and at most n internal nodes. With at most 2n nodes, the tree has at most 2n− 1

edges, and thus the total space required to store an interval for each edge is 2(2n−1)=

4n− 2=O(n).
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Figure 10.6. Suffix tree for s1 =CAGAAGT$ using edge-compression.

Achieving Linear Time

Ukkonen’s method is an online algorithm, that is, given a string s = s1s2 . . . sn$ it

constructs the full suffix tree in phases. Phase i builds the tree up to the i-th symbol in s,

that is, it updates the suffix tree from the previous phase by adding the next symbol si .

Let Ti denote the suffix tree up to the ith prefix s[1 : i], with 1 ≤ i ≤ n. Ukkonen’s

algorithm constructs Ti from Ti−1, by making sure that all suffixes including the current

character si are in the new intermediate tree Ti . In other words, in the ith phase, it

inserts all the suffixes s[j : i] from j = 1 to j = i into the tree Ti . Each such insertion

is called the j th extension of the ith phase. Once we process the terminal character at

position n+ 1 we obtain the final suffix tree T for s.

Algorithm 10.4 shows the code for a naive implementation of Ukkonen’s

approach. This method has cubic time complexity because to obtain Ti from Ti−1

takes O(i2) time, with the last phase requiring O(n2) time. With n phases, the total

time is O(n3). Our goal is to show that this time can be reduced to just O(n) via the

optimizations described in the following paragraghs.

Implicit Suffixes This optimization states that, in phase i, if the j th extension s[j : i] is

found in the tree, then any subsequent extensions will also be found, and consequently

there is no need to process further extensions in phase i. Thus, the suffix tree Ti at the

end of phase i has implicit suffixes corresponding to extensions j + 1 through i. It is

important to note that all suffixes will become explicit the first time we encounter a

new substring that does not already exist in the tree. This will surely happen in phase
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ALGORITHM 10.4. Algorithm NAIVEUKKONEN

NAIVEUKKONEN (s):

n← |s|1

s[n+ 1]← $ // append terminal character2

T ←∅ // add empty string as root3

foreach i = 1, . . . ,n+ 1 do // phase i - construct Ti4

foreach j = 1, . . . , i do // extension j for phase i5

// Insert s[j : i] into the suffix tree

Find end of the path with label s[j : i− 1] in T6

Insert si at end of path;7

return T8

n+ 1 when we process the terminal character $, as it cannot occur anywhere else in s

(after all, $ 6∈6).

Implicit Extensions Let the current phase be i, and let l ≤ i − 1 be the last explicit

suffix in the previous tree Ti−1. All explicit suffixes in Ti−1 have edge labels of the form

[x,i− 1] leading to the corresponding leaf nodes, where the starting position x is node

specific, but the ending position must be i − 1 because si−1 was added to the end of

these paths in phase i− 1. In the current phase i, we would have to extend these paths

by adding si at the end. However, instead of explicitly incrementing all the ending

positions, we can replace the ending position by a pointer e which keeps track of the

current phase being processed. If we replace [x,i− 1] with [x,e], then in phase i, if we

set e = i, then immediately all the l existing suffixes get implicitly extended to [x,i].

Thus, in one operation of incrementing e we have, in effect, taken care of extensions 1

through l for phase i.

Example 10.11. Let s1 =CAGAAGT$. Assume that we have already performed the

first six phases, which result in the tree T6 shown in Figure 10.7a. The last explicit

suffix in T6 is l = 4. In phase i = 7 we have to execute the following extensions:

CAGAAGT extension 1
AGAAGT extension 2

GAAGT extension 3
AAGT extension 4

AGT extension 5
GT extension 6

T extension 7

At the start of the seventh phase, we set e= 7, which yields implicit extensions for all

suffixes explicitly in the tree, as shown in Figure 10.7b. Notice how symbol s7 = T is

now implicitly on each of the leaf edges, for example, the label [5,e]=AG in T6 now

becomes [5,e]=AGT in T7. Thus, the first four extensions listed above are taken care

of by simply incrementing e. To complete phase 7 we have to process the remaining

extensions.
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Figure 10.7. Implicit extensions in phase i= 7. Last explicit suffix in T6 is l= 4 (shown double-circled). Edge

labels shown for convenience; only the intervals are stored.

Skip/Count Trick For the j th extension of phase i, we have to search for the substring

s[j : i − 1] so that we can add si at the end. However, note that this string must exist

in Ti−1 because we have already processed symbol si−1 in the previous phase. Thus,

instead of searching for each character in s[j : i − 1] starting from the root, we first

count the number of symbols on the edge beginning with character sj ; let this length

be m. If m is longer than the length of the substring (i.e., if m > i − j), then the

substring must end on this edge, so we simply jump to position i − j and insert si .

On the other hand, if m ≤ i − j , then we can skip directly to the child node, say vc ,

and search for the remaining string s[j +m : i − 1] from vc using the same skip/count

technique. With this optimization, the cost of an extension becomes proportional

to the number of nodes on the path, as opposed to the number of characters in

s[j : i− 1].

Suffix Links We saw that with the skip/count optimization we can search for the

substring s[j : i − 1] by following nodes from parent to child. However, we still have

to start from the root node each time. We can avoid searching from the root via the

use of suffix links. For each internal node va we maintain a link to the internal node

vb, where L(vb) is the immediate suffix of L(va). In extension j − 1, let vp denote the

internal node under which we find s[j −1 : i], and let m be the length of the node label

of vp . To insert the j th extension s[j : i], we follow the suffix link from vp to another

node, say vs , and search for the remaining substring s[j +m− 1 : i − 1] from vs . The

use of suffix links allows us to jump internally within the tree for different extensions,

as opposed to searching from the root each time. As a final observation, if extension j
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ALGORITHM 10.5. Algorithm UKKONEN

UKKONEN (s):

n← |s|1

s[n+ 1]← $ // append terminal character2

T ←∅ // add empty string as root3

l← 0 // last explicit suffix4

foreach i = 1, . . . ,n+ 1 do // phase i - construct Ti5

e← i // implicit extensions6

foreach j = l+ 1, . . . , i do // extension j for phase i7

// Insert s[j : i] into the suffix tree

Find end of s[j : i− 1] in T via skip/count and suffix links8

if si ∈ T then // implicit suffixes9

break10

else11

Insert si at end of path12

Set last explicit suffix l if needed13

return T14

creates a new internal node, then its suffix link will point to the new internal node that

will be created during extension j + 1.

The pseudo-code for the optimized Ukkonen’s algorithm is shown in

Algorithm 10.5. It is important to note that it achieves linear time and space only with

all of the optimizations in conjunction, namely implicit extensions (line 6), implicit

suffixes (line 9), and skip/count and suffix links for inserting extensions in T (line 8).

Example 10.12. Let us look at the execution of Ukkonen’s algorithm on the

sequence s1=CAGAAGT$, as shown in Figure 10.8. In phase 1, we process character

s1=C and insert the suffix (1,1) into the tree with edge label [1,e] (see Figure 10.8a).

In phases 2 and 3, new suffixes (1,2) and (1,3) are added (see Figures 10.8b–10.8c).

For phase 4, when we want to process s4 = A, we note that all suffixes up to l = 3

are already explicit. Setting e = 4 implicitly extends all of them, so we have only

to make sure that the last extension (j = 4) consisting of the single character A

is in the tree. Searching from the root, we find A in the tree implicitly, and we

thus proceed to the next phase. In the next phase, we set e = 5, and the suffix

(1,4) becomes explicit when we try to add the extension AA, which is not in the

tree. For e = 6, we find the extension AG already in the tree and we skip ahead

to the next phase. At this point the last explicit suffix is still (1,4). For e = 7, T

is a previously unseen symbol, and so all suffixes will become explicit, as shown in

Figure 10.8g.

It is instructive to see the extensions in the last phase (i = 7). As described in

Example 10.11, the first four extensions will be done implicitly. Figure 10.9a shows

the suffix tree after these four extensions. For extension 5, we begin at the last explicit
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Figure 10.8. Ukkonen’s linear time algorithm for suffix tree construction. Steps (a)–(g) show the successive

changes to the tree after the ith phase. The suffix links are shown with dashed lines. The double-circled

leaf denotes the last explicit suffix in the tree. The last step is not shown because when e= 8, the terminal

character $ will not alter the tree. All the edge labels are shown for ease of understanding, although the

actual suffix tree keeps only the intervals for each edge.

leaf, follow its parent’s suffix link, and begin searching for the remaining characters

from that point. In our example, the suffix link points to the root, so we search for

s[5 : 7]=AGT from the root. We skip to node vA, and look for the remaining string

GT, which has a mismatch inside the edge [3,e]. We thus create a new internal

node after G, and insert the explicit suffix (1,5), as shown in Figure 10.9b. The next

extension s[6 : 7] = GT begins at the newly created leaf node (1,5). Following the

closest suffix link leads back to the root, and a search for GT gets a mismatch on the

edge out of the root to leaf (1,3). We then create a new internal node vG at that point,

add a suffix link from the previous internal node vAG to vG, and add a new explicit

leaf (1,6), as shown in Figure 10.9c. The last extension, namely j = 7, corresponding
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Figure 10.9. Extensions in phase i = 7. Initially the last explicit suffix is l = 4 and is shown double-circled.

All the edge labels are shown for convenience; the actual suffix tree keeps only the intervals for each edge.

to s[7 : 7]=T, results in making all the suffixes explicit because the symbol T has been

seen for the first time. The resulting tree is shown in Figure 10.8g.

Once s1 has been processed, we can then insert the remaining sequences in the

database D into the existing suffix tree. The final suffix tree for all three sequences

is shown in Figure 10.5, with additional suffix links (not shown) from all the internal

nodes.

Ukkonen’s algorithm has time complexity of O(n) for a sequence of length n

because it does only a constant amount of work (amortized) to make each suffix

explicit. Note that, for each phase, a certain number of extensions are done implicitly

just by incrementing e. Out of the i extensions from j = 1 to j = i, let us say that l

are done implicitly. For the remaining extensions, we stop the first time some suffix

is implicitly in the tree; let that extension be k. Thus, phase i needs to add explicit

suffixes only for suffixes l + 1 through k − 1. For creating each explicit suffix, we

perform a constant number of operations, which include following the closest suffix

link, skip/counting to look for the first mismatch, and inserting if needed a new

suffix leaf node. Because each leaf becomes explicit only once, and the number of

skip/count steps are bounded by O(n) over the whole tree, we get a worst-case O(n)
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time algorithm. The total time over the entire database of N sequences is thus O(Nn),

if n is the longest sequence length.

10.4 FURTHER READING

The level-wise GSP method for mining sequential patterns was proposed in Srikant

and Agrawal (March 1996). Spade is described in Zaki (2001), and the PrefixSpan

algorithm in Pei et al. (2004). Ukkonen’s linear time suffix tree construction method

appears in Ukkonen (1995). For an excellent introduction to suffix trees and their

numerous applications see Gusfield (1997); the suffix tree description in this chapter

has been heavily influenced by it.
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10.5 EXERCISES

Q1. Consider the database shown in Table 10.2. Answer the following questions:

(a) Let minsup= 4. Find all frequent sequences.

(b) Given that the alphabet is 6 = {A,C,G,T}. How many possible sequences of

length k can there be?

Table 10.2. Sequence database for Q1

Id Sequence

s1 AATACAAGAAC

s2 GTATGGTGAT

s3 AACATGGCCAA

s4 AAGCGTGGTCAA

Q2. Given the DNA sequence database in Table 10.3, answer the following questions

using minsup= 4

(a) Find the maximal frequent sequences.

(b) Find all the closed frequent sequences.
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(c) Find the maximal frequent substrings.

(d) Show how Spade would work on this dataset.

(e) Show the steps of the PrefixSpan algorithm.

Table 10.3. Sequence database for Q2

Id Sequence

s1 ACGTCACG

s2 TCGA

s3 GACTGCA

s4 CAGTC

s5 AGCT

s6 TGCAGCTC

s7 AGTCAG

Q3. Given s = AABBACBBAA, and 6 = {A,B,C}. Define support as the number

of occurrence of a subsequence in s. Using minsup = 2, answer the following

questions:

(a) Show how the vertical Spade method can be extended to mine all frequent

substrings (consecutive subsequences) in s.

(b) Construct the suffix tree for s using Ukkonen’s method. Show all intermediate

steps, including all suffix links.

(c) Using the suffix tree from the previous step, find all the occurrences of the query

q=ABBA allowing for at most two mismatches.

(d) Show the suffix tree when we add another character A just before the $. That is,

you must undo the effect of adding the $, add the new symbol A, and then add $

back again.

(e) Describe an algorithm to extract all the maximal frequent substrings from a suffix

tree. Show all maximal frequent substrings in s.

Q4. Consider a bitvector based approach for mining frequent subsequences. For instance,

in Table 10.2, for s1, the symbol C occurs at positions 5 and 11. Thus, the bitvector for

C in s1 is given as 00001000001. Because C does not appear in s2 its bitvector can be

omitted for s2. The complete set of bitvectors for symbol C is

(s1,00001000001)

(s3,00100001100)

(s4,000100000100)

Given the set of bitvectors for each symbol show how we can mine all frequent sub-

sequences by using bit operations on the bitvectors. Show the frequent subsequences

and their bitvectors using minsup= 4.

Q5. Consider the database shown in Table 10.4. Each sequence comprises itemset events

that happen at the same time. For example, sequence s1 can be considered to be a

sequence of itemsets (AB)10(B)20(AB)30(AC)40, where symbols within brackets are

considered to co-occur at the same time, which is given in the subscripts. Describe

an algorithm that can mine all the frequent subsequences over itemset events. The
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Table 10.4. Sequences for Q5

Id Time Items

s1

10 A,B

20 B

30 A,B

40 A,C

20 A,C

s2 30 A,B,C

50 B

10 A

30 B

s3 40 A

50 C

60 B

30 A,B

40 A

s4 50 B

60 C

itemsets can be of any length as long as they are frequent. Find all frequent itemset

sequences with minsup= 3.

Q6. The suffix tree shown in Figure 10.5 contains all suffixes for the three sequences

s1,s2,s3 in Table 10.1. Note that a pair (i,j ) in a leaf denotes the j th suffix of

sequence si .

(a) Add a new sequence s4 = GAAGCAGAA to the existing suffix tree, using the

Ukkonen algorithm. Show the last character position (e), along with the suffixes

(l) as they become explicit in the tree for s4. Show the final suffix tree after all

suffixes of s4 have become explicit.

(b) Find all closed frequent substrings with minsup = 2 using the final suffix

tree.

Q7. Given the following three sequences:

s1 : GAAGT

s2 : CAGAT

s3 : ACGT

Find all the frequent subsequences with minsup= 2, but allowing at most a gap of 1

position between successive sequence elements.



CHAPTER 11 Graph Pattern Mining

Graph data is becoming increasingly more ubiquitous in today’s networked world.

Examples include social networks as well as cell phone networks and blogs. The

Internet is another example of graph data, as is the hyperlinked structure of the

World Wide Web (WWW). Bioinformatics, especially systems biology, deals with

understanding interaction networks between various types of biomolecules, such as

protein–protein interactions, metabolic networks, gene networks, and so on. Another

prominent source of graph data is the Semantic Web, and linked open data, with graphs

represented using the Resource Description Framework (RDF) data model.

The goal of graph mining is to extract interesting subgraphs from a single large

graph (e.g., a social network), or from a database of many graphs. In different

applications we may be interested in different kinds of subgraph patterns, such as

subtrees, complete graphs or cliques, bipartite cliques, dense subgraphs, and so on.

These may represent, for example, communities in a social network, hub and authority

pages on the WWW, cluster of proteins involved in similar biochemical functions, and

so on. In this chapter we outline methods to mine all the frequent subgraphs that

appear in a database of graphs.

11.1 ISOMORPHISM AND SUPPORT

A graph is a pair G = (V,E) where V is a set of vertices, and E ⊆ V×V is a set of

edges. We assume that edges are unordered, so that the graph is undirected. If (u,v) is

an edge, we say that u and v are adjacent and that v is a neighbor of u, and vice versa.

The set of all neighbors of u in G is given as N(u)= {v ∈V | (u,v) ∈E}. A labeled graph

has labels associated with its vertices as well as edges. We use L(u) to denote the label

of the vertex u, and L(u,v) to denote the label of the edge (u,v), with the set of vertex

labels denoted as 6V and the set of edge labels as 6E. Given an edge (u,v) ∈ G, the

tuple 〈u,v,L(u),L(v),L(u,v)〉 that augments the edge with the node and edge labels is

called an extended edge.

Example 11.1. Figure 11.1a shows an example of an unlabeled graph, whereas

Figure 11.1b shows the same graph, with labels on the vertices, taken from the vertex

280
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v1 v2

v3 v4 v5
v6

v7 v8
(a)

a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(b)

Figure 11.1. An unlabeled (a) and labeled (b) graph with eight vertices.

label set 6V = {a,b,c,d}. In this example, edges are all assumed to be unlabeled,

and are therefore edge labels are not shown. Considering Figure 11.1b, the label of

vertex v4 is L(v4) = a, and its neighbors are N(v4) = {v1,v2,v3,v5,v7,v8}. The edge

(v4,v1) leads to the extended edge 〈v4,v1,a,a〉, where we omit the edge label L(v4,v1)

because it is empty.

Subgraphs

A graph G′ = (V′,E′) is said to be a subgraph of G if V′ ⊆ V and E′ ⊆ E. Note

that this definition allows for disconnected subgraphs. However, typically data mining

applications call for connected subgraphs, defined as a subgraph G′ such that V′ ⊆ V,

E′ ⊆E, and for any two nodes u,v ∈V′, there exists a path from u to v in G′.

Example 11.2. The graph defined by the bold edges in Figure 11.2a is a subgraph

of the larger graph; it has vertex set V′ = {v1,v2,v4,v5,v6,v8}. However, it is a

disconnected subgraph. Figure 11.2b shows an example of a connected subgraph on

the same vertex set V′.

Graph and Subgraph Isomorphism

A graph G′ = (V′,E′) is said to be isomorphic to another graph G = (V,E) if there

exists a bijective function φ : V′→ V, i.e., both injective (into) and surjective (onto),

such that

1. (u,v) ∈E′ ⇐⇒ (φ(u),φ(v)) ∈E

2. ∀u ∈V′, L(u)=L(φ(u))

3. ∀(u,v) ∈E′, L(u,v)=L(φ(u),φ(v))

In other words, the isomorphism φ preserves the edge adjacencies as well as the vertex

and edge labels. Put differently, the extended tuple 〈u,v,L(u),L(v),L(u,v)〉 ∈G′ if and

only if 〈φ(u),φ(v),L(φ(u)),L(φ(v)),L(φ(u),φ(v))〉 ∈G.
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a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(a)

a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(b)

Figure 11.2. A subgraph (a) and connected subgraph (b).

u1 a

G1

u2 a

u3 b u4 b

v1 a

G2

v3 a

v2 b v4 b

w1 a

G3

w2 a

w3 b

x1 b

G4

x2 a

x3 b

Figure 11.3. Graph and subgraph isomorphism.

If the function φ is only injective but not surjective, we say that the mapping φ is

a subgraph isomorphism from G′ to G. In this case, we say that G′ is isomorphic to a

subgraph of G, that is, G′ is subgraph isomorphic to G, denoted G′ ⊆ G; we also say

that G contains G′.

Example 11.3. In Figure 11.3, G1= (V1,E1) and G2= (V2,E2) are isomorphic graphs.

There are several possible isomorphisms between G1 and G2. An example of an

isomorphism φ : V2→V1 is

φ(v1)= u1 φ(v2)= u3 φ(v3)= u2 φ(v4)= u4

The inverse mapping φ−1 specifies the isomorphism from G1 to G2. For example,

φ−1(u1) = v1, φ−1(u2) = v3, and so on. The set of all possible isomorphisms from G2

to G1 are as follows:

v1 v2 v3 v4

φ1 u1 u3 u2 u4

φ2 u1 u4 u2 u3

φ3 u2 u3 u1 u4

φ4 u2 u4 u1 u3



11.1 Isomorphism and Support 283

The graph G3 is subgraph isomorphic to both G1 and G2. The set of all possible

subgraph isomorphisms from G3 to G1 are as follows:

w1 w2 w3

φ1 u1 u2 u3

φ2 u1 u2 u4

φ3 u2 u1 u3

φ4 u2 u1 u4

The graph G4 is not subgraph isomorphic to either G1 or G2, and it is also not

isomorphic to G3 because the extended edge 〈x1,x3,b,b〉 has no possible mappings in

G1, G2 or G3.

Subgraph Support

Given a database of graphs, D={G1,G2, . . . ,Gn}, and given some graph G, the support

of G in D is defined as follows:

sup(G)=
∣

∣

∣

{

Gi ∈D |G⊆Gi

}

∣

∣

∣

The support is simply the number of graphs in the database that contain G. Given a

minsup threshold, the goal of graph mining is to mine all frequent connected subgraphs

with sup(G)≥minsup.

To mine all the frequent subgraphs, one has to search over the space of all possible

graph patterns, which is exponential in size. If we consider subgraphs with m vertices,

then there are
(

m

2

)

= O(m2) possible edges. The number of possible subgraphs with

m nodes is then O(2m2
) because we may decide either to include or exclude each of

the edges. Many of these subgraphs will not be connected, but O(2m2
) is a convenient

upper bound. When we add labels to the vertices and edges, the number of labeled

graphs will be even more. Assume that |6V| = |6E| = s, then there are sm possible ways

to label the vertices and there are sm2
ways to label the edges. Thus, the number of

possible labeled subgraphs with m vertices is 2m2
smsm2

= O
(

(2s)m2)

. This is the worst

case bound, as many of these subgraphs will be isomorphic to each other, with the

number of distinct subgraphs being much less. Nevertheless, the search space is still

enormous because we typically have to search for all subgraphs ranging from a single

vertex to some maximum number of vertices given by the largest frequent subgraph.

There are two main challenges in frequent subgraph mining. The first is to system-

atically generate candidate subgraphs. We use edge-growth as the basic mechanism for

extending the candidates. The mining process proceeds in a breadth-first (level-wise)

or a depth-first manner, starting with an empty subgraph (i.e., with no edge), and

adding a new edge each time. Such an edge may either connect two existing vertices

in the graph or it may introduce a new vertex as one end of a new edge. The key is

to perform nonredundant subgraph enumeration, such that we do not generate the

same graph candidate more than once. This means that we have to perform graph

isomorphism checking to make sure that duplicate graphs are removed. The second

challenge is to count the support of a graph in the database. This involves subgraph

isomorphism checking, as we have to find the set of graphs that contain a given

candidate.
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11.2 CANDIDATE GENERATION

An effective strategy to enumerate subgraph patterns is the so-called rightmost path

extension. Given a graph G, we perform a depth-first search (DFS) over its vertices,

and create a DFS spanning tree, that is, one that covers or spans all the vertices. Edges

that are included in the DFS tree are called forward edges, and all other edges are

called backward edges. Backward edges create cycles in the graph. Once we have a

DFS tree, define the rightmost path as the path from the root to the rightmost leaf, that

is, to the leaf with the highest index in the DFS order.

Example 11.4. Consider the graph shown in Figure 11.4a. One of the possible DFS

spanning trees is shown in Figure 11.4b (illustrated via bold edges), obtained by

starting at v1 and then choosing the vertex with the smallest index at each step.

Figure 11.5 shows the same graph (ignoring the dashed edges), rearranged to

emphasize the DFS tree structure. For instance, the edges (v1,v2) and (v2,v3) are

examples of forward edges, whereas (v3,v1), (v4,v1), and (v6,v1) are all backward

edges. The bold edges (v1,v5), (v5,v7) and (v7,v8) comprise the rightmost path.

For generating new candidates from a given graph G, we extend it by adding a

new edge to vertices only on the rightmost path. We can either extend G by adding

backward edges from the rightmost vertex to some other vertex on the rightmost path

(disallowing self-loops or multi-edges), or we can extend G by adding forward edges

from any of the vertices on the rightmost path. A backward extension does not add a

new vertex, whereas a forward extension adds a new vertex.

For systematic candidate generation we impose a total order on the extensions, as

follows: First, we try all backward extensions from the rightmost vertex, and then we

try forward extensions from vertices on the rightmost path. Among the backward edge

extensions, if ur is the rightmost vertex, the extension (ur ,vi) is tried before (ur ,vj ) if

i < j . In other words, backward extensions closer to the root are considered before

those farther away from the root along the rightmost path. Among the forward edge

extensions, if vx is the new vertex to be added, the extension (vi,vx) is tried before

v6 d c

v5

a v7

v1 a a v2 b v8

v4 c b v3

(a)

v6 d c

v5

a v7

v1 a a v2 b v8

v4 c b v3

(b)

Figure 11.4. A graph (a) and a possible depth-first spanning tree (b).
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v1 a

v2 a v5 c #6

v3 b v4 c v6 d v7 a #5

v8 b #4

#3

#1

#2

Figure 11.5. Rightmost path extensions. The bold path is the rightmost path in the DFS tree. The rightmost

vertex is v8 , shown double circled. Solid black lines (thin and bold) indicate the forward edges, which are part

of the DFS tree. The backward edges, which by definition are not part of the DFS tree, are shown in gray.

The set of possible extensions on the rightmost path are shown with dashed lines. The precedence ordering

of the extensions is also shown.

(vj ,vx) if i > j . In other words, the vertices farther from the root (those at greater

depth) are extended before those closer to the root. Also note that the new vertex will

be numbered x = r + 1, as it will become the new rightmost vertex after the extension.

Example 11.5. Consider the order of extensions shown in Figure 11.5. Node v8 is the

rightmost vertex; thus we try backward extensions only from v8. The first extension,

denoted #1 in Figure 11.5, is the backward edge (v8,v1) connecting v8 to the root,

and the next extension is (v8,v5), denoted #2, which is also backward. No other

backward extensions are possible without introducing multiple edges between the

same pair of vertices. The forward extensions are tried in reverse order, starting from

the rightmost vertex v8 (extension denoted as #3) and ending at the root (extension

denoted as #6). Thus, the forward extension (v8,vx), denoted #3, comes before the

forward extension (v7,vx), denoted #4, and so on.

11.2.1 Canonical Code

When generating candidates using rightmost path extensions, it is possible that

duplicate, that is, isomorphic, graphs are generated via different extensions. Among

the isomorphic candidates, we need to keep only one for further extension, whereas the

others can be pruned to avoid redundant computation. The main idea is that if we can

somehow sort or rank the isomorphic graphs, we can pick the canonical representative,

say the one with the least rank, and extend only that graph.
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v1 a

G1

v2 a

v3 a b v4

q

r r

r

v1 a

G2

v2 a

v3 b a v4

q

r r

r

v1 a

G3

v2 a b v4

v3 a

q

r

r

r

t11 = 〈v1,v2,a,a,q〉

t12 = 〈v2,v3,a,a,r〉

t13 = 〈v3,v1,a,a,r〉

t14 = 〈v2,v4,a,b,r〉

t21 = 〈v1,v2,a,a,q〉

t22 = 〈v2,v3,a,b,r〉

t23 = 〈v2,v4,a,a,r〉

t24 = 〈v4,v1,a,a,r〉

t31 = 〈v1,v2,a,a,q〉

t32 = 〈v2,v3,a,a,r〉

t33 = 〈v3,v1,a,a,r〉

t34 = 〈v1,v4,a,b,r〉

DFScode(G1) DFScode(G2) DFScode(G3)

Figure 11.6. Canonical DFS code. G1 is canonical, whereas G2 and G3 are noncanonical. Vertex label set

6V = {a,b}, and edge label set 6E = {q,r}. The vertices are numbered in DFS order.

Let G be a graph and let TG be a DFS spanning tree for G. The DFS tree TG

defines an ordering of both the nodes and edges in G. The DFS node ordering is

obtained by numbering the nodes consecutively in the order they are visited in the

DFS walk. We assume henceforth that for a pattern graph G the nodes are numbered

according to their position in the DFS ordering, so that i < j implies that vi comes

before vj in the DFS walk. The DFS edge ordering is obtained by following the edges

between consecutive nodes in DFS order, with the condition that all the backward

edges incident with vertex vi are listed before any of the forward edges incident with it.

The DFS code for a graph G, for a given DFS tree TG, denoted DFScode(G), is defined

as the sequence of extended edge tuples of the form
〈

vi,vj ,L(vi),L(vj ),L(vi,vj )
〉

listed

in the DFS edge order.

Example 11.6. Figure 11.6 shows the DFS codes for three graphs, which are all

isomorphic to each other. The graphs have node and edge labels drawn from the

label sets 6V = {a,b} and 6E = {q,r}. The edge labels are shown centered on the

edges. The bold edges comprise the DFS tree for each graph. For G1, the DFS node

ordering is v1,v2,v3,v4, whereas the DFS edge ordering is (v1,v2), (v2,v3), (v3,v1),

and (v2,v4). Based on the DFS edge ordering, the first tuple in the DFS code for G1

is therefore 〈v1,v2,a,a,q〉. The next tuple is 〈v2,v3,a,a,r〉 and so on. The DFS code

for each graph is shown in the corresponding box below the graph.

Canonical DFS Code

A subgraph is canonical if it has the smallest DFS code among all possible isomorphic

graphs, with the ordering between codes defined as follows. Let t1 and t2 be any two
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DFS code tuples:

t1 =
〈

vi,vj ,L(vi),L(vj ),L(vi ,vj )
〉

t2 =
〈

vx,vy ,L(vx),L(vy),L(vx ,vy)
〉

We say that t1 is smaller than t2, written t1 < t2, iff

i) (vi,vj ) <e (vx,vy),or

ii) (vi,vj )= (vx,vy) and
〈

L(vi),L(vj ),L(vi,vj )
〉

<l

〈

L(vx),L(vy),L(vx ,vy)
〉

(11.1)

where <e is an ordering on the edges and <l is an ordering on the vertex and edge

labels. The label order <l is the standard lexicographic order on the vertex and edge

labels. The edge order <e is derived from the rules for rightmost path extension,

namely that all of a node’s backward extensions must be considered before any

forward edge from that node, and deep DFS trees are preferred over bushy DFS

trees. Formally, Let eij = (vi,vj ) and exy = (vx,vy) be any two edges. We say that

eij <e exy iff

Condition (1) If eij and exy are both forward edges, then (a) j < y, or (b) j = y and

i > x. That is, (a) a forward extension to a node earlier in the DFS node

order is smaller, or (b) if both the forward edges point to a node with the

same DFS node order, then the forward extension from a node deeper

in the tree is smaller.

Condition (2) If eij and exy are both backward edges, then (a) i < x, or (b) i = x and

j < y. That is, (a) a backward edge from a node earlier in the DFS

node order is smaller, or (b) if both the backward edges originate from a

node with the same DFS node order, then the backward edge to a node

earlier in DFS node order (i.e., closer to the root along the rightmost

path) is smaller.

Condition (3) If eij is a forward and exy is a backward edge, then j ≤ x. That is, a

forward edge to a node earlier in the DFS node order is smaller than a

backward edge from that node or any node that comes after it in DFS

node order.

Condition (4) If eij is a backward and exy is a forward edge, then i < y. That is, a

backward edge from a node earlier in DFS node order is smaller than a

forward edge to any later node.

Given any two DFS codes, we can compare them tuple by tuple to check which is

smaller. In particular, the canonical DFS code for a graph G is defined as follows:

C =min
G′

{

DFScode(G′) |G′ is isomorphic to G
}

Given a candidate subgraph G, we can first determine whether its DFS code is

canonical or not. Only canonical graphs need to be retained for extension, whereas

noncanonical candidates can be removed from further consideration.



288 Graph Pattern Mining

Example 11.7. Consider the DFS codes for the three graphs shown in Figure 11.6.

Comparing G1 and G2, we find that t11 = t21, but t12 < t22 because 〈a,a,r〉<l 〈a,b,r〉.

Comparing the codes for G1 and G3, we find that the first three tuples are equal for

both the graphs, but t14 < t34 because

(vi,vj )= (v2,v4) <e (v1,v4)= (vx,vy)

due to condition (1) above. That is, both are forward edges, and we have vj = v4 = vy

with vi = v2 > v1 = vx . In fact, it can be shown that the code for G1 is the canonical

DFS code for all graphs isomorphic to G1. Thus, G1 is the canonical candidate.

11.3 THE GSPAN ALGORITHM

We describe the gSpan algorithm to mine all frequent subgraphs from a database

of graphs. Given a database D = {G1,G2, . . . ,Gn} comprising n graphs, and given

a minimum support threshold minsup, the goal is to enumerate all (connected)

subgraphs G that are frequent, that is, sup(G) ≥ minsup. In gSpan, each graph is

represented by its canonical DFS code, so that the task of enumerating frequent

subgraphs is equivalent to the task of generating all canonical DFS codes for frequent

subgraphs. Algorithm 11.1 shows the pseudo-code for gSpan.

gSpan enumerates patterns in a depth-first manner, starting with the empty code.

Given a canonical and frequent code C, gSpan first determines the set of possible

edge extensions along the rightmost path (line 1). The function RIGHTMOSTPATH-

EXTENSIONS returns the set of edge extensions along with their support values, E .

Each extended edge t in E leads to a new candidate DFS code C′=C∪{t}, with support

sup(C) = sup(t) (lines 3–4). For each new candidate code, gSpan checks whether it

is frequent and canonical, and if so gSpan recursively extends C′ (lines 5–6). The

algorithm stops when there are no more frequent and canonical extensions possible.

ALGORITHM 11.1. Algorithm GSPAN

// Initial Call: C←∅

GSPAN (C, D, minsup):

E←RIGHTMOSTPATH-EXTENSIONS(C,D) // extensions and1

supports

foreach (t,sup(t)) ∈ E do2

C′←C∪ t // extend the code with extended edge tuple t3

sup(C′)← sup(t) // record the support of new extension4

// recursively call gSpan if code is frequent and

canonical

if sup(C′)≥minsup and ISCANONICAL (C′) then5

GSPAN (C′, D, minsup)6
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G1

a10

b20 a30

b40

G2

b50

a60 b70

a80

Figure 11.7. Example graph database.

Example 11.8. Consider the example graph database comprising G1 and G2 shown

in Figure 11.7. Let minsup = 2, that is, assume that we are interested in mining

subgraphs that appear in both the graphs in the database. For each graph the node

labels and node numbers are both shown, for example, the node a10 in G1 means that

node 10 has label a.

Figure 11.8 shows the candidate patterns enumerated by gSpan. For each

candidate the nodes are numbered in the DFS tree order. The solid boxes show

frequent subgraphs, whereas the dotted boxes show the infrequent ones. The dashed

boxes represent noncanonical codes. Subgraphs that do not occur even once are not

shown. The figure also shows the DFS codes and their corresponding graphs.

The mining process begins with the empty DFS code C0 corresponding to the

empty subgraph. The set of possible 1-edge extensions comprises the new set of

candidates. Among these, C3 is pruned because it is not canonical (it is isomorphic to

C2), whereas C4 is pruned because it is not frequent. The remaining two candidates,

C1 and C2, are both frequent and canonical, and are thus considered for further

extension. The depth-first search considers C1 before C2, with the rightmost path

extensions of C1 being C5 and C6. However, C6 is not canonical; it is isomorphic

to C5, which has the canonical DFS code. Further extensions of C5 are processed

recursively. Once the recursion from C1 completes, gSpan moves on to C2, which will

be recursively extended via rightmost edge extensions as illustrated by the subtree

under C2. After processing C2, gSpan terminates because no other frequent and

canonical extensions are found. In this example, C12 is a maximal frequent subgraph,

that is, no supergraph of C12 is frequent.

This example also shows the importance of duplicate elimination via canonical

checking. The groups of isomorphic subgraphs encountered during the execution of

gSpan are as follows: {C2,C3}, {C5,C6,C17}, {C7,C19}, {C9,C25}, {C20,C21,C22,C24},

and {C12,C13,C14}. Within each group the first graph is canonical and thus the

remaining codes are pruned.

For a complete description of gSpan we have to specify the algorithm for

enumerating the rightmost path extensions and their support, so that infrequent

patterns can be eliminated, and the procedure for checking whether a given DFS code

is canonical, so that duplicate patterns can be pruned. These are detailed next.



C0

∅

C1

〈0,1,a,a〉

a0

a1

C2

〈0,1,a,b〉

a0

b1

C3

〈0,1,b,a〉

b0

a1

C4

〈0,1,b,b〉

b0

b1

C5

〈0,1,a,a〉

〈1,2,a,b〉

a0

a1

b2

C6

〈0,1,a,a〉

〈0,2,a,b〉

a0

a1 b2

C15

〈0,1,a,b〉

〈1,2,b,a〉

a0

b1

a2

C16

〈0,1,a,b〉

〈1,2,b,b〉

a0

b1

b2

C17

〈0,1,a,b〉

〈0,2,a,a〉

a0

b1 a2

C18

〈0,1,a,b〉

〈0,2,a,b〉

a0

b1 b2

C7

〈0,1,a,a〉

〈1,2,a,b〉

〈2,0,b,a〉

a0

a1

b2

C8

〈0,1,a,a〉

〈1,2,a,b〉

〈2,3,b,b〉

a0

a1

b2

b3

C9

〈0,1,a,a〉

〈1,2,a,b〉

〈1,3,a,b〉

a0

a1

b2 b3

C10

〈0,1,a,a〉

〈1,2,a,b〉

〈0,3,a,b〉

a0

a1 b3

b2

C24

〈0,1,a,b〉

〈0,2,a,b〉

〈2,3,b,a〉

a0

b1 b2

a3

C25

〈0,1,a,b〉

〈0,2,a,b〉

〈0,3,a,a〉

a0

b1 b2 a3

C19

〈0,1,a,b〉

〈1,2,b,a〉

〈2,0,a,b〉

a0

b1

a2

C20

〈0,1,a,b〉

〈1,2,b,a〉

〈2,3,a,b〉

a0

b1

a2

b3

C21

〈0,1,a,b〉

〈1,2,b,a〉

〈1,3,b,b〉

a0

b1

a2 b3

C22

〈0,1,a,b〉

〈1,2,b,a〉

〈0,3,a,b〉

a0

b1 b3

a2

C11

〈0,1,a,a〉

〈1,2,a,b〉

〈2,0,b,a〉

〈2,3,b,b〉

a0

a1

b2

b3

C12

〈0,1,a,a〉

〈1,2,a,b〉

〈2,0,b,a〉

〈1,3,a,b〉

a0

a1

b2 b3

C13

〈0,1,a,a〉

〈1,2,a,b〉

〈2,0,b,a〉

〈0,3,a,b〉

a0

a1 b3

b2

C14

〈0,1,a,a〉

〈1,2,a,b〉

〈1,3,a,b〉

〈3,0,b,a〉

a0

a1

b2 b3

C23

〈0,1,a,b〉

〈1,2,b,a〉

〈2,3,a,b〉

〈3,1,b,b〉

a0

b1

a2

b3

Figure 11.8. Frequent graph mining: minsup = 2. Solid boxes indicate the frequent subgraphs, dotted the

infrequent, and dashed the noncanonical subgraphs.
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11.3.1 Extension and Support Computation

The support computation task is to find the number of graphs in the database D that

contain a candidate subgraph, which is very expensive because it involves subgraph

isomorphism checks. gSpan combines the tasks of enumerating candidate extensions

and support computation.

Assume that D={G1,G2, . . . ,Gn} comprises n graphs. Let C={t1, t2, . . . , tk} denote

a frequent canonical DFS code comprising k edges, and let G(C) denote the graph

corresponding to code C. The task is to compute the set of possible rightmost path

extensions from C, along with their support values, which is accomplished via the

pseudo-code in Algorithm 11.2.

Given code C, gSpan first records the nodes on the rightmost path (R), and the

rightmost child (ur). Next, gSpan considers each graph Gi ∈ D. If C = ∅, then each

distinct label tuple of the form 〈L(x),L(y),L(x,y)〉 for adjacent nodes x and y in

Gi contributes a forward extension 〈0,1,L(x),L(y),L(x,y)〉 (lines 6-8). On the other

hand, if C is not empty, then gSpan enumerates all possible subgraph isomorphisms

8i between the code C and graph Gi via the function SUBGRAPHISOMORPHISMS

(line 10). Given subgraph isomorphism φ ∈ 8i , gSpan finds all possible forward and

backward edge extensions, and stores them in the extension set E .

Backward extensions (lines 12–15) are allowed only from the rightmost child ur in

C to some other node on the rightmost path R. The method considers each neighbor

x of φ(ur) in Gi and checks whether it is a mapping for some vertex v = φ−1(x) along

the rightmost path R in C. If the edge (ur ,v) does not already exist in C, it is a new

extension, and the extended tuple b= 〈ur ,v,L(ur ),L(v),L(ur ,v)〉 is added to the set of

extensions E , along with the graph id i that contributed to that extension.

Forward extensions (lines 16–19) are allowed only from nodes on the rightmost

path R to new nodes. For each node u in R, the algorithm finds a neighbor x in Gi

that is not in a mapping from some node in C. For each such node x, the forward

extension f = 〈u,ur + 1,L(φ(u)),L(x),L(φ(u),x)〉 is added to E , along with the graph

id i. Because a forward extension adds a new vertex to the graph G(C), the id of the

new node in C must be ur + 1, that is, one more than the highest numbered node in C,

which by definition is the rightmost child ur .

Once all the backward and forward extensions have been cataloged over all graphs

Gi in the database D, we compute their support by counting the number of distinct

graph ids that contribute to each extension. Finally, the method returns the set of

all extensions and their supports in sorted order (increasing) based on the tuple

comparison operator in Eq. (11.1).

Example 11.9. Consider the canonical code C and the corresponding graph G(C)

shown in Figure 11.9a. For this code all the vertices are on the rightmost path, that is,

R= {0,1,2}, and the rightmost child is ur = 2.

The sets of all possible isomorphisms from C to graphs G1 and G2 in the database

(shown in Figure 11.7) are listed in Figure 11.9b as 81 and 82. For example, the first

isomorphism φ1 : G(C)→G1 is defined as

φ1(0)= 10 φ1(1)= 30 φ1(2)= 20
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ALGORITHM 11.2. Rightmost Path Extensions and Their Support

RIGHTMOSTPATH-EXTENSIONS (C, D):

R← nodes on the rightmost path in C1

ur← rightmost child in C // dfs number2

E←∅ // set of extensions from C3

foreach Gi ∈D, i = 1, . . . ,n do4

if C= ∅ then5

// add distinct label tuples in Gi as forward

extensions

foreach distinct 〈L(x),L(y),L(x,y)〉 ∈Gi do6

f =
〈

0,1,L(x),L(y),L(x,y)
〉

7

Add tuple f to E along with graph id i8

else9

8i = SUBGRAPHISOMORPHISMS(C,Gi)10

foreach isomorphism φ ∈8i do11

// backward extensions from rightmost child

foreach x ∈NGi
(φ(ur)) such that ∃v← φ−1(x) do12

if v ∈R and (ur ,v) 6∈G(C) then13

b =
〈

ur ,v,L(ur ),L(v),L(ur ,v)
〉

14

Add tuple b to E along with graph id i15

// forward extensions from nodes on rightmost path

foreach u ∈R do16

foreach x ∈NGi
(φ(u)) and 6 ∃φ−1(x) do17

f =
〈

u,ur + 1,L(φ(u)),L(x),L(φ(u),x)
〉

18

Add tuple f to E along with graph id i19

// Compute the support of each extension

foreach distinct extension s ∈ E do20

sup(s)= number of distinct graph ids that support tuple s21

return set of pairs 〈s,sup(s)〉 for extensions s ∈ E , in tuple sorted order22

The list of possible backward and forward extensions for each isomorphism is

shown in Figure 11.9c. For example, there are two possible edge extensions from the

isomorphism φ1. The first is a backward edge extension 〈2,0,b,a〉, as (20,10) is a

valid backward edge in G1. That is, the node x = 10 is a neighbor of φ(2)= 20 in G1,

φ−1(10)= 0 = v is on the rightmost path, and the edge (2,0) is not already in G(C),

which satisfy the backward extension steps in lines 12–15 in Algorithm 11.2. The

second extension is a forward one 〈1,3,a,b〉, as 〈30,40,a,b〉 is a valid extended edge

in G1. That is, x = 40 is a neighbor of φ(1) = 30 in G1, and node 40 has not already

been mapped to any node in G(C), that is, φ−1
1 (40) does not exist. These conditions

satisfy the forward extension steps in lines 16–19 in Algorithm 11.2.
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C

t1 : 〈0,1,a,a〉

t2 : 〈1,2,a,b〉

G(C)

a0

a1

b2

(a) Code C and graph G(C)

8 φ 0 1 2

81

φ1 10 30 20

φ2 10 30 40

φ3 30 10 20

82

φ4 60 80 70

φ5 80 60 50

φ6 80 60 70

(b) Subgraph isomorphisms

Id φ Extensions

G1

φ1 {〈2,0,b,a〉,〈1,3,a,b〉}

φ2 {〈1,3,a,b〉,〈0,3,a,b〉}

φ3 {〈2,0,b,a〉,〈0,3,a,b〉}

G2

φ4 {〈2,0,b,a〉,〈2,3,b,b〉,〈0,3,a,b〉}

φ5 {〈2,3,b,b〉,〈1,3,a,b〉}

φ6 {〈2,0,b,a〉,〈2,3,b,b〉,〈1,3,a,b〉}

(c) Edge extensions

Extension Support

〈2,0,b,a〉 2

〈2,3,b,b〉 1

〈1,3,a,b〉 2

〈0,3,a,b〉 2

(d) Extensions (sorted) and supports

Figure 11.9. Rightmost path extensions.

Given the set of all the edge extensions, and the graph ids that contribute

to them, we obtain support for each extension by counting how many graphs

contribute to it. The final set of extensions, in sorted order, along with their support

values is shown in Figure 11.9d. With minsup = 2, the only infrequent extension is

〈2,3,b,b〉.

Subgraph Isomorphisms

The key step in listing the edge extensions for a given code C is to enumerate all

the possible isomorphisms from C to each graph Gi ∈ D. The function SUBGRAPHI-

SOMORPHISMS, shown in Algorithm 11.3, accepts a code C and a graph G, and

returns the set of all isomorphisms between C and G. The set of isomorphisms 8

is initialized by mapping vertex 0 in C to each vertex x in G that shares the same

label as 0, that is, if L(x) = L(0) (line 1). The method considers each tuple ti in C

and extends the current set of partial isomorphisms. Let ti = 〈u,v,L(u),L(v),L(u,v)〉.

We have to check if each isomorphism φ ∈ 8 can be extended in G using the

information from ti (lines 5–12). If ti is a forward edge, then we seek a neighbor

x of φ(u) in G such that x has not already been mapped to some vertex in C,

that is, φ−1(x) should not exist, and the node and edge labels should match, that is,

L(x) = L(v), and L(φ(u),x) = L(u,v). If so, φ can be extended with the mapping

φ(v) → x. The new extended isomorphism, denoted φ′, is added to the initially

empty set of isomorphisms 8′. If ti is a backward edge, we have to check if φ(v)

is a neighbor of φ(u) in G. If so, we add the current isomorphism φ to 8′. Thus,
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ALGORITHM 11.3. Enumerate Subgraph Isomorphisms

SUBGRAPHISOMORPHISMS (C= {t1, t2, . . . , tk}, G):

8←{φ(0)→ x | x ∈G and L(x)=L(0)}1

foreach ti ∈C, i = 1, . . . ,k do2

〈u,v,L(u),L(v),L(u,v)〉 ← ti // expand extended edge ti3

8′←∅ // partial isomorphisms including ti4

foreach partial isomorphism φ ∈8 do5

if v > u then6

// forward edge

foreach x ∈NG(φ(u)) do7

if 6 ∃φ−1(x) and L(x)=L(v) and L(φ(u),x)=L(u,v) then8

φ′← φ ∪{φ(v)→ x}9

Add φ′ to 8′10

else11

// backward edge

if φ(v) ∈NGj
(φ(u)) then Add φ to 8′ // valid isomorphism12

8←8′ // update partial isomorphisms13

return 814

only those isomorphisms that can be extended in the forward case, or those that

satisfy the backward edge, are retained for further checking. Once all the extended

edges in C have been processed, the set 8 contains all the valid isomorphisms from

C to G.

Example 11.10. Figure 11.10 illustrates the subgraph isomorphism enumeration

algorithm from the code C to each of the graphs G1 and G2 in the database shown in

Figure 11.7.

For G1, the set of isomorphisms 8 is initialized by mapping the first node of C to

all nodes labeled a in G1 because L(0)= a. Thus, 8= {φ1(0)→ 10,φ2(0)→ 30}. We

next consider each tuple in C, and see which isomorphisms can be extended. The first

tuple t1 = 〈0,1,a,a〉 is a forward edge, thus for φ1, we consider neighbors x of 10 that

are labeled a and not included in the isomorphism yet. The only other vertex that

satisfies this condition is 30; thus the isomorphism is extended by mapping φ1(1)→

30. In a similar manner the second isomorphism φ2 is extended by adding φ2(1)→ 10,

as shown in Figure 11.10. For the second tuple t2 = 〈1,2,a,b〉, the isomorphism

φ1 has two possible extensions, as 30 has two neighbors labeled b, namely 20

and 40. The extended mappings are denoted φ′1 and φ′′1 . For φ2 there is only one

extension.

The isomorphisms of C in G2 can be found in a similar manner. The complete

sets of isomorphisms in each database graph are shown in Figure 11.10.
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C

t1 : 〈0,1,a,a〉

t2 : 〈1,2,a,b〉

G(C)

a0

a1

b2

Initial 8

id φ 0

G1
φ1 10

φ2 30

G2
φ3 60

φ4 80

Add t1

id φ 0,1

G1
φ1 10,30

φ2 30,10

G2
φ3 60,80

φ4 80,60

Add t2

id φ 0,1,2

G1

φ′1 10,30,20

φ′′1 10,30,40

φ2 30,10,20

G2

φ3 60,80,70

φ′4 80,60,50

φ′′4 80,60,70

Figure 11.10. Subgraph isomorphisms.

11.3.2 Canonicality Checking

Given a DFS code C = {t1, t2, . . . , tk} comprising k extended edge tuples and the

corresponding graph G(C), the task is to check whether the code C is canonical.

This can be accomplished by trying to reconstruct the canonical code C∗ for G(C) in

an iterative manner starting from the empty code and selecting the least rightmost

path extension at each step, where the least edge extension is based on the extended

tuple comparison operator in Eq. (11.1). If at any step the current (partial) canonical

DFS code C∗ is smaller than C, then we know that C cannot be canonical and

can thus be pruned. On the other hand, if no smaller code is found after k

extensions then C must be canonical. The pseudo-code for canonicality checking

is given in Algorithm 11.4. The method can be considered as a restricted version

of gSpan in that the graph G(C) plays the role of a graph in the database, and

C∗ plays the role of a candidate extension. The key difference is that we consider

only the smallest rightmost path edge extension among all the possible candidate

extensions.

ALGORITHM 11.4. Canonicality Checking: Algorithm ISCANONICAL

ISCANONICAL (C):

DC←{G(C)} // graph corresponding to code C1

C∗←∅ // initialize canonical DFScode2

for i = 1 · · ·k do3

E =RIGHTMOSTPATH-EXTENSIONS(C∗,DC) // extensions of C∗4

(si,sup(si))←min{E} // least rightmost edge extension of C∗5

if si < ti then6

return false // C∗ is smaller, thus C is not canonical7

C∗←C∗ ∪ si8

return true // no smaller code exists; C is canonical9
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G Step 1 Step 2 Step 3

a0

a1

b2 b3

a

G∗

a

a

G∗

a

b

a

G∗

a

b

C

t1 = 〈0,1,a,a〉

t2 = 〈1,2,a,b〉

t3 = 〈1,3,a,b〉

t4 = 〈3,0,b,a〉

C∗

s1 = 〈0,1,a,a〉

C∗

s1 = 〈0,1,a,a〉

s2 = 〈1,2,a,b〉

C∗

s1 = 〈0,1,a,a〉

s2 = 〈1,2,a,b〉

s3 = 〈2,0,b,a〉

Figure 11.11. Canonicality checking.

Example 11.11. Consider the subgraph candidate C14 from Figure 11.8, which is

replicated as graph G in Figure 11.11, along with its DFS code C. From an initial

canonical code C∗ = ∅, the smallest rightmost edge extension s1 is added in Step 1.

Because s1 = t1, we proceed to the next step, which finds the smallest edge extension

s2. Once again s2 = t2, so we proceed to the third step. The least possible edge

extension for G∗ is the extended edge s3. However, we find that s3 < t3, which means

that C cannot be canonical, and there is no need to try further edge extensions.

11.4 FURTHER READING

The gSpan algorithm was described in Yan and Han (2002), along with the notion of

canonical DFS code. A different notion of canonical graphs using canonical adjacency

matrices was described in Huan, Wang, and Prins (2003). Level-wise algorithms to

mine frequent subgraphs appear in Kuramochi and Karypis (2001) and Inokuchi,

Washio, and Motoda (2000). Markov chain Monte Carlo methods to sample a set of

representative graph patterns were proposed in Al Hasan and Zaki (2009). For an

efficient algorithm to mine frequent tree patterns see Zaki (2002).
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11.5 EXERCISES

Q1. Find the canonical DFS code for the graph in Figure 11.12. Try to eliminate some

codes without generating the complete search tree. For example, you can eliminate a

code if you can show that it will have a larger code than some other code.

a c

b a d a

b a

Figure 11.12. Graph for Q1.

Q2. Given the graph in Figure 11.13. Mine all the frequent subgraphs with minsup = 1.

For each frequent subgraph, also show its canonical code.

a

a

a

a

Figure 11.13. Graph for Q2.
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Q3. Consider the graph shown in Figure 11.14. Show all its isomorphic graphs and their

DFS codes, and find the canonical representative (you may omit isomorphic graphs

that can definitely not have canonical codes).

B

A

A

A

A

a
b

a

a

b

Figure 11.14. Graph for Q3.

Q4. Given the graphs in Figure 11.15, separate them into isomorphic groups.

a

G1

a

b

a

G2

a

b b

a

G3

a

b b

b

G4

a

b

a

a

G5

a

b b

a

G6

a

b

b

a

G7

b b a

Figure 11.15. Data for Q4.
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Q5. Given the graph in Figure 11.16. Find the maximum DFS code for the graph, subject

to the constraint that all extensions (whether forward or backward) are done only

from the right most path.

b c c c a

c

a

Figure 11.16. Graph for Q5.

Q6. For an edge labeled undirected graph G= (V,E), define its labeled adjacency matrix

A as follows:

A(i,j )=















L(vi) if i = j

L(vi ,vj ) if (vi ,vj ) ∈E

0 Otherwise

where L(vi) is the label for vertex vi and L(vi ,vj ) is the label for edge (vi ,vj ). In other

words, the labeled adjacency matrix has the node labels on the main diagonal, and it

has the label of the edge (vi ,vj ) in cell A(i,j ). Finally, a 0 in cell A(i,j ) means that

there is no edge between vi and vj .

a

v0

b

v1

b

v2

b

v3

b

v4

a

v5

x y

y
y

y

y z

Figure 11.17. Graph for Q6.

Given a particular permutation of the vertices, a matrix code for the graph is

obtained by concatenating the lower triangular submatrix of A row-by-row. For
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example, one possible matrix corresponding to the default vertex permutation

v0v1v2v3v4v5 for the graph in Figure 11.17 is given as

a

x b

0 y b

0 y y b

0 0 y y b

0 0 0 0 z a

The code for the matrix above is axb0yb0yyb00yyb0000za. Given the total ordering

on the labels

0 < a < b < x < y < z

find the maximum matrix code for the graph in Figure 11.17. That is, among all

possible vertex permutations and the corresponding matrix codes, you have to choose

the lexicographically largest code.



CHAPTER 12 Pattern and Rule Assessment

In this chapter we discuss how to assess the significance of the mined frequent patterns,

as well as the association rules derived from them. Ideally, the mined patterns and rules

should satisfy desirable properties such as conciseness, novelty, utility, and so on. We

outline several rule and pattern assessment measures that aim to quantify different

properties of the mined results. Typically, the question of whether a pattern or rule

is interesting is to a large extent a subjective one. However, we can certainly try to

eliminate rules and patterns that are not statistically significant. Methods to test for

the statistical significance and to obtain confidence bounds on the test statistic value

are also considered in this chapter.

12.1 RULE AND PATTERN ASSESSMENT MEASURES

Let I be a set of items and T a set of tids, and let D ⊆ T × I be a binary database.

Recall that an association rule is an expression X−→ Y, where X and Y are itemsets,

i.e., X,Y⊆I, and X∩Y=∅. We call X the antecedent of the rule and Y the consequent.

The tidset for an itemset X is the set of all tids that contain X, given as

t(X)=
{

t ∈ T |X is contained in t
}

The support of X is thus sup(X)= |t(X)|. In the discussion that follows we use the short

form XY to denote the union, X∪Y, of the itemsets X and Y.

Given a frequent itemset Z ∈ F , where F is the set of all frequent itemsets, we

can derive different association rules by considering each proper subset of Z as the

antecedent and the remaining items as the consequent, that is, for each Z ∈ F , we can

derive a set of rules of the form X−→Y, where X⊂Z and Y=Z \X.

12.1.1 Rule Assessment Measures

Different rule interestingness measures try to quantify the dependence between the

consequent and antecedent. Below we review some of the common rule assessment

measures, starting with support and confidence.

301
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Table 12.1. Example Dataset

Tid Items

1 ABDE

2 BCE

3 ABDE

4 ABCE

5 ABCDE

6 BCD

Table 12.2. Frequent itemsets with minsup= 3 (relative minimum support 50%)

sup rsup Itemsets

3 0.5 ABD, ABDE, AD, ADE, BCE, BDE, CE, DE

4 0.67 A, C, D, AB, ABE, AE, BC, BD

5 0.83 E, BE

6 1.0 B

Support

The support of the rule is defined as the number of transactions that contain both X

and Y, that is,

sup(X−→Y)= sup(XY)= |t(XY)| (12.1)

The relative support is the fraction of transactions that contain both X and Y, that is,

the empirical joint probability of the items comprising the rule

rsup(X−→Y)= P(XY)= rsup(XY)=
sup(XY)

|D|

Typically we are interested in frequent rules, with sup(X−→ Y)≥minsup, where

minsup is a user-specified minimum support threshold. When minimum support is

specified as a fraction then relative support is implied. Notice that (relative) support is

a symmetric measure because sup(X−→Y)= sup(Y−→X).

Example 12.1. We illustrate the rule assessment measures using the example binary

dataset D in Table 12.1, shown in transactional form. It has six transactions over a

set of five items I = {A,B,C,D,E}. The set of all frequent itemsets with minsup =

3 is listed in Table 12.2. The table shows the support and relative support for

each frequent itemset. The association rule AB −→ DE derived from the itemset

ABDE has support sup(AB −→ DE) = sup(ABDE) = 3, and its relative support is

rsup(AB−→DE)= sup(ABDE)/|D| = 3/6= 0.5.

Confidence

The confidence of a rule is the conditional probability that a transaction contains the

consequent Y given that it contains the antecedent X:

conf(X−→Y)= P(Y|X)=
P(XY)

P (X)
=

rsup(XY)

rsup(X)
=

sup(XY)

sup(X)
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Table 12.3. Rule confidence

Rule conf

A −→ E 1.00

E −→ A 0.80

B −→ E 0.83

E −→ B 1.00

E −→ BC 0.60

BC −→ E 0.75

Typically we are interested in high confidence rules, with conf(X −→ Y) ≥ minconf,

where minconf is a user-specified minimum confidence value. Confidence is not a

symmetric measure because by definition it is conditional on the antecedent.

Example 12.2. Table 12.3 shows some example association rules along with their

confidence generated from the example dataset in Table 12.1. For instance, the

rule A −→ E has confidence sup(AE)/sup(A) = 4/4 = 1.0. To see the asymmetry

of confidence, observe that the rule E −→ A has confidence sup(AE)/sup(E) =

4/5= 0.8.

Care must be exercised in interpreting the goodness of a rule. For instance, the

rule E−→BC has confidence P(BC|E)= 0.60, that is, given E we have a probability

of 60% of finding BC. However, the unconditional probability of BC is P(BC) =

4/6= 0.67, which means that E, in fact, has a deleterious effect on BC.

Lift

Lift is defined as the ratio of the observed joint probability of X and Y to the expected

joint probability if they were statistically independent, that is,

lift(X−→Y)=
P(XY)

P (X) ·P(Y)
=

rsup(XY)

rsup(X) · rsup(Y)
=

conf(X−→Y)

rsup(Y)

One common use of lift is to measure the surprise of a rule. A lift value close to 1 means

that the support of a rule is expected considering the supports of its components. We

usually look for values that are much larger (i.e., above expectation) or smaller than 1

(i.e., below expectation).

Notice that lift is a symmetric measure, and it is always larger than or equal to the

confidence because it is the confidence divided by the consequent’s probability. Lift

is also not downward closed, that is, assuming that X′ ⊂ X and Y′ ⊂ Y, it can happen

that lift(X′ −→Y′) may be higher than lift(X−→Y). Lift can be susceptible to noise in

small datasets, as rare or infrequent itemsets that occur only a few times can have very

high lift values.

Example 12.3. Table 12.4 shows three rules and their lift values, derived from the

itemset ABCE, which has support sup(ABCE) = 2 in our example database in

Table 12.1.
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Table 12.4. Rule lift

Rule lift

AE −→ BC 0.75

CE −→ AB 1.00

BE −→ AC 1.20

The lift for the rule AE−→BC is given as

lift(AE−→BC)=
rsup(ABCE)

rsup(AE) · rsup(BC)
=

2/6

4/6× 4/6
= 6/8= 0.75

Since the lift value is less than 1, the observed rule support is less than the expected

support. On the other hand, the rule BE−→AC has lift

lift(BE−→AC)=
2/6

2/6× 5/6
= 6/5= 1.2

indicating that it occurs more than expected. Finally, the rule CE −→ AB has lift

equal to 1.0, which means that the observed support and the expected support match.

Example 12.4. It is interesting to compare confidence and lift. Consider the three

rules shown in Table 12.5 as well as their relative support, confidence, and lift values.

Comparing the first two rules, we can see that despite having lift greater than 1,

they provide different information. Whereas E −→ AC is a weak rule (conf = 0.4),

E −→ AB is not only stronger in terms of confidence, but it also has more support.

Comparing the second and third rules, we can see that although B −→ E has lift

equal to 1.0, meaning that B and E are independent events, its confidence is higher

and so is its support. This example underscores the point that whenever we analyze

association rules, we should evaluate them using multiple interestingness measures.

Leverage

Leverage measures the difference between the observed and expected joint probability

of XY assuming that X and Y are independent

leverage(X−→Y)= P(XY)−P(X) ·P(Y)= rsup(XY)− rsup(X) · rsup(Y)

Leverage gives an “absolute” measure of how surprising a rule is and it should be used

together with lift. Like lift it is symmetric.

Example 12.5. Consider the rules shown in Table 12.6, which are based on the

example dataset in Table 12.1. The leverage of the rule ACD−→E is

leverage(ACD−→E)= P(ACDE)−P(ACD) ·P(E)= 1/6− 1/6× 5/6= 0.03

Similarly, we can calculate the leverage for other rules. The first two rules have

the same lift; however, the leverage of the first rule is half that of the second rule,

mainly due to the higher support of ACE. Thus, considering lift in isolation may be
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Table 12.5. Comparing support, confidence, and lift

Rule rsup conf lift

E −→ AC 0.33 0.40 1.20

E −→ AB 0.67 0.80 1.20

B −→ E 0.83 0.83 1.00

Table 12.6. Rule leverage

Rule rsup lift leverage

ACD −→ E 0.17 1.20 0.03

AC −→ E 0.33 1.20 0.06

AB −→ D 0.50 1.12 0.06

A −→ E 0.67 1.20 0.11

misleading because rules with different support may have the same lift. On the other

hand, the second and third rules have different lift but the same leverage. Finally, we

emphasize the need to consider leverage together with other metrics by comparing

the first, second, and fourth rules, which, despite having the same lift, have different

leverage values. In fact, the fourth rule A−→E may be preferable over the first two

because it is simpler and has higher leverage.

Jaccard

The Jaccard coefficient measures the similarity between two sets. When applied as a

rule assessment measure it computes the similarity between the tidsets of X and Y:

jaccard(X−→Y)=
|t(X)∩ t(Y)|

|t(X)∪ t(Y)|

=
sup(XY)

sup(X)+ sup(Y)− sup(XY)

=
P(XY)

P (X)+P(Y)−P(XY)

Jaccard is a symmetric measure.

Example 12.6. Consider the three rules and their Jaccard values shown in Table 12.7.

For example, we have

jaccard(A−→C)=
sup(AC)

sup(A)+ sup(C)− sup(AC)
=

2

4+ 4− 2
= 2/6= 0.33

Conviction

All of the rule assessment measures we considered above use only the joint probability

of X and Y. Define ¬X to be the event that X is not contained in a transaction,
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Table 12.7. Jaccard coefficient

Rule rsup lift jaccard

A −→ C 0.33 0.75 0.33

A −→ E 0.67 1.20 0.80

A −→ B 0.67 1.00 0.67

that is, X 6⊆ t ∈ T , and likewise for ¬Y. There are, in general, four possible events

depending on the occurrence or non-occurrence of the itemsets X and Y as depicted in

the contingency table shown in Table 12.8.

Conviction measures the expected error of the rule, that is, how often X occurs in a

transaction where Y does not. It is thus a measure of the strength of a rule with respect

to the complement of the consequent, defined as

conv(X−→Y)=
P(X) ·P(¬Y)

P (X¬Y)
=

1

lift(X−→¬Y)

If the joint probability of X¬Y is less than that expected under independence of X and

¬Y, then conviction is high, and vice versa. It is an asymmetric measure.

From Table 12.8 we observe that P(X) = P(XY)+ P(X¬Y), which implies that

P(X¬Y)= P(X)−P(XY). Further, P(¬Y)= 1−P(Y). We thus have

conv(X−→Y)=
P(X) ·P(¬Y)

P (X)−P(XY)
=

P(¬Y)

1−P(XY)/P (X)
=

1− rsup(Y)

1− conf(X−→Y)

We conclude that conviction is infinite if confidence is one. If X and Y are independent,

then conviction is 1.

Example 12.7. For the rule A−→DE, we have

conv(A−→DE)=
1− rsup(DE)

1− conf(A)
= 2.0

Table 12.9 shows this and some other rules, along with their conviction, support,

confidence, and lift values.

Odds Ratio

The odds ratio utilizes all four entries from the contingency table shown in Table 12.8.

Let us divide the dataset into two groups of transactions – those that contain X and

those that do not contain X. Define the odds of Y in these two groups as follows:

odds(Y|X)=
P(XY)/P (X)

P (X¬Y)/P (X)
=

P(XY)

P (X¬Y)

odds(Y|¬X)=
P(¬XY)/P (¬X)

P (¬X¬Y)/P (¬X)
=

P(¬XY)

P (¬X¬Y)
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Table 12.8. Contingency table for X and Y

Y ¬Y

X sup(XY) sup(X¬Y) sup(X)

¬X sup(¬XY) sup(¬X¬Y) sup(¬X)

sup(Y) sup(¬Y) |D|

Table 12.9. Rule conviction

Rule rsup conf lift conv

A −→ DE 0.50 0.75 1.50 2.00

DE −→ A 0.50 1.00 1.50 ∞

E −→ C 0.50 0.60 0.90 0.83

C −→ E 0.50 0.75 0.90 0.68

The odds ratio is then defined as the ratio of these two odds:

oddsratio(X−→Y)=
odds(Y|X)

odds(Y|¬X)
=

P(XY) ·P(¬X¬Y)

P (X¬Y) ·P(¬XY)

=
sup(XY) · sup(¬X¬Y)

sup(X¬Y) · sup(¬XY)

The odds ratio is a symmetric measure, and if X and Y are independent, then it has

value 1. Thus, values close to 1 may indicate that there is little dependence between X

and Y. Odds ratios greater than 1 imply higher odds of Y occurring in the presence of

X as opposed to its complement ¬X, whereas odds smaller than one imply higher odds

of Y occurring with ¬X.

Example 12.8. Let us compare the odds ratio for two rules, C −→ A and D −→ A,

using the example data in Table 12.1. The contingency tables for A and C, and for A

and D, are given below:

C ¬C

A 2 2

¬A 2 0

D ¬D

A 3 1

¬A 1 1

The odds ratio values for the two rules are given as

oddsratio(C−→A)=
sup(AC) · sup(¬A¬C)

sup(A¬C) · sup(¬AC)
=

2× 0

2× 2
= 0

oddsratio(D−→A)=
sup(AD) · sup(¬A¬D)

sup(A¬D) · sup(¬AD)
=

3× 1

1× 1
= 3

Thus, D−→A is a stronger rule than C−→A, which is also indicated by looking at

other measures like lift and confidence:

conf(C−→A)= 2/4= 0.5 conf(D−→A)= 3/4= 0.75
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lift(C−→A)=
2/6

4/6× 4/6
= 0.75 lift(D−→A)=

3/6

4/6× 4/6
= 1.125

C−→A has less confidence and lift than D−→A.

Example 12.9. We apply the different rule assessment measures on the Iris dataset,

which has n = 150 examples, over one categorical attribute (class), and four

numeric attributes (sepal length, sepal width, petal length, and petal width).

To generate association rules we first discretize the numeric attributes as shown in

Table 12.10. In particular, we want to determine representative class-specific rules

that characterize each of the three Iris classes: iris setosa, iris virginica and

iris versicolor, that is, we generate rules of the form X −→ y, where X is an

itemset over the discretized numeric attributes, and y is a single item representing

one of the Iris classes.

We start by generating all class-specific association rules using minsup = 10

and a minimum lift value of 0.1, which results in a total of 79 rules. Figure 12.1a

plots the relative support and confidence of these 79 rules, with the three classes

represented by different symbols. To look for the most surprising rules, we also plot

in Figure 12.1b the lift and conviction value for the same 79 rules. For each class we

select the most specific (i.e., with maximal antecedent) rule with the highest relative

support and then confidence, and also those with the highest conviction and then

lift. The selected rules are listed in Table 12.11 and Table 12.12, respectively. They

are also highlighted in Figure 12.1 (as larger white symbols). Compared to the top

rules for support and confidence, we observe that the best rule for c1 is the same, but

the rules for c2 and c3 are not the same, suggesting a trade-off between support and

novelty among these rules.

Table 12.10. Iris dataset discretization and labels employed

Attribute Range or value Label

Sepal length

4.30–5.55 sl1

5.55–6.15 sl2

6.15–7.90 sl3

Sepal width

2.00–2.95 sw1

2.95–3.35 sw2

3.35–4.40 sw3

Petal length

1.00–2.45 pl1

2.45–4.75 pl2

4.75–6.90 pl3

Petal width

0.10–0.80 pw1

0.80–1.75 pw2

1.75–2.50 pw3

Class

Iris-setosa c1

Iris-versicolor c2

Iris-virginica c3



12.1 Rule and Pattern Assessment Measures 309

0

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4

rsup

conf

bCbCbCbCbCbCbCbCbCbCbCbCbCbCbCbCbCbCbC
bC

bC bC

bC

rSrSrSrSrSrSrSrS rSrSrSrSrS rSrSrSrSrSrSrS rSrSrSrS

rS
rS

rS rS

rSrS
rS

uTuTuTuTuTuTuTuT uTuTuTuT
uT uT uTuTuTuTuT

uT uT
uT

uT
uT

uT bC Iris-setosa (c1)
rS Iris-versicolor (c2)
uT Iris-virginica (c3)

bC
rS uT

(a) Support vs. confidence

0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.5 1.0 1.5 2.0 2.5 3.0

lift

conv
bCbCbC
bCbCbC

bCbCbC
bCbCbCbC

bCbCbCbCbCbC

bC
bCbC

bC

rSrS

rSrS
rSrSrSrS

rSrS

rSrS

rSrSrSrSrSrSrSrS
rSrSrSrS

rSrSrSrSrSrSrS

uTuT

uTuT
uTuT

uTuT

uTuT

uTuT
uTuTuTuTuTuTuTuTuTuTuTuTuT

bC Iris-setosa (c1)
rS Iris-versicolor (c2)
uT Iris-virginica (c3)

bC

rS

uT

(b) Lift vs. conviction

Figure 12.1. Iris: support vs. confidence, and conviction vs. lift for class-specific rules. The best rule for each

class is shown in white.

Table 12.11. Iris: best class-specific rules according to support and confidence

Rule rsup conf lift conv

{pl1,pw1} −→ c1 0.333 1.00 3.00 33.33

pw2 −→ c2 0.327 0.91 2.72 6.00

pl3 −→ c3 0.327 0.89 2.67 5.24

Table 12.12. Iris: best class-specific rules according to lift and conviction

Rule rsup conf lift conv

{pl1,pw1} −→ c1 0.33 1.00 3.00 33.33

{pl2,pw2} −→ c2 0.29 0.98 2.93 15.00

{sl3,pl3,pw3} −→ c3 0.25 1.00 3.00 24.67

12.1.2 Pattern Assessment Measures

We now turn our focus on measures for pattern assessment.

Support

The most basic measures are support and relative support, giving the number and

fraction of transactions in D that contain the itemset X:

sup(X)= |t(X)| rsup(X)=
sup(X)

|D|
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Lift

The lift of a k-itemset X= {x1,x2, . . . ,xk} in dataset D is defined as

lift(X,D)=
P(X)

∏k

i=1 P(xi)
=

rsup(X)
∏k

i=1 rsup(xi)
(12.2)

that is, the ratio of the observed joint probability of items in X to the expected joint

probability if all the items xi ∈X were independent.

We may further generalize the notion of lift of an itemset X by considering all

the different ways of partitioning it into nonempty and disjoint subsets. For instance,

assume that the set {X1,X2, . . . ,Xq} is a q-partition of X, i.e., a partitioning of X into

q nonempty and disjoint itemsets Xi , such that Xi ∩Xj = ∅ and ∪iXi = X. Define the

generalized lift of X over partitions of size q as follows:

liftq(X)= min
X1,...,Xq

{

P(X)
∏q

i=1 P(Xi)

}

This is, the least value of lift over all q-partitions X. Viewed in this light, lift(X) =

liftk(X), that is, lift is the value obtained from the unique k-partition of X.

Rule-based Measures

Given an itemset X, we can evaluate it using rule assessment measures by considering

all possible rules that can be generated from X. Let 2 be some rule assessment

measure. We generate all possible rules from X of the form X1 −→X2 and X2 −→X1,

where the set {X1,X2} is a 2-partition, or a bipartition, of X. We then compute the

measure 2 for each such rule, and use summary statistics such as the mean, maximum,

and minimum to characterize X. If 2 is a symmetric measure, then 2(X1 −→ X2) =

2(X2 −→ X1), and we have to consider only half of the rules. For example, if 2 is

rule lift, then we can define the average, maximum, and minimum lift values for X as

follows:

AvgLift(X)= avg
X1,X2

{

lift(X1 −→X2)
}

MaxLift(X)= max
X1,X2

{

lift(X1 −→X2)
}

MinLift(X)= min
X1,X2

{

lift(X1 −→X2)
}

We can also do the same for other rule measures such as leverage, confidence, and so

on. In particular, when we use rule lift, then MinLift(X) is identical to the generalized

lift lift2(X) over all 2-partitions of X.

Example 12.10. Consider the itemset X = {pl2,pw2,c2}, whose support in the

discretized Iris dataset is shown in Table 12.13, along with the supports for all of

its subsets. Note that the size of the database is |D| = n= 150.

Using Eq. (12.2), the lift of X is given as

lift(X)=
rsup(X)

rsup(pl2) · rsup(pw2) · rsup(c2)
=

0.293

0.3 · 0.36 · 0.333
= 8.16
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Table 12.13. Support values for {pl2,pw2,c2} and its subsets

Itemset sup rsup

{pl2,pw2,c2} 44 0.293

{pl2,pw2} 45 0.300

{pl2,c2} 44 0.293

{pw2,c2} 49 0.327

{pl2} 45 0.300

{pw2} 54 0.360

{c2} 50 0.333

Table 12.14. Rules generated from itemset {pl2,pw2,c2}

Bipartition Rule lift leverage conf

{

{pl2},{pw2,c2}
} pl2 −→ {pw2,c2} 2.993 0.195 0.978

{pw2,c2} −→ pl2 2.993 0.195 0.898
{

{pw2},{pl2,c2}
} pw2 −→ {pl2,c2} 2.778 0.188 0.815

{pl2,c2} −→ pw2 2.778 0.188 1.000
{

{c2},{pl2,pw2}
} c2 −→ {pl2,pw2} 2.933 0.193 0.880

{pl2,pw2} −→ c2 2.933 0.193 0.978

Table 12.14 shows all the possible rules that can be generated from X, along

with the rule lift and leverage values. Note that because both of these measures are

symmetric, we need to consider only the distinct bipartitions of which there are three,

as shown in the table. The maximum, minimum, and average lift values are as follows:

MaxLift(X)=max{2.993,2.778,2.933}= 2.998

MinLift(X)=min{2.993,2.778,2.933}= 2.778

AvgLift(X)= avg{2.993,2.778,2.933}= 2.901

We may use other measures too. For example, the average leverage of X is given as

AvgLeverage(X)= avg{0.195,0.188,0.193}= 0.192

However, because confidence is not a symmetric measure, we have to consider all

the six rules and their confidence values, as shown in Table 12.14. The average

confidence for X is

AvgConf(X)= avg{0.978,0.898,0.815,1.0,0.88,0.978}= 5.549/6= 0.925

Example 12.11. Consider all frequent itemsets in the discretized Iris dataset from

Example 12.9, using minsup = 1. We analyze the set of all possible rules that can

be generated from these frequent itemsets. Figure 12.2 plots the relative support and

average lift values for all the 306 frequent patterns with size at least 2 (since nontrivial
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Figure 12.2. Iris: support and average lift of patterns assessed.

rules can only be generated from itemsets of size 2 or more). We can see that with

the exception of low support itemsets, the average lift value is bounded above by 3.0.

From among these we may select those patterns with the highest support for further

analysis. For instance, the itemset X={pl1,pw1,c1} is a maximal itemset with support

rsup(X) = 0.33, all of whose subsets also have support rsup = 0.33. Thus, all of the

rules that can be derived from it have a lift of 3.0, and the minimum lift of X is 3.0.

12.1.3 Comparing Multiple Rules and Patterns

We now turn our attention to comparing different rules and patterns. In general, the

number of frequent itemsets and association rules can be very large and many of them

may not be very relevant. We highlight cases when certain patterns and rules can be

pruned, as the information contained in them may be subsumed by other more relevant

ones.

Comparing Itemsets

When comparing multiple itemsets we may choose to focus on the maximal itemsets

that satisfy some property, or we may consider closed itemsets that capture all of

the support information. We consider these and other measures in the following

paragraphs.

Maximal Itemsets An frequent itemset X is maximal if all of its supersets are not

frequent, that is, X is maximal iff

sup(X)≥minsup, and for all Y⊃X,sup(Y) < minsup
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Table 12.15. Iris: maximal patterns according to average lift

Pattern Avg. lift

{sl1,sw2,pl1,pw1,c1} 2.90

{sl1,sw3,pl1,pw1,c1} 2.86

{sl2,sw1,pl2,pw2,c2} 2.83

{sl3,sw2,pl3,pw3,c3} 2.88

{sw1,pl3,pw3,c3} 2.52

Given a collection of frequent itemsets, we may choose to retain only the maximal

ones, especially among those that already satisfy some other constraints on pattern

assessment measures like lift or leverage.

Example 12.12. Consider the discretized Iris dataset from Example 12.9. To gain

insights into the maximal itemsets that pertain to each of the Iris classes, we focus our

attention on the class-specific itemsets, that is, those itemsets X that contain a class

as one of the items. From the itemsets plotted in Figure 12.2, using minsup(X) ≥ 15

(which corresponds to a relative support of 10%) and retaining only those itemsets

with an average lift value of at least 2.5, we retain 37 class-specific itemsets. Among

these, the maximal class-specific itemsets are shown in Table 12.15, which highlight

the features that characterize each of the three classes. For instance, for class c1

(Iris-setosa), the essential items are sl1,pl1,pw1 and either sw2 or sw3. Looking at

the range values in Table 12.10, we conclude that Iris-setosa class is characterized

by sepal-length in the range sl1 = [4.30,5.55], petal-length in the range pl1 =

[1,2.45], and so on. A similar interpretation can be carried out for the other two Iris

classes.

Closed Itemsets and Minimal Generators An itemset X is closed if all of its supersets

have strictly less support, that is,

sup(X) > sup(Y), for all Y⊃X

An itemset X is a minimal generator if all its subsets have strictly higher support,

that is,

sup(X) < sup(Y), for all Y⊂X

If an itemset X is not a minimal generator, then it implies that it has some redundant

items, that is, we can find some subset Y ⊂ X, which can be replaced with an even

smaller subset W⊂ Y without changing the support of X, that is, there exists a W⊂ Y,

such that

sup(X)= sup(Y∪ (X \Y))= sup(W∪ (X \Y))

One can show that all subsets of a minimal generator must themselves be minimal

generators.
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Table 12.16. Closed itemsets and minimal generators

sup Closed Itemset Minimal Generators

3 ABDE AD, DE

3 BCE CE

4 ABE A

4 BC C

4 BD D

5 BE E

6 B B

Example 12.13. Consider the dataset in Table 12.1 and the set of frequent itemsets

with minsup = 3 as shown in Table 12.2. There are only two maximal frequent

itemsets, namely ABDE and BCE, which capture essential information about

whether another itemset is frequent or not: an itemset is frequent only if it is a subset

of one of these two.

Table 12.16 shows the seven closed itemsets and the corresponding minimal

generators. Both of these sets allow one to infer the exact support of any other

frequent itemset. The support of an itemset X is the maximum support among

all closed itemsets that contain it. Alternatively, the support of X is the minimum

support among all minimal generators that are subsets of X. For example, the itemset

AE is a subset of the closed sets ABE and ABDE, and it is a superset of the minimal

generators A, and E; we can observe that

sup(AE)=max{sup(ABE),sup(ABDE)} = 4

sup(AE)=min{sup(A),sup(E)} = 4

Productive Itemsets An itemset X is productive if its relative support is higher

than the expected relative support over all of its bipartitions, assuming they are

independent. More formally, let |X| ≥ 2, and let {X1,X2} be a bipartition of X. We

say that X is productive provided

rsup(X) > rsup(X1)× rsup(X2), for all bipartitions {X1,X2} of X (12.3)

This immediately implies that X is productive if its minimum lift is greater than

one, as

MinLift(X)= min
X1,X2

{

rsup(X)

rsup(X1) · rsup(X2)

}

> 1

In terms of leverage, X is productive if its minimum leverage is above zero because

MinLeverage(X)= min
X1,X2

{

rsup(X)− rsup(X1)× rsup(X2)
}

> 0
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Example 12.14. Considering the frequent itemsets in Table 12.2, the set ABDE is not

productive because there exists a bipartition with lift value of 1. For instance, for its

bipartition {B,ADE} we have

lift(B−→ADE)=
rsup(ABDE)

rsup(B) · rsup(ADE)
=

3/6

6/6 · 3/6
= 1

On the other hand, ADE is productive because it has three distinct bipartitions

and all of them have lift above 1:

lift(A−→DE)=
rsup(ADE)

rsup(A) · rsup(DE)
=

3/6

4/6 · 3/6
= 1.5

lift(D−→AE)=
rsup(ADE)

rsup(D) · rsup(AE)
=

3/6

4/6 · 4/6
= 1.125

lift(E−→AD)=
rsup(ADE)

rsup(E) · rsup(AD)
=

3/6

5/6 · 3/6
= 1.2

Comparing Rules

Given two rules R : X−→ Y and R′ : W−→ Y that have the same consequent, we say

that R is more specific than R′, or equivalently, that R′ is more general than R provided

W⊂X.

Nonredundant Rules We say that a rule R : X −→ Y is redundant provided there

exists a more general rule R′ : W−→ Y that has the same support, that is, W⊂X and

sup(R) = sup(R′). On the other hand, if sup(R) < sup(R′) over all its generalizations

R′, then R is nonredundant.

Improvement and Productive Rules Define the improvement of a rule X −→ Y as

follows:

imp(X−→Y)= conf(X−→Y)−max
W⊂X

{

conf(W−→Y)
}

Improvement quantifies the minimum difference between the confidence of a rule and

any of its generalizations. A rule R : X−→Y is productive if its improvement is greater

than zero, which implies that for all more general rules R′ : W−→Y we have conf(R) >

conf(R′). On the other hand, if there exists a more general rule R′ with conf(R′) ≥

conf(R), then R is unproductive. If a rule is redundant, it is also unproductive because

its improvement is zero.

The smaller the improvement of a rule R : X −→ Y, the more likely it is to be

unproductive. We can generalize this notion to consider rules that have at least some

minimum level of improvement, that is, we may require that imp(X−→Y)≥ t , where

t is a user-specified minimum improvement threshold.
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Example 12.15. Consider the example dataset in Table 12.1, and the set of frequent

itemsets in Table 12.2. Consider rule R : BE −→ C, which has support 3, and

confidence 3/5= 0.60. It has two generalizations, namely

R′1 : E−→C, sup= 3,conf= 3/5= 0.6

R′2 : B−→C, sup= 4,conf= 4/6= 0.67

Thus, BE−→C is redundant w.r.t. E−→C because they have the same support, that

is, sup(BCE)= sup(BC). Further, BE−→C is also unproductive, since imp(BE−→

C)= 0.6−max{0.6,0.67}= −0.07; it has a more general rule, namely R′2, with higher

confidence.

12.2 SIGNIFICANCE TESTING AND CONFIDENCE INTERVALS

We now consider how to assess the statistical significance of patterns and rules, and

how to derive confidence intervals for a given assessment measure.

12.2.1 Fisher Exact Test for Productive Rules

We begin by discussing the Fisher exact test for rule improvement. That is, we directly

test whether the rule R : X −→ Y is productive by comparing its confidence with that

of each of its generalizations R′ : W−→Y, including the default or trivial rule ∅ −→Y.

Let R : X −→ Y be an association rule. Consider its generalization R′ : W −→ Y,

where W = X \Z is the new antecedent formed by removing from X the subset Z ⊆

X. Given an input dataset D, conditional on the fact that W occurs, we can create a

2×2 contingency table between Z and the consequent Y as shown in Table 12.17. The

different cell values are as follows:

a = sup(WZY)= sup(XY) b= sup(WZ¬Y)= sup(X¬Y)

c= sup(W¬ZY) d = sup(W¬Z¬Y)

Here, a denotes the number of transactions that contain both X and Y, b denotes the

number of transactions that contain X but not Y, c denotes the number of transactions

that contain W and Y but not Z, and finally d denotes the number of transactions that

contain W but neither Z nor Y. The marginal counts are given as

row marginals: a+ b= sup(WZ)= sup(X), c+ d = sup(W¬Z)

column marginals: a+ c= sup(WY), b+ d = sup(W¬Y)

where the row marginals give the occurrence frequency of W with and without Z, and

the column marginals specify the occurrence counts of W with and without Y. Finally,

we can observe that the sum of all the cells is simply n= a+b+ c+d = sup(W). Notice

that when Z=X, we have W= ∅, and the contingency table defaults to the one shown

in Table 12.8.

Given a contingency table conditional on W, we are interested in the odds ratio

obtained by comparing the presence and absence of Z, that is,

oddsratio=
a/(a+ b)

b/(a+ b)

/

c/(c+ d)

d/(c+ d)
=

ad

bc
(12.4)



12.2 Significance Testing and Confidence Intervals 317

Table 12.17. Contingency table for Z and Y, conditional on W=X \Z

W Y ¬Y

Z a b a+ b

¬Z c d c+ d

a+ c b+ d n= sup(W)

Recall that the odds ratio measures the odds of X, that is, W and Z, occurring with Y

versus the odds of its subset W, but not Z, occurring with Y. Under the null hypothesis

H0 that Z and Y are independent given W the odds ratio is 1. To see this, note that

under the independence assumption the count in a cell of the contingency table is equal

to the product of the corresponding row and column marginal counts divided by n, that

is, under H0:

a = (a+ b)(a+ c)/n b = (a+ b)(b+ d)/n

c= (c+ d)(a+ c)/n d = (c+ d)(b+ d)/n

Plugging these values in Eq. (12.4), we obtain

oddsratio=
ad

bc
=

(a+ b)(c+ d)(b+ d)(a+ c)

(a+ c)(b+ d)(a+ b)(c+ d)
= 1

The null hypothesis therefore corresponds to H0 : oddsratio = 1, and the alternative

hypothesis is Ha : oddsratio > 1. Under the null hypothesis, if we further assume

that the row and column marginals are fixed, then a uniquely determines the other

three values b, c, and d , and the probability mass function of observing the value a

in the contingency table is given by the hypergeometric distribution. Recall that the

hypergeometric distribution gives the probability of choosing s successes in t trails if

we sample without replacement from a finite population of size T that has S successes

in total, given as

P(s| t,S,T)=

(

S

s

)

·

(

T−S

t − s

)/(

T

t

)

In our context, we take the occurrence of Z as a success. The population size is T =

sup(W)= n because we assume that W always occurs, and the total number of successes

is the support of Z given W, that is, S = a+ b. In t = a + c trials, the hypergeometric

distribution gives the probability of s = a successes:

P
(

a
∣

∣ (a+ c),(a+ b),n
)

=

(

a+b

a

)

·
(

n−(a+b)

(a+c)−a

)

(

n

a+c

) =

(

a+b

a

)

·
(

c+d

c

)

(

n

a+c

)

=
(a+ b)! (c+ d)!

a! b! c! d!

/

n!

(a+ c)! (n− (a+ c))!

=
(a+ b)! (c+ d)! (a+ c)! (b+ d)!

n! a! b! c! d!
(12.5)
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Table 12.18. Contingency table: increase a by i

W Y ¬Y

Z a+ i b− i a+ b

¬Z c− i d+ i c+ d

a+ c b+ d n= sup(W)

Our aim is to contrast the null hypothesis H0 that oddsratio = 1 with the

alternative hypothesis Ha that oddsratio > 1. Because a determines the rest of the

cells under fixed row and column marginals, we can see from Eq. (12.4) that the larger

the a the larger the odds ratio, and consequently the greater the evidence for Ha. We

can obtain the p-value for a contingency table as extreme as that in Table 12.17 by

summing Eq. (12.5) over all possible values a or larger:

p-value(a)=

min(b,c)
∑

i=0

P(a+ i | (a+ c),(a+ b),n)

=

min(b,c)
∑

i=0

(a+ b)! (c+ d)! (a+ c)! (b+ d)!

n! (a+ i)! (b− i)! (c− i)! (d + i)!

which follows from the fact that when we increase the count of a by i, then because the

row and column marginals are fixed, b and c must decrease by i, and d must increase

by i, as shown in Table 12.18. The lower the p-value the stronger the evidence that

the odds ratio is greater than one, and thus, we may reject the null hypothesis H0 if

p-value≤ α, where α is the significance threshold (e.g., α= 0.01). This test is known as

the Fisher Exact Test.

In summary, to check whether a rule R : X−→ Y is productive, we must compute

p-value(a) = p-value(sup(XY)) of the contingency tables obtained from each of its

generalizations R′ : W −→ Y, where W = X \ Z, for Z ⊆ X. If p-value(sup(XY)) >

α for any of these comparisons, then we can reject the rule R : X −→ Y as

nonproductive. On the other hand, if p-value(sup(XY))≤ α for all the generalizations,

then R is productive. However, note that if |X| = k, then there are 2k − 1 possible

generalizations; to avoid this exponential complexity for large antecedents, we

typically restrict our attention to only the immediate generalizations of the form

R′ : X \ z −→ Y, where z ∈ X is one of the attribute values in the antecedent.

However, we do include the trivial rule ∅ −→ Y because the conditional probability

P(Y|X) = conf(X −→ Y) should also be higher than the prior probability P(Y) =

conf(∅ −→Y).

Example 12.16. Consider the rule R : pw2 −→ c2 obtained from the discretized

Iris dataset. To test if it is productive, because there is only a single item in the

antecedent, we compare it only with the default rule ∅ −→ c2. Using Table 12.17,

the various cell values are

a = sup(pw2,c2)= 49 b= sup(pw2,¬c2)= 5

c= sup(¬pw2,c2)= 1 d = sup(¬pw2,¬c2)= 95
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with the contingency table given as

c2 ¬c2

pw2 49 5 54

¬pw2 1 95 96

50 100 150

Thus the p-value is given as

p-value=

min(b,c)
∑

i=0

P(a+ i | (a+ c),(a+ b),n)

= P(49 | 50,54,150)+P(50 | 50,54,150)

=

(

54

49

)

·

(

96

95

)/(

150

50

)

+

(

54

50

)

·

(

96

96

)/(

150

50

)

= 1.51× 10−32+ 1.57× 10−35= 1.51× 10−32

Since the p-value is extremely small, we can safely reject the null hypothesis that the

odds ratio is 1. Instead, there is a strong relationship between X = pw2 and Y = c2,

and we conclude that R : pw2 −→ c2 is a productive rule.

Example 12.17. Consider another rule {sw1,pw2} −→ c2, with X = {sw1,pw2} and

Y= c2. Consider its three generalizations, and the corresponding contingency tables

and p-values:

R′1 : pw2 −→ c2

Z= {sw1}

W=X \Z= {pw2}

p-value= 0.84

W= pw2 c2 ¬c2

sw1 34 4 38

¬sw1 15 1 16

49 5 54

R′2 : sw1 −→ c2

Z= {pw2}

W=X \Z= {sw1}

p-value= 1.39× 10−11

W= sw1 c2 ¬c2

pw2 34 4 38

¬pw2 0 19 19

34 23 57

R′3 : ∅ −→ c2

Z= {sw1,pw2}

W=X \Z= ∅

p-value= 3.55× 10−17

W= ∅ c2 ¬c2

{sw1,pw2} 34 4 38

¬{sw1,pw2} 16 96 112

50 100 150
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We can see that whereas the p-value with respect to R′2 and R′3 is small, for R′1 we

have p-value= 0.84, which is too high and thus we cannot reject the null hypothesis.

We conclude that R : {sw1,pw2} −→ c2 is not productive. In fact, its generalization R′1
is the one that is productive, as shown in Example 12.16.

Multiple Hypothesis Testing

Given an input dataset D, there can be an exponentially large number of rules

that need to be tested to check whether they are productive or not. We thus run

into the multiple hypothesis testing problem, that is, just by the sheer number of

hypothesis tests some unproductive rules will pass the p-value ≤ α threshold by

random chance. A strategy for overcoming this problem is to use the Bonferroni

correction of the significance level that explicitly takes into account the number of

experiments performed during the hypothesis testing process. Instead of using the

given α threshold, we should use an adjusted threshold α′ = α

#r
, where #r is the number

of rules to be tested or its estimate. This correction ensures that the rule false discovery

rate is bounded by α, where a false discovery is to claim that a rule is productive when

it is not.

Example 12.18. Consider the discretized Iris dataset, using the discretization shown

in Table 12.10. Let us focus only on class-specific rules, that is, rules of the form

X→ ci . Since each example can take on only one value at a time for a given attribute,

the maximum antecedent length is four, and the maximum number of class-specific

rules that can be generated from the Iris dataset is given as

#r = c×

(

4
∑

i=1

(

4

i

)

bi

)

where c is the number of Iris classes, and b is the maximum number of bins for any

other attribute. The summation is over the antecedent size i, that is, the number of

attributes to be used in the antecedent. Finally, there are bi possible combinations for

the chosen set of i attributes. Because there are three Iris classes, and because each

attribute has three bins, we have c= 3 and b = 3, and the number of possible rules is

#r = 3×

(

4
∑

i=1

(

4

i

)

3i

)

= 3(12+ 54+ 108+ 81)= 3 · 255= 765

Thus, if the input significance level is α = 0.01, then the adjusted significance

level using the Bonferroni correction is α′ = α/#r = 0.01/765 = 1.31× 10−5. The

rule pw2 −→ c2 in Example 12.16 has p-value = 1.51× 10−32, and thus it remains

productive even when we use α′.

12.2.2 Permutation Test for Significance

A permutation or randomization test determines the distribution of a given test statistic

2 by randomly modifying the observed data several times to obtain a random sample
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of datasets, which can in turn be used for significance testing. In the context of pattern

assessment, given an input dataset D, we first generate k randomly permuted datasets

D1,D2, . . . ,Dk . We can then perform different types of significance tests. For instance,

given a pattern or rule we can check whether it is statistically significant by first

computing the empirical probability mass function (EPMF) for the test statistic 2 by

computing its value θi in the ith randomized dataset Di for all i ∈ [1,k]. From these

values we can generate the empirical cumulative distribution function

F̂ (x)= P̂ (2≤ x)=
1

k

k
∑

i=1

I(θi ≤ x)

where I is an indicator variable that takes on the value 1 when its argument is true,

and is 0 otherwise. Let θ be the value of the test statistic in the input dataset D, then

p-value(θ), that is, the probability of obtaining a value as high as θ by random chance

can be computed as

p-value(θ)= 1−F(θ)

Given a significance level α, if p-value(θ) > α, then we accept the null hypothesis that

the pattern/rule is not statistically significant. On the other hand, if p-value(θ) ≤ α,

then we can reject the null hypothesis and conclude that the pattern is significant

because a value as high as θ is highly improbable. The permutation test approach can

also be used to assess an entire set of rules or patterns. For instance, we may test a

collection of frequent itemsets by comparing the number of frequent itemsets in D

with the distribution of the number of frequent itemsets empirically derived from the

permuted datasets Di . We may also do this analysis as a function of minsup, and so on.

Swap Randomization

A key question in generating the permuted datasets Di is which characteristics of the

input dataset D we should preserve. The swap randomization approach maintains as

invariant the column and row margins for a given dataset, that is, the permuted datasets

preserve the support of each item (the column margin) as well as the number of items in

each transaction (the row margin). Given a dataset D, we randomly create k datasets

that have the same row and column margins. We then mine frequent patterns in D

and check whether the pattern statistics are different from those obtained using the

randomized datasets. If the differences are not significant, we may conclude that the

patterns arise solely from the row and column margins, and not from any interesting

properties of the data.

Given a binary matrix D ⊆ T × I, the swap randomization method exchanges

two nonzero cells of the matrix via a swap that leaves the row and column margins

unchanged. To illustrate how swap works, consider any two transactions ta, tb ∈ T

and any two items ia, ib ∈ I such that (ta, ia),(tb, ib) ∈ D and (ta, ib),(tb, ia) 6∈ D, which

corresponds to the 2× 2 submatrix in D, given as

D(ta, ia; tb, ib)=

(

1 0

0 1

)
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ALGORITHM 12.1. Generate Swap Randomized Dataset

SWAPRANDOMIZATION(t , D⊆ T ×I):

while t > 0 do1

Select pairs (ta, ia),(tb, ib) ∈D randomly2

if (ta, ib) 6∈D and (tb, ia) 6∈D then3

D←D \
{

(ta, ia),(tb, ib)
}

∪
{

(ta, ib),(tb, ia)
}

4

t = t − 15

return D6

After a swap operation we obtain the new submatrix

D(ta, ib; tb, ia)=

(

0 1

1 0

)

where we exchange the elements in D so that (ta, ib),(tb, ia) ∈D, and (ta, ia),(tb, ib) 6∈D.

We denote this operation as Swap(ta, ia; tb, ib). Notice that a swap does not affect the

row and column margins, and we can thus generate a permuted dataset with the same

row and column sums as D through a sequence of swaps. Algorithm 12.1 shows the

pseudo-code for generating a swap randomized dataset. The algorithm performs t swap

trials by selecting two pairs (ta, ia), (tb, ib) ∈ D at random; a swap is successful only if

both (ta, ib), (tb, ia) 6∈D.

Example 12.19. Consider the input binary dataset D shown in Table 12.19a, whose

row and column sums are also shown. Table 12.19b shows the resulting dataset after a

single swap operation Swap(1,D;4,C), highlighted by the gray cells. When we apply

another swap, namely Swap(2,C;4,A), we obtain the data in Table 12.19c. We can

observe that the marginal counts remain invariant.

From the input dataset D in Table 12.19a we generated k= 100 swap randomized

datasets, each of which is obtained by performing 150 swaps (the product of all

possible transaction pairs and item pairs, that is,
(

6
2

)

·
(

5
2

)

= 150). Let the test statistic be

the total number of frequent itemsets using minsup= 3. Mining D results in |F | = 19

frequent itemsets. Likewise, mining each of the k = 100 permuted datasets results in

the following empirical PMF for |F |:

P
(

|F | = 19
)

= 0.67 P
(

|F | = 17
)

= 0.33

Because p-value(19) = 0.67, we may conclude that the set of frequent itemsets is

essentially determined by the row and column marginals.

Focusing on a specific itemset, consider ABDE, which is one of the maximal

frequent itemsets in D, with sup(ABDE) = 3. The probability that ABDE is

frequent is 17/100 = 0.17 because it is frequent in 17 of the 100 swapped datasets.

As this probability is not very low, we may conclude that ABDE is not a

statistically significant pattern; it has a relatively high chance of being frequent in

random datasets. Consider another itemset BCD that is not frequent in D because
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sup(BCD)= 2. The empirical PMF for the support of BCD is given as

P(sup = 2)= 0.54 P(sup = 3)= 0.44 P(sup = 4)= 0.02

In a majority of the datasets BCD is infrequent, and if minsup = 4, then

p-value(sup= 4)= 0.02 implies that BCD is highly unlikely to be a frequent pattern.
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Table 12.19. Input data D and swap randomization

Tid
Items

Sum
A B C D E

1 1 1 0 1 1 4

2 0 1 1 0 1 3

3 1 1 0 1 1 4

4 1 1 1 0 1 4

5 1 1 1 1 1 5

6 0 1 1 1 0 3

Sum 4 6 4 4 5

(a) Input binary data D

Tid
Items

Sum
A B C D E

1 1 1 1 0 1 4

2 0 1 1 0 1 3

3 1 1 0 1 1 4

4 1 1 0 1 1 4

5 1 1 1 1 1 5

6 0 1 1 1 0 3

Sum 4 6 4 4 5

(b) Swap(1,D;4,C)

Tid
Items

Sum
A B C D E

1 1 1 1 0 1 4

2 1 1 0 0 1 3

3 1 1 0 1 1 4

4 0 1 1 1 1 4

5 1 1 1 1 1 5

6 0 1 1 1 0 3

Sum 4 6 4 4 5

(c) Swap(2,C;4,A)
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Figure 12.3. Cumulative distribution of the number of frequent itemsets as a function of minimum support.

Example 12.20. We apply the swap randomization approach to the discretized Iris

dataset. Figure 12.3 shows the cumulative distribution of the number of frequent

itemsets in D at various minimum support levels. We choose minsup= 10, for which
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we have F̂ (10)=P(sup < 10)= 0.517.Put differently, P(sup≥ 10)= 1−0.517=0.483,

that is, 48.3% of the itemsets that occur at least once are frequent using minsup= 10.

Define the test statistic to be the relative lift, defined as the relative change in the

lift value of itemset X when comparing the input dataset D and a randomized dataset

Di , that is,

rlift(X,D,Di)=
lift(X,D)− lift(X,Di)

lift(X,D)

For an m-itemset X= {x1, . . . ,xm}, by Eq. (12.2) note that

lift(X,D)= rsup(X,D)
/

m
∏

j=1

rsup(xj ,D)

Because the swap randomization process leaves item supports (the column margins)

intact, and does not change the number of transactions, we have rsup(xj ,D) =

rsup(xj ,Di), and |D| = |Di |. We can thus rewrite the relative lift statistic as

rlift(X,D,Di)=
sup(X,D)− sup(X,Di)

sup(X,D)
= 1−

sup(X,Di)

sup(X,D)

We generate k = 100 randomized datasets and compute the average relative lift

for each of the 140 frequent itemsets of size two or more in the input dataset, as lift

values are not defined for single items. Figure 12.4 shows the cumulative distribution

for average relative lift, which ranges from −0.55 to 0.998. An average relative lift

close to 1 means that the corresponding frequent pattern hardly ever occurs in any

of the randomized datasets. On the other hand, a larger negative average relative

lift value means that the support in randomized datasets is higher than in the input

dataset. Finally, a value close to zero means that the support of the itemset is the

same in both the original and randomized datasets; it is mainly a consequence of the

marginal counts, and thus of little interest.

0
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0.75

1.00

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0

Avg. Relative Lift

F̂

Figure 12.4. Cumulative distribution for average relative lift.
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Figure 12.5. PMF for relative lift for {sl1,pw2}.

Figure 12.4 indicates that 44% of the frequent itemsets have average relative

lift values above 0.8. These patterns are likely to be of interest. The pattern with

the highest lift value of 0.998 is {sl1,sw3,pl1,pw1,c1}. The itemset that has more

or less the same support in the input and randomized datasets is {sl2,c3}; its

average relative lift is −0.002. On the other hand, 5% of the frequent itemsets

have average relative lift below −0.2. These are also of interest because they

indicate more of a dis-association among the items, that is, the itemsets are

more frequent by random chance. An example of such a pattern is {sl1,pw2}.

Figure 12.5 shows the empirical probability mass function for its relative lift values

across the 100 swap randomized datasets. Its average relative lift value is −0.55,

and p-value(−0.2) = 0.069, which indicates a high probability that the itemset is

disassociative.

12.2.3 Bootstrap Sampling for Confidence Interval

Typically the input transaction database D is just a sample from some population, and

it is not enough to claim that a pattern X is frequent in D with support sup(X). What

can we say about the range of possible support values for X? Likewise, for a rule R

with a given lift value in D, what can we say about the range of lift values in different

samples? In general, given a test assessment statistic 2, bootstrap sampling allows one

to infer the confidence interval for the possible values of 2 at a desired confidence

level α.

The main idea is to generate k bootstrap samples from D using sampling with

replacement, that is, assuming |D| = n, each sample Di is obtained by selecting at

random n transactions from D with replacement. Given pattern X or rule R : X−→Y,

we can obtain the value of the test statistic in each of the bootstrap samples; let

θi denote the value in sample Di . From these values we can generate the empirical
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cumulative distribution function for the statistic

F̂ (x)= P̂ (2≤ x)=
1

k

k
∑

i=1

I(θi ≤ x)

where I is an indicator variable that takes on the value 1 when its argument is true, and

0 otherwise. Given a desired confidence level α (e.g., α = 0.95) we can compute the

interval for the test statistic by discarding values from the tail ends of F̂ on both sides

that encompass (1− α)/2 of the probability mass. Formally, let vt denote the critical

value such that F̂ (vt )= t , which can be obtained from quantile function as vt = F̂−1(t).

We then have

P
(

2 ∈ [v(1−α)/2,v(1+α)/2]
)

= F̂
(

(1+α)/2
)

− F̂
(

(1−α)/2
)

= (1+α)/2− (1−α)/2= α

Thus, the α% confidence interval for the chosen test statistic 2 is

[v(1−α)/2,v(1+α)/2]

The pseudo-code for bootstrap sampling for estimating the confidence interval is

shown in Algorithm 12.2.

ALGORITHM 12.2. Bootstrap Resampling Method

BOOTSTRAP-CONFIDENCEINTERVAL(X, α, k, D):

for i ∈ [1,k] do1

Di← sample of size n with replacement from D2

θi← compute test statistic for X on Di3

F̂ (x)= P (2≤ x)= 1
k

∑k

i=1 I(θi ≤ x)4

v(1−α)/2 = F̂−1
(

(1−α)/2
)

5

v(1+α)/2 = F̂−1
(

(1+α)/2
)

6

return [v(1−α)/2,v(1+α)/2]7

Example 12.21. Let the relative support rsup be the test statistic. Consider the

itemset X = {sw1,pl3,pw3,cl3}, which has relative support rsup(X,D) = 0.113 (or

sup(X,D)= 17) in the Iris dataset.

Using k = 100 bootstrap samples, we first compute the relative support of X

in each of the samples (rsup(X,Di)). The empirical probability mass function for

the relative support of X is shown in Figure 12.6 and the corresponding empirical

cumulative distribution is shown in Figure 12.7. Let the confidence level be α = 0.9.

To obtain the confidence interval we have to discard the values that account for 0.05

of the probability mass at both ends of the relative support values. The critical values
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Figure 12.6. Empirical PMF for relative support.
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Figure 12.7. Empirical cumulative distribution for relative support.

at the left and right ends are as follows:

v(1−α)/2 = v0.05 = 0.073

v(1+α)/2 = v0.95 = 0.16

Thus, the 90% confidence interval for the relative support of X is [0.073,0.16], which

corresponds to the interval [11,24] for its absolute support. Note that the relative

support of X in the input dataset is 0.113, which has p-value(0.113)= 0.45, and the

expected relative support value of X is µrsup = 0.115.
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12.3 FURTHER READING
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Kumar, and Srivastava (2002); Geng and Hamilton (2006) and Lallich, Teytaud, and

Prudhomme (2007). Randomization and resampling methods for significance testing

and confidence intervals are described in Megiddo and Srikant (1998) and Gionis et al.

(2007). Statistical testing and validation approaches also appear in Webb (2006) and

Lallich, Teytaud, and Prudhomme (2007).
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12.4 EXERCISES

Q1. Show that if X and Y are independent, then conv(X−→Y)= 1.

Q2. Show that if X and Y are independent then oddsratio(X−→Y)= 1.

Q3. Show that for a frequent itemset X, the value of the relative lift statistic defined in

Example 12.20 lies in the range
[

1−|D|/minsup, 1
]

Q4. Prove that all subsets of a minimal generator must themselves be minimal generators.

Q5. Let D be a binary database spanning one trillion (109) transactions. Because it is

too time consuming to mine it directly, we use Monte Carlo sampling to find the

bounds on the frequency of a given itemset X. We run 200 sampling trials Di (i =

1 . . .200), with each sample of size 100,000, and we obtain the support values for X in

the various samples, as shown in Table 12.20. The table shows the number of samples

where the support of the itemset was a given value. For instance, in 5 samples its

support was 10,000. Answer the following questions:
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Table 12.20. Data for Q5

Support No. of samples

10,000 5

15,000 20

20,000 40

25,000 50

30,000 20

35,000 50

40,000 5

45,000 10

(a) Draw a histogram for the table, and calculate the mean and variance of the

support across the different samples.

(b) Find the lower and upper bound on the support of X at the 95% confidence level.

The support values given should be for the entire database D.

(c) Assume that minsup = 0.25, and let the observed support of X in a sample be

sup(X)= 32500. Set up a hypothesis testing framework to check if the support of

X is significantly higher than the minsup value. What is the p-value?

Q6. Let A and B be two binary attributes. While mining association rules at 30%

minimum support and 60% minimum confidence, the following rule was mined:

A −→ B, with sup = 0.4, and conf = 0.66. Assume that there are a total of 10,000

customers, and that 4000 of them buy both A and B; 2000 buy A but not B, 3500 buy

B but not A, and 500 buy neither A nor B.

Compute the dependence between A and B via the χ2-statistic from the corre-

sponding contingency table. Do you think the discovered association is truly a strong

rule, that is, does A predict B strongly? Set up a hypothesis testing framework, writing

down the null and alternate hypotheses, to answer the above question, at the 95%

confidence level. Here are some values of chi-squared statistic for the 95% confidence

level for various degrees of freedom (df):

df χ2

1 3.84

2 5.99

3 7.82

4 9.49

5 11.07

6 12.59
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CHAPTER 13 Representative-based Clustering

Given a dataset with n points in a d-dimensional space, D = {xi}ni=1, and given the

number of desired clusters k, the goal of representative-based clustering is to partition

the dataset into k groups or clusters, which is called a clustering and is denoted as

C = {C1,C2, . . . ,Ck}. Further, for each cluster Ci there exists a representative point that

summarizes the cluster, a common choice being the mean (also called the centroid) µi

of all points in the cluster, that is,

µi =
1

ni

∑

xj ∈Ci

xj

where ni = |Ci| is the number of points in cluster Ci .

A brute-force or exhaustive algorithm for finding a good clustering is simply to

generate all possible partitions of n points into k clusters, evaluate some optimization

score for each of them, and retain the clustering that yields the best score. The exact

number of ways of partitioning n points into k nonempty and disjoint parts is given by

the Stirling numbers of the second kind, given as

S(n,k)= 1

k!

k
∑

t=0

(−1)t

(

k

t

)

(k− t)n

Informally, each point can be assigned to any one of the k clusters, so there are at

most kn possible clusterings. However, any permutation of the k clusters within a given

clustering yields an equivalent clustering; therefore, there are O(kn/k!) clusterings of n

points into k groups. It is clear that exhaustive enumeration and scoring of all possible

clusterings is not practically feasible. In this chapter we describe two approaches for

representative-based clustering, namely the K-means and expectation-maximization

algorithms.

13.1 K-MEANS ALGORITHM

Given a clustering C ={C1,C2, . . . ,Ck} we need some scoring function that evaluates its

quality or goodness. This sum of squared errors scoring function is defined as

333
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SSE(C)=
k
∑

i=1

∑

xj∈Ci

∥

∥xj −µi

∥

∥

2
(13.1)

The goal is to find the clustering that minimizes the SSE score:

C
∗ = argmin

C

{SSE(C)}

K-means employs a greedy iterative approach to find a clustering that minimizes

the SSE objective [Eq. (13.1)]. As such it can converge to a local optima instead of a

globally optimal clustering.

K-means initializes the cluster means by randomly generating k points in the

data space. This is typically done by generating a value uniformly at random within

the range for each dimension. Each iteration of K-means consists of two steps:

(1) cluster assignment, and (2) centroid update. Given the k cluster means, in the

cluster assignment step, each point xj ∈ D is assigned to the closest mean, which

induces a clustering, with each cluster Ci comprising points that are closer to µi

than any other cluster mean. That is, each point xj is assigned to cluster Cj∗ ,

where

j ∗ = arg
k

min
i=1

{

∥

∥xj −µi

∥

∥

2
}

(13.2)

Given a set of clusters Ci , i = 1, . . . ,k, in the centroid update step, new mean values

are computed for each cluster from the points in Ci . The cluster assignment and

centroid update steps are carried out iteratively until we reach a fixed point or local

minima. Practically speaking, one can assume that K-means has converged if the

centroids do not change from one iteration to the next. For instance, we can stop if
∑k

i=1

∥

∥µt
i −µt−1

i

∥

∥

2 ≤ ǫ, where ǫ > 0 is the convergence threshold, t denotes the current

iteration, and µt
i denotes the mean for cluster Ci in iteration t .

The pseudo-code for K-means is given in Algorithm 13.1. Because the method

starts with a random guess for the initial centroids, K-means is typically run several

times, and the run with the lowest SSE value is chosen to report the final clustering. It

is also worth noting that K-means generates convex-shaped clusters because the region

in the data space corresponding to each cluster can be obtained as the intersection of

half-spaces resulting from hyperplanes that bisect and are normal to the line segments

that join pairs of cluster centroids.

In terms of the computational complexity of K-means, we can see that the cluster

assignment step take O(nkd) time because for each of the n points we have to compute

its distance to each of the k clusters, which takes d operations in d dimensions. The

centroid re-computation step takes O(nd) time because we have to add at total of n

d-dimensional points. Assuming that there are t iterations, the total time for K-means

is given as O(tnkd). In terms of the I/O cost it requires O(t) full database scans, because

we have to read the entire database in each iteration.

Example 13.1. Consider the one-dimensional data shown in Figure 13.1a. Assume

that we want to cluster the data into k = 2 groups. Let the initial centroids be µ1 = 2

and µ2 = 4. In the first iteration, we first compute the clusters, assigning each point
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ALGORITHM 13.1. K-means Algorithm

K-MEANS (D,k,ǫ):

t = 01

Randomly initialize k centroids: µt
1,µ

t
2, . . . ,µ

t
k ∈Rd

2

repeat3

t← t + 14

Cj←∅ for all j = 1, · · · ,k5

// Cluster Assignment Step

foreach xj ∈D do6

j ∗← argmini

{

∥

∥xj −µt
i

∥

∥

2
}

// Assign xj to closest centroid7

Cj∗←Cj∗ ∪{xj}8

// Centroid Update Step

foreach i = 1 to k do9

µt
i← 1

|Ci |
∑

xj∈Ci
xj10

until
∑k

i=1

∥

∥µt
i −µt−1

i

∥

∥

2 ≤ ǫ11

to the closest mean, to obtain

C1 = {2,3} C2 = {4,10,11,12,20,25,30}

We next update the means as follows:

µ1 =
2+ 3

2
= 5

2
= 2.5

µ2 =
4+ 10+ 11+ 12+ 20+25+ 30

7
= 112

7
= 16

The new centroids and clusters after the first iteration are shown in Figure 13.1b.

For the second step, we repeat the cluster assignment and centroid update steps, as

shown in Figure 13.1c, to obtain the new clusters:

C1 = {2,3,4} C2 = {10,11,12,20,25,30}

and the new means:

µ1 =
2+ 3+ 4

4
= 9

3
= 3

µ2 =
10+ 11+ 12+ 20+ 25+ 30

6
= 108

6
= 18

The complete process until convergence is illustrated in Figure 13.1. The final clusters

are given as

C1 = {2,3,4,10,11,12} C2 = {20,25,30}

with representatives µ1 = 7 and µ2 = 25.
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(f) Iteration: t = 5 (converged)

Figure 13.1. K-means in one dimension.

Example 13.2 (K-means in Two Dimensions). In Figure 13.2 we illustrate the

K-means algorithm on the Iris dataset, using the first two principal components as

the two dimensions. Iris has n = 150 points, and we want to find k = 3 clusters,

corresponding to the three types of Irises. A random initialization of the cluster

means yields

µ1 = (−0.98,−1.24)T µ2 = (−2.96,1.16)T µ3 = (−1.69,−0.80)T

as shown in Figure 13.2a. With these initial clusters, K-means takes eight iterations

to converge. Figure 13.2b shows the clusters and their means after one iteration:

µ1 = (1.56,−0.08)T µ2 = (−2.86,0.53)T µ3 = (−1.50,−0.05)T

Finally, Figure 13.2c shows the clusters on convergence. The final means are as

follows:

µ1 = (2.64,0.19)T µ2 = (−2.35,0.27)T µ3 = (−0.66,−0.33)T
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(a) Random initialization: t = 0
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(b) Iteration: t = 1
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(c) Iteration: t = 8 (converged)

Figure 13.2. K-means in two dimensions: Iris principal components dataset.
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Figure 13.2 shows the cluster means as black points, and shows the convex regions

of data space that correspond to each of the three clusters. The dashed lines

(hyperplanes) are the perpendicular bisectors of the line segments joining two cluster

centers. The resulting convex partition of the points comprises the clustering.

Figure 13.2c shows the final three clusters: C1 as circles, C2 as squares, and C3 as

triangles. White points indicate a wrong grouping when compared to the known Iris

types. Thus, we can see that C1 perfectly corresponds to iris-setosa, and the major-

ity of the points in C2 correspond to iris-virginica, and in C3 to iris-versicolor.

For example, three points (white squares) of type iris-versicolor are wrongly

clustered in C2, and 14 points from iris-virginica are wrongly clustered in C3

(white triangles). Of course, because the Iris class label is not used in clustering, it is

reasonable to expect that we will not obtain a perfect clustering.

13.2 KERNEL K-MEANS

In K-means, the separating boundary between clusters is linear. Kernel K-means

allows one to extract nonlinear boundaries between clusters via the use of the kernel

trick outlined in Chapter 5. This way the method can be used to detect nonconvex

clusters.

In kernel K-means, the main idea is to conceptually map a data point xi in input

space to a point φ(xi) in some high-dimensional feature space, via an appropriate

nonlinear mapping φ. However, the kernel trick allows us to carry out the clustering in

feature space purely in terms of the kernel function K(xi,xj ), which can be computed

in input space, but corresponds to a dot (or inner) product φ(xi)
Tφ(xj ) in feature space.

Assume for the moment that all points xi ∈ D have been mapped to their

corresponding images φ(xi) in feature space. Let K =
{

K(xi,xj )
}

i,j=1,...,n
denote the

n× n symmetric kernel matrix, where K(xi,xj ) = φ(xi)
Tφ(xj ). Let {C1, . . . ,Ck} specify

the partitioning of the n points into k clusters, and let the corresponding cluster means

in feature space be given as {µφ

1 , . . . ,µ
φ

k }, where

µ
φ

i =
1

ni

∑

xj ∈Ci

φ(xj)

is the mean of cluster Ci in feature space, with ni = |Ci|.
In feature space, the kernel K-means sum of squared errors objective can be

written as

min
C

SSE(C)=
k
∑

i=1

∑

xj∈Ci

∥

∥

∥
φ(xj)−µ

φ

i

∥

∥

∥

2

Expanding the kernel SSE objective in terms of the kernel function, we get

SSE(C)=
k
∑

i=1

∑

xj ∈Ci

∥

∥

∥
φ(xj )−µ

φ

i

∥

∥

∥

2

=
k
∑

i=1

∑

xj ∈Ci

∥

∥φ(xj )
∥

∥

2− 2φ(xj)
Tµ

φ

i +
∥

∥

∥
µ

φ

i

∥

∥

∥

2
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=
k
∑

i=1

(

(

∑

xj∈Ci

∥

∥φ(xj )
∥

∥

2
)

− 2ni

( 1

ni

∑

xj∈Ci

φ(xj )
)T

µ
φ

i +ni

∥

∥

∥
µ

φ

i

∥

∥

∥

2
)

=
(

k
∑

i=1

∑

xj∈Ci

φ(xj )
Tφ(xj )

)

−
(

k
∑

i=1

ni

∥

∥

∥
µ

φ

i

∥

∥

∥

2)

=
k
∑

i=1

∑

xj∈Ci

K(xj ,xj )−
k
∑

i=1

1

ni

∑

xa∈Ci

∑

xb∈Ci

K(xa,xb)

=
n
∑

j=1

K(xj ,xj )−
k
∑

i=1

1

ni

∑

xa∈Ci

∑

xb∈Ci

K(xa,xb) (13.3)

Thus, the kernel K-means SSE objective function can be expressed purely in terms of

the kernel function. Like K-means, to minimize the SSE objective we adopt a greedy

iterative approach. The basic idea is to assign each point to the closest mean in feature

space, resulting in a new clustering, which in turn can be used obtain new estimates for

the cluster means. However, the main difficulty is that we cannot explicitly compute

the mean of each cluster in feature space. Fortunately, explicitly obtaining the cluster

means is not required; all operations can be carried out in terms of the kernel function

K(xi,xj )= φ(xi)
Tφ(xj ).

Consider the distance of a point φ(xj ) to the mean µ
φ

i in feature space, which can

be computed as

∥

∥

∥
φ(xj )−µ

φ

i

∥

∥

∥

2

=
∥

∥φ(xj )
∥

∥

2− 2φ(xj)
Tµ

φ

i +
∥

∥

∥
µ

φ

i

∥

∥

∥

2

= φ(xj )
Tφ(xj )−

2

ni

∑

xa∈Ci

φ(xj )
Tφ(xa)+

1

n2
i

∑

xa∈Ci

∑

xb∈Ci

φ(xa)
Tφ(xb)

=K(xj ,xj )−
2

ni

∑

xa∈Ci

K(xa,xj )+
1

n2
i

∑

xa∈Ci

∑

xb∈Ci

K(xa,xb) (13.4)

Thus, the distance of a point to a cluster mean in feature space can be computed using

only kernel operations. In the cluster assignment step of kernel K-means, we assign a

point to the closest cluster mean as follows:

C∗(xj)= argmin
i

{

∥

∥

∥
φ(xj )−µ

φ

i

∥

∥

∥

2
}

= argmin
i

{

K(xj ,xj )−
2

ni

∑

xa∈Ci

K(xa,xj )+
1

n2
i

∑

xa∈Ci

∑

xb∈Ci

K(xa,xb)

}

= argmin
i

{

1

n2
i

∑

xa∈Ci

∑

xb∈Ci

K(xa,xb)−
2

ni

∑

xa∈Ci

K(xa,xj )

}

(13.5)
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where we drop the K(xj ,xj ) term because it remains the same for all k clusters and

does not impact the cluster assignment decision. Also note that the first term is simply

the average pairwise kernel value for cluster Ci and is independent of the point xj . It is

in fact the squared norm of the cluster mean in feature space. The second term is twice

the average kernel value for points in Ci with respect to xj .

Algorithm 13.2 shows the pseudo-code for the kernel K-means method. It starts

from an initial random partitioning of the points into k clusters. It then iteratively

updates the cluster assignments by reassigning each point to the closest mean in

feature space via Eq. (13.5). To facilitate the distance computation, it first computes

the average kernel value, that is, the squared norm of the cluster mean, for each

cluster (for loop in line 5). Next, it computes the average kernel value for each point

xj with points in cluster Ci (for loop in line 7). The main cluster assignment step uses

these values to compute the distance of xj from each of the clusters Ci and assigns xj

to the closest mean. This reassignment information is used to re-partition the points

into a new set of clusters. That is, all points xj that are closer to the mean for Ci

make up the new cluster for the next iteration. This iterative process is repeated until

convergence.

For convergence testing, we check if there is any change in the cluster assignments

of the points. The number of points that do not change clusters is given as the

sum
∑k

i=1 |Ct
i ∩ Ct−1

i |, where t specifies the current iteration. The fraction of points

ALGORITHM 13.2. Kernel K-means Algorithm

KERNEL-KMEANS(K,k,ǫ):

t← 01

C t←{Ct
1, . . . ,Ct

k}// Randomly partition points into k clusters2

repeat3

t← t + 14

foreach Ci ∈ C t−1 do // Compute squared norm of cluster means5

sqnormi← 1

n2
i

∑

xa∈Ci

∑

xb∈Ci
K(xa,xb)6

foreach xj ∈D do // Average kernel value for xj and Ci7

foreach Ci ∈ C t−1 do8

avgji← 1
ni

∑

xa∈Ci
K(xa,xj )9

// Find closest cluster for each point

foreach xj ∈D do10

foreach Ci ∈ C t−1 do11

d(xj ,Ci)← sqnormi − 2 · avgji12

j ∗← argmini

{

d(xj ,Ci)
}

13

Ct
j∗←Ct

j∗ ∪{xj } // Cluster reassignment14

C t←
{

Ct
1, . . . ,Ct

k

}

15

until 1− 1
n

∑k

i=1

∣

∣Ct
i ∩Ct−1

i

∣

∣≤ ǫ16
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(b) Gaussian kernel: t = 4 Iterations

Figure 13.3. Kernel K-means: linear versus Gaussian kernel.

reassigned to a different cluster in the current iteration is given as

n−
∑k

i=1 |Ct
i ∩Ct−1

i |
n

= 1− 1

n

k
∑

i=1

|Ct
i ∩Ct−1

i |

Kernel K-means stops when the fraction of points with new cluster assignments falls

below some threshold ǫ ≥ 0. For example, one can iterate until no points change

clusters.

Computational Complexity

Computing the average kernel value for each cluster Ci takes time O(n2) across all

clusters. Computing the average kernel value of each point with respect to each of the

k clusters also takes O(n2) time. Finally, computing the closest mean for each point and

cluster reassignment takes O(kn) time. The total computational complexity of kernel
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K-means is thus O(tn2), where t is the number of iterations until convergence. The I/O

complexity is O(t) scans of the kernel matrix K.

Example 13.3. Figure 13.3 shows an application of the kernel K-means approach on

a synthetic dataset with three embedded clusters. Each cluster has 100 points, for a

total of n= 300 points in the dataset.

Using the linear kernel K(xi,xj ) = xT
i xj is equivalent to the K-means algorithm

because in this case Eq. (13.5) is the same as Eq. (13.2). Figure 13.3a shows the

resulting clusters; points in C1 are shown as squares, in C2 as triangles, and in C3

as circles. We can see that K-means is not able to separate the three clusters due

to the presence of the parabolic shaped cluster. The white points are those that are

wrongly clustered, comparing with the ground truth in terms of the generated cluster

labels.

Using the Gaussian kernel K(xi,xj ) = exp

{

−‖xi−xj‖2

2σ2

}

from Eq. (5.10), with

σ = 1.5, results in a near-perfect clustering, as shown in Figure 13.3b. Only four points

(white triangles) are grouped incorrectly with cluster C2, whereas they should belong

to cluster C1. We can see from this example that kernel K-means is able to handle

nonlinear cluster boundaries. One caveat is that the value of the spread parameter σ

has to be set by trial and error.

13.3 EXPECTATION-MAXIMIZATION CLUSTERING

The K-means approach is an example of a hard assignment clustering, where each

point can belong to only one cluster. We now generalize the approach to consider

soft assignment of points to clusters, so that each point has a probability of belonging

to each cluster.

Let D consist of n points xj in d-dimensional space R
d . Let Xa denote the

random variable corresponding to the ath attribute. We also use Xa to denote the ath

column vector, corresponding to the n data samples from Xa. Let X= (X1,X2, . . . ,Xd)

denote the vector random variable across the d-attributes, with xj being a data sample

from X.

Gaussian Mixture Model

We assume that each cluster Ci is characterized by a multivariate normal distribution,

that is,

fi(x)= f (x|µi,6i)=
1

(2π)
d
2 |6i|

1
2

exp

{

− (x−µi)
T6−1

i (x−µi)

2

}

(13.6)

where the cluster mean µi ∈ R
d and covariance matrix 6i ∈ R

d×d are both unknown

parameters. fi(x) is the probability density at x attributable to cluster Ci . We assume

that the probability density function of X is given as a Gaussian mixture model over all
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the k cluster normals, defined as

f (x)=
k
∑

i=1

fi(x)P (Ci)=
k
∑

i=1

f (x|µi,6i)P (Ci) (13.7)

where the prior probabilities P(Ci) are called the mixture parameters, which must

satisfy the condition

k
∑

i=1

P(Ci)= 1

The Gaussian mixture model is thus characterized by the mean µi , the covariance

matrix 6i , and the mixture probability P(Ci) for each of the k normal distributions.

We write the set of all the model parameters compactly as

θ = {µ1,61,P (Ci) . . . ,µk,6k,P (Ck)}

Maximum Likelihood Estimation

Given the dataset D, we define the likelihood of θ as the conditional probability of

the data D given the model parameters θ , denoted as P(D|θ). Because each of the n

points xj is considered to be a random sample from X (i.e., independent and identically

distributed as X), the likelihood of θ is given as

P(D|θ)=
n
∏

j=1

f (xj)

The goal of maximum likelihood estimation (MLE) is to choose the parameters θ

that maximize the likelihood, that is,

θ∗ = argmax
θ
{P(D|θ)}

It is typical to maximize the log of the likelihood function because it turns the

product over the points into a summation and the maximum value of the likelihood

and log-likelihood coincide. That is, MLE maximizes

θ∗ = argmax
θ
{lnP(D|θ)}

where the log-likelihood function is given as

lnP(D|θ)=
n
∑

j=1

lnf (xj)=
n
∑

j=1

ln

( k
∑

i=1

f (xj |µi,6i)P (Ci)

)

(13.8)

Directly maximizing the log-likelihood over θ is hard. Instead, we can use

the expectation-maximization (EM) approach for finding the maximum likelihood

estimates for the parameters θ . EM is a two-step iterative approach that starts from an

initial guess for the parameters θ . Given the current estimates for θ , in the expectation

step EM computes the cluster posterior probabilities P(Ci |xj ) via the Bayes theorem:

P(Ci |xj)=
P(Ci and xj)

P (xj )
= P(xj |Ci)P (Ci)
∑k

a=1 P(xj |Ca)P (Ca)
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Because each cluster is modeled as a multivariate normal distribution [Eq. (13.6)], the

probability of xj given cluster Ci can be obtained by considering a small interval ǫ > 0

centered at xj , as follows:

P(xj |Ci)≃ 2ǫ ·f (xj |µi,6i)= 2ǫ ·fi(xj )

The posterior probability of Ci given xj is thus given as

P(Ci |xj )=
fi(xj ) ·P(Ci)

∑k

a=1 fa(xj ) ·P(Ca)
(13.9)

and P(Ci |xj) can be considered as the weight or contribution of the point xj to cluster

Ci . Next, in the maximization step, using the weights P(Ci |xj) EM re-estimates θ ,

that is, it re-estimates the parameters µi , 6i , and P(Ci) for each cluster Ci . The

re-estimated mean is given as the weighted average of all the points, the re-estimated

covariance matrix is given as the weighted covariance over all pairs of dimensions, and

the re-estimated prior probability for each cluster is given as the fraction of weights

that contribute to that cluster. In Section 13.3.3 we formally derive the expressions

for the MLE estimates for the cluster parameters, and in Section 13.3.4 we describe

the generic EM approach in more detail. We begin with the application of the EM

clustering algorithm for the one-dimensional and general d-dimensional cases.

13.3.1 EM in One Dimension

Consider a dataset D consisting of a single attribute X, where each point xj ∈ R

(j = 1, . . . ,n) is a random sample from X. For the mixture model [Eq. (13.7)], we use

univariate normals for each cluster:

fi(x)= f (x|µi,σ
2
i )= 1√

2πσi

exp

{

− (x−µi)
2

2σ 2
i

}

with the cluster parameters µi , σ
2
i , and P(Ci). The EM approach consists of three steps:

initialization, expectation step, and maximization step.

Initialization

For each cluster Ci , with i = 1,2, . . . ,k, we can randomly initialize the cluster

parameters µi , σ 2
i , and P(Ci). The mean µi is selected uniformly at random from the

range of possible values for X. It is typical to assume that the initial variance is given as

σ 2
i = 1. Finally, the cluster prior probabilities are initialized to P(Ci)= 1

k
, so that each

cluster has an equal probability.

Expectation Step

Assume that for each of the k clusters, we have an estimate for the parameters, namely

the mean µi , variance σ 2
i , and prior probability P(Ci). Given these values the clusters

posterior probabilities are computed using Eq. (13.9):

P(Ci |xj)=
f (xj |µi,σ

2
i ) ·P(Ci)

∑k

a=1 f (xj |µa,σ 2
a ) ·P(Ca)
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For convenience, we use the notation wij =P(Ci |xj), treating the posterior probability

as the weight or contribution of the point xj to cluster Ci . Further, let

wi = (wi1, . . . ,win)
T

denote the weight vector for cluster Ci across all the n points.

Maximization Step

Assuming that all the posterior probability values or weights wij = P(Ci |xj) are

known, the maximization step, as the name implies, computes the maximum likelihood

estimates of the cluster parameters by re-estimating µi , σ 2
i , and P(Ci).

The re-estimated value for the cluster mean, µi , is computed as the weighted mean

of all the points:

µi =
∑n

j=1 wij · xj
∑n

j=1 wij

In terms of the weight vector wi and the attribute vector X = (x1,x2, . . . ,xn)
T, we can

rewrite the above as

µi =
wT

i X

wT
i 1

The re-estimated value of the cluster variance is computed as the weighted

variance across all the points:

σ 2
i =

∑n

j=1 wij (xj −µi)
2

∑n

j=1 wij

Let Zi = X − µi1 = (x1 − µi,x2 − µi, . . . ,xn − µi)
T = (zi1,zi2, . . . ,zin)

T be the

centered attribute vector for cluster Ci , and let Zs
i be the squared vector given as

Zs
i = (z2

i1, . . . ,z
2
in)

T. The variance can be expressed compactly in terms of the dot

product between the weight vector and the squared centered vector:

σ 2
i =

wT
i Zs

i

wT
i 1

Finally, the prior probability of cluster Ci is re-estimated as the fraction of the total

weight belonging to Ci , computed as

P(Ci)=
∑n

j=1 wij

∑k

a=1

∑n

j=1 waj

=
∑n

j=1 wij
∑n

j=1 1
=
∑n

j=1 wij

n
(13.10)

where we made use of the fact that

k
∑

i=1

wij =
k
∑

i=1

P(Ci |xj )= 1

In vector notation the prior probability can be written as

P(Ci)=
wT

i 1

n
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Iteration

Starting from an initial set of values for the cluster parameters µi , σ 2
i and P(Ci) for

all i = 1, . . . ,k, the EM algorithm applies the expectation step to compute the weights

wij = P(Ci |xj ). These values are then used in the maximization step to compute the

updated cluster parameters µi , σ 2
i and P(Ci). Both the expectation and maximization

steps are iteratively applied until convergence, for example, until the means change

very little from one iteration to the next.

Example 13.4 (EM in 1D). Figure 13.4 illustrates the EM algorithm on the

one-dimensional dataset:

x1 = 1.0 x2 = 1.3 x3 = 2.2 x4 = 2.6 x5 = 2.8

x6 = 5.0 x7 = 7.3 x8 = 7.4 x9 = 7.5 x10 = 7.7 x11 = 7.9

We assume that k = 2. The initial random means are shown in Figure 13.4a, with the

initial parameters given as

µ1 = 6.63 σ 2
1 = 1 P(C2)= 0.5

µ2 = 7.57 σ 2
2 = 1 P(C2)= 0.5

After repeated expectation and maximization steps, the EM method converges after

five iterations. After t = 1 (see Figure 13.4b) we have

µ1 = 3.72 σ 2
1 = 6.13 P(C1)= 0.71

µ2 = 7.4 σ 2
2 = 0.69 P(C2)= 0.29

After the final iteration (t = 5), as shown in Figure 13.4c, we have

µ1 = 2.48 σ 2
1 = 1.69 P(C1)= 0.55

µ2 = 7.56 σ 2
2 = 0.05 P(C2)= 0.45

One of the main advantages of the EM algorithm over K-means is that it returns

the probability P(Ci |xj) of each cluster Ci for each point xj . However, in this

1-dimensional example, these values are essentially binary; assigning each point to

the cluster with the highest posterior probability, we obtain the hard clustering

C1 = {x1,x2,x3,x4,x5,x6} (white points)

C2 = {x7,x8,x9,x10,x11} (gray points)

as illustrated in Figure 13.4c.

13.3.2 EM in d Dimensions

We now consider the EM method in d dimensions, where each cluster is characterized

by a multivariate normal distribution [Eq. (13.6)], with parameters µi , 6i , and P(Ci).

For each cluster Ci , we thus need to estimate the d-dimensional mean vector:

µi = (µi1,µi2, . . . ,µid)
T
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Figure 13.4. EM in one dimension.

and the d× d covariance matrix:

6i =















(σ i
1)

2 σ i
12 . . . σ i

1d

σ i
21 (σ i

2)
2 . . . σ i

2d

...
...

. . .

σ i
d1 σ i

d2 . . . (σ i
d)

2















Because the covariance matrix is symmetric, we have to estimate
(

d

2

)

= d(d−1)

2
pairwise

covariances and d variances, for a total of d(d+1)

2
parameters for 6i . This may be

too many parameters for practical purposes because we may not have enough data

to estimate all of them reliably. For example, if d = 100, then we have to estimate

100 · 101/2= 5050 parameters! One simplification is to assume that all dimensions are



348 Representative-based Clustering

independent, which leads to a diagonal covariance matrix:

6i =











(σ i
1)

2 0 . . . 0

0 (σ i
2)

2 . . . 0
...

...
. . .

0 0 . . . (σ i
d)

2











Under the independence assumption we have only d parameters to estimate for the

diagonal covariance matrix.

Initialization

For each cluster Ci , with i = 1,2, . . . ,k, we randomly initialize the mean µi by selecting

a value µia for each dimension Xa uniformly at random from the range of Xa . The

covariance matrix is initialized as the d × d identity matrix, 6i = I. Finally, the cluster

prior probabilities are initialized to P(Ci) = 1
k
, so that each cluster has an equal

probability.

Expectation Step

In the expectation step, we compute the posterior probability of cluster Ci given point

xj using Eq. (13.9), with i = 1, . . . ,k and j = 1, . . . ,n. As before, we use the shorthand

notation wij =P(Ci |xj) to denote the fact that P(Ci |xj) can be considered as the weight

or contribution of point xj to cluster Ci , and we use the notation wi = (wi1,wi2, . . . ,win)
T

to denote the weight vector for cluster Ci , across all the n points.

Maximization Step

Given the weights wij , in the maximization step, we re-estimate 6i , µi and P(Ci). The

mean µi for cluster Ci can be estimated as

µi =
∑n

j=1 wij · xj
∑n

j=1 wij

(13.11)

which can be expressed compactly in matrix form as

µi =
DTwi

wT
i 1

Let Zi =D− 1 ·µT
i be the centered data matrix for cluster Ci . Let zji = xj −µi ∈

R
d denote the j th centered point in Zi . We can express 6i compactly using the

outer-product form

6i =
∑n

j=1 wijzjiz
T
ji

wT
i 1

(13.12)

Considering the pairwise attribute view, the covariance between dimensions Xa

and Xb is estimated as

σ i
ab =

∑n

j=1 wij (xja−µia)(xjb−µib)
∑n

j=1 wij
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where xja and µia denote the values of the ath dimension for xj and µi , respectively.

Finally, the prior probability P(Ci) for each cluster is the same as in the

one-dimensional case [Eq. (13.10)], given as

P(Ci)=
∑n

j=1 wij

n
= wT

i 1

n
(13.13)

A formal derivation of these re-estimates for µi [Eq. (13.11)], 6i [Eq. (13.12)], and

P(Ci) [Eq. (13.13)] is given in Section 13.3.3.

EM Clustering Algorithm

The pseudo-code for the multivariate EM clustering algorithm is given in

Algorithm 13.3. After initialization of µi , 6i , and P(Ci) for all i = 1, . . . ,k, the expecta-

tion and maximization steps are repeated until convergence. For the convergence test,

we check whether
∑

i

∥

∥µt
i −µt−1

i

∥

∥

2 ≤ ǫ, where ǫ > 0 is the convergence threshold, and t

denotes the iteration. In words, the iterative process continues until the change in the

cluster means becomes very small.

ALGORITHM 13.3. Expectation-Maximization (EM) Algorithm

EXPECTATION-MAXIMIZATION (D,k,ǫ):

t← 01

// Initialization

Randomly initialize µt
1, . . . ,µ

t
k2

6t
i ← I, ∀i = 1, . . . ,k3

P t (Ci)← 1
k
, ∀i = 1, . . . ,k4

repeat5

t← t + 16

// Expectation Step

for i = 1, . . . ,k and j = 1, . . . ,n do7

wij← f (xj |µi ,6i )·P(Ci )
∑k

a=1 f (xj |µa ,6a )·P(Ca )
// posterior probability P t (Ci |xj)8

// Maximization Step

for i = 1, . . . ,k do9

µt
i←

∑n
j=1 wij ·xj
∑n

j=1 wij
// re-estimate mean

10

6t
i ←

∑n
j=1 wij (xj−µi )(xj−µi )

T

∑n
j=1 wij

// re-estimate covariance matrix
11

P t (Ci)←
∑n

j=1 wij

n
// re-estimate priors12

until
∑k

i=1

∥

∥µt
i −µt−1

i

∥

∥

2 ≤ ǫ13
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Example 13.5 (EM in 2D). Figure 13.5 illustrates the EM algorithm for the

two-dimensional Iris dataset, where the two attributes are its first two principal

components. The dataset consists of n= 150 points, and EM was run using k= 3, with

full covariance matrix for each cluster. The initial cluster parameters are 6i =
(

1 0

0 1

)

and P(Ci)= 1/3, with the means chosen as

µ1 = (−3.59,0.25)T µ2 = (−1.09,−0.46)T µ3 = (0.75,1.07)T

The cluster means (shown in black) and the joint probability density function are

shown in Figure 13.5a.

The EM algorithm took 36 iterations to converge (using ǫ = 0.001). An

intermediate stage of the clustering is shown in Figure 13.5b, for t = 1. Finally

at iteration t = 36, shown in Figure 13.5c, the three clusters have been correctly

identified, with the following parameters:

µ1 = (−2.02,0.017)T µ2 = (−0.51,−0.23)T µ3 = (2.64,0.19)T

61 =
(

0.56 −0.29

−0.29 0.23

)

62 =
(

0.36 −0.22

−0.22 0.19

)

63 =
(

0.05 −0.06

−0.06 0.21

)

P(C1)= 0.36 P(C2)= 0.31 P(C3)= 0.33

To see the effect of a full versus diagonal covariance matrix, we ran the

EM algorithm on the Iris principal components dataset under the independence

assumption, which took t = 29 iterations to converge. The final cluster parameters

were

µ1 = (−2.1,0.28)T µ2 = (−0.67,−0.40)T µ3 = (2.64,0.19)T

61 =
(

0.59 0

0 0.11

)

62 =
(

0.49 0

0 0.11

)

63 =
(

0.05 0

0 0.21

)

P(C1)= 0.30 P(C2)= 0.37 P(C3)= 0.33

Figure 13.6b shows the clustering results. Also shown are the contours of the normal

density function for each cluster (plotted so that the contours do not intersect). The

results for the full covariance matrix are shown in Figure 13.6a, which is a projection

of Figure 13.5c onto the 2D plane. Points in C1 are shown as squares, in C2 as

triangles, and in C3 as circles.

One can observe that the diagonal assumption leads to axis parallel contours

for the normal density, contrasted with the rotated contours for the full covariance

matrix. The full matrix yields much better clustering, which can be observed by

considering the number of points grouped with the wrong Iris type (the white points).

For the full covariance matrix only three points are in the wrong group, whereas

for the diagonal covariance matrix 25 points are in the wrong cluster, 15 from

iris-virginica (white triangles) and 10 from iris-versicolor (white squares).

The points corresponding to iris-setosa are correctly clustered as C3 in both

approaches.
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Figure 13.5. EM algorithm in two dimensions: mixture of k= 3 Gaussians.
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Figure 13.6. Iris principal components dataset: full versus diagonal covariance matrix.

Computational Complexity

For the expectation step, to compute the cluster posterior probabilities, we need to

invert 6i and compute its determinant |6i|, which takes O(d3) time. Across the k

clusters the time is O(kd3). For the expectation step, evaluating the density f (xj |µi,6i)

takes O(d2) time, for a total time of O(knd2) over the n points and k clusters. For the

maximization step, the time is dominated by the update for 6i , which takes O(knd2)

time over all k clusters. The computational complexity of the EM method is thus

O(t (kd3+ nkd2)), where t is the number of iterations. If we use a diagonal covariance

matrix, then inverse and determinant of 6i can be computed in O(d) time. Density

computation per point takes O(d) time, so that the time for the expectation step is

O(knd). The maximization step also takes O(knd) time to re-estimate 6i . The total

time for a diagonal covariance matrix is therefore O(tnkd). The I/O complexity for the
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EM algorithm is O(t) complete database scans because we read the entire set of points

in each iteration.

K-means as Specialization of EM

Although we assumed a normal mixture model for the clusters, the EM approach can

be applied with other models for the cluster density distribution P(xj |Ci). For instance,

K-means can be considered as a special case of the EM algorithm, obtained as follows:

P(xj |Ci)=







1 if Ci = argmin
Ca

{

∥

∥xj −µa

∥

∥

2
}

0 otherwise

Using Eq. (13.9), the posterior probability P(Ci |xj) is given as

P(Ci |xj)=
P(xj |Ci)P (Ci)

∑k

a=1 P(xj |Ca)P (Ca)

One can see that if P(xj |Ci) = 0, then P(Ci |xj) = 0. Otherwise, if P(xj |Ci) = 1, then

P(xj |Ca) = 0 for all a 6= i, and thus P(Ci |xj) = 1·P(Ci )

1·P(Ci )
= 1. Putting it all together, the

posterior probability is given as

P(Ci |xj)=







1 if xj ∈Ci, i.e., if Ci = argmin
Ca

{

∥

∥xj −µa

∥

∥

2
}

0 otherwise

It is clear that for K-means the cluster parameters are µi and P(Ci); we can ignore the

covariance matrix.

13.3.3 Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimates for the cluster parameters

µi , 6i and P(Ci). We do this by taking the derivative of the log-likelihood function

with respect to each of these parameters and setting the derivative to zero.

The partial derivative of the log-likelihood function [Eq. (13.8)] with respect to

some parameter θi for cluster Ci is given as

∂

∂θi

ln
(

P(D|θ)
)

= ∂

∂θi

( n
∑

j=1

lnf (xj )

)

=
n
∑

j=1

(

1

f (xj)
· ∂f (xj)

∂θi

)

=
n
∑

j=1

(

1

f (xj)

k
∑

a=1

∂

∂θi

(

f (xj |µa,6a)P (Ca)
)

)

=
n
∑

j=1

(

1

f (xj)
· ∂

∂θi

(

f (xj |µi,6i)P (Ci)
)

)

The last step follows from the fact that because θi is a parameter for the ith cluster the

mixture components for the other clusters are constants with respect to θi . Using the
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fact that |6i| = 1

|6−1
i
|

the multivariate normal density in Eq. (13.6) can be written as

f (xj |µi,6i)= (2π)−
d
2 |6−1

i |
1
2 exp

{

g(µi,6i)
}

(13.14)

where

g(µi,6i)=−
1

2
(xj −µi)

T6−1
i (xj −µi) (13.15)

Thus, the derivative of the log-likelihood function can be written as

∂

∂θi

ln
(

P(D|θ)
)

=

n
∑

j=1

(

1

f (xj)
· ∂

∂θi

(

(2π)−
d
2 |6−1

i |
1
2 exp

{

g(µi,6i)
}

P(Ci)
)

)

(13.16)

Below, we make use of the fact that

∂

∂θi

exp
{

g(µi ,6i)
}

= exp
{

g(µi ,6i)
}

· ∂

∂θi

g(µi,6i) (13.17)

Estimation of Mean

To derive the maximum likelihood estimate for the mean µi , we have to take the

derivative of the log-likelihood with respect to θi = µi . As per Eq. (13.16), the only

term involving µi is exp
{

g(µi ,6i)
}

. Using the fact that

∂

∂µi

g(µi,6i)=6−1
i (xj −µi) (13.18)

and making use of Eq. (13.17), the partial derivative of the log-likelihood [Eq. (13.16)]

with respect to µi is

∂

∂µi

ln(P (D|θ))=
n
∑

j=1

(

1

f (xj )
(2π)−

d
2 |6−1

i |
1
2 exp

{

g(µi,6i)
}

P(Ci) 6−1
i (xj −µi)

)

=
n
∑

j=1

(

f (xj |µi,6i)P (Ci)

f (xj )
·6−1

i (xj −µi)

)

=
n
∑

j=1

wij6
−1
i (xj −µi)

where we made use of Eqs. (13.14) and (13.9), and the fact that

wij = P(Ci |xj)=
f (xj |µi,6i)P (Ci)

f (xj)
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Setting the partial derivative of the log-likelihood to the zero vector, and multiplying

both sides by 6i , we get

n
∑

j=1

wij (xj −µi)= 0, which implies that

n
∑

j=1

wijxj = µi

∑

j=1

wij , and therefore

µi =
∑n

j=1 wijxj
∑n

j=1 wij

(13.19)

which is precisely the re-estimation formula we used in Eq. (13.11).

Estimation of Covariance Matrix

To re-estimate the covariance matrix 6i , we take the partial derivative of

Eq. (13.16) with respect to 6−1
i using the product rule for the differentiation of the

term |6−1
i |

1
2 exp

{

g(µi,6i)
}

.

Using the fact that for any square matrix A, we have ∂|A|
∂A
= |A| · (A−1)T the

derivative of |6−1
i |

1
2 with respect to 6−1

i is

∂|6−1
i |

1
2

∂6−1
i

= 1

2
· |6−1

i |−
1
2 · |6−1

i | ·6i =
1

2
· |6−1

i |
1
2 ·6i (13.20)

Next, using the fact that for the square matrix A ∈Rd×d and vectors a,b ∈Rd , we have
∂

∂A
aTAb = abT the derivative of exp

{

g(µi,6i)
}

with respect to 6−1
i is obtained from

Eq. (13.17) as follows:

∂

∂6−1
i

exp
{

g(µi,6i)
}

=−1

2
exp

{

g(µi,6i)
}

(xj −µi)(xj −µi)
T (13.21)

Using the product rule on Eqs. (13.20) and (13.21), we get

∂

∂6−1
i

|6−1
i |

1
2 exp

{

g(µi ,6i)
}

= 1

2
|6−1

i |
1
2 6i exp

{

g(µi ,6i)
}

− 1

2
|6−1

i |
1
2 exp

{

g(µi ,6i)
}

(xj −µi)(xj −µi)
T

= 1

2
· |6−1

i |
1
2 · exp

{

g(µi,6i)
}

(

6i − (xj −µi)(xj −µi)
T
)

(13.22)

Plugging Eq. (13.22) into Eq. (13.16) the derivative of the log-likelihood function with

respect to 6−1
i is given as

∂

∂6−1
i

ln(P (D|θ))

= 1

2

n
∑

j=1

(2π)−
d
2 |6−1

i |
1
2 exp

{

g(µi ,6i)
}

P(Ci)

f (xj)

(

6i − (xj −µi)(xj −µi)
T
)
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= 1

2

n
∑

j=1

f (xj |µi,6i)P (Ci)

f (xj )
·
(

6i − (xj −µi)(xj −µi)
T
)

= 1

2

n
∑

j=1

wij

(

6i − (xj −µi)(xj −µi)
T
)

Setting the derivative to the d× d zero matrix 0d×d , we can solve for 6i :

n
∑

j=1

wij

(

6i − (xj −µi)(xj −µi)
T
)

= 0d×d,which implies that

6i =
∑n

j=1 wij (xj −µi)(xj −µi)
T

∑n

j=1 wij

(13.23)

Thus, we can see that the maximum likelihood estimate for the covariance matrix is

given as the weighted outer-product form in Eq. (13.12).

Estimating the Prior Probability: Mixture Parameters

To obtain a maximum likelihood estimate for the mixture parameters or the prior

probabilities P(Ci), we have to take the partial derivative of the log-likelihood

[Eq. (13.16)] with respect to P(Ci). However, we have to introduce a Lagrange

multiplier α for the constraint that
∑k

a=1 P(Ca) = 1. We thus take the following

derivative:

∂

∂P (Ci)

(

ln(P (D|θ))+α
(

k
∑

a=1

P(Ca)− 1
)

)

(13.24)

The partial derivative of the log-likelihood in Eq. (13.16) with respect to P(Ci)

gives

∂

∂P (Ci)
ln(P (D|θ))=

n
∑

j=1

f (xj |µi,6i)

f (xj)

The derivative in Eq. (13.24) thus evaluates to





n
∑

j=1

f (xj |µi,6i)

f (xj )



+α

Setting the derivative to zero, and multiplying on both sides by P(Ci), we get

n
∑

j=1

f (xj |µi,6i)P (Ci)

f (xj)
=−αP(Ci)

n
∑

j=1

wij =−αP(Ci) (13.25)
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Taking the summation of Eq. (13.25) over all clusters yields

k
∑

i=1

n
∑

j=1

wij =−α

k
∑

i=1

P(Ci)

or n=−α (13.26)

The last step follows from the fact that
∑k

i=1 wij = 1. Plugging Eq. (13.26) into

Eq. (13.25), gives us the maximum likelihood estimate for P(Ci) as follows:

P(Ci)=
∑n

j=1 wij

n
(13.27)

which matches the formula in Eq. (13.13).

We can see that all three parameters µi , 6i , and P(Ci) for cluster Ci depend

on the weights wij , which correspond to the cluster posterior probabilities P(Ci |xj ).

Equations (13.19), (13.23), and (13.27) thus do not represent a closed-form solution

for maximizing the log-likelihood function. Instead, we use the iterative EM approach

to compute the wij in the expectation step, and we then re-estimate µi , 6i and P(Ci)

in the maximization step. Next, we describe the EM framework in some more detail.

13.3.4 EM Approach

Maximizing the log-likelihood function [Eq. (13.8)] directly is hard because the mixture

term appears inside the logarithm. The problem is that for any point xj we do not

know which normal, or mixture component, it comes from. Suppose that we knew

this information, that is, suppose each point xj had an associated value indicating the

cluster that generated the point. As we shall see, it is much easier to maximize the

log-likelihood given this information.

The categorical attribute corresponding to the cluster label can be modeled as a

vector random variable C = (C1,C2, . . . ,Ck), where Ci is a Bernoulli random variable

(see Section 3.1.2 for details on how to model a categorical variable). If a given point

is generated from cluster Ci , then Ci = 1, otherwise Ci = 0. The parameter P(Ci) gives

the probability P(Ci = 1). Because each point can be generated from only one cluster,

if Ca = 1 for a given point, then Ci = 0 for all i 6= a. It follows that
∑k

i=1 P(Ci)= 1.

For each point xj , let its cluster vector be cj = (cj1, . . . ,cjk)
T. Only one component

of cj has value 1. If cji = 1, it means that Ci = 1, that is, the cluster Ci generates the

point xj . The probability mass function of C is given as

P(C= cj )=
k
∏

i=1

P(Ci)
cji

Given the cluster information cj for each point xj , the conditional probability density

function for X is given as

f (xj |cj)=
k
∏

i=1

f (xj |µi,6i)
cji
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Only one cluster can generate xj , say Ca , in which case cja = 1, and the above expression

would simplify to f (xj |cj )= f (xj |µa,6a).

The pair (xj ,cj ) is a random sample drawn from the joint distribution of vector

random variables X = (X1, . . . ,Xd) and C = (C1, . . . ,Ck), corresponding to the d data

attributes and k cluster attributes. The joint density function of X and C is given as

f (xj and cj )= f (xj |cj)P (cj )=
k
∏

i=1

(

f (xj |µi,6i)P (Ci)
)cji

The log-likelihood for the data given the cluster information is as follows:

lnP(D|θ)= ln

n
∏

j=1

f (xj and cj |θ)

=
n
∑

j=1

lnf (xj and cj |θ)

=
n
∑

j=1

ln

( k
∏

i=1

(

f (xj |µi,6i)P (Ci)
)cji

)

=
n
∑

j=1

k
∑

i=1

cji

(

lnf (xj |µi,6i)+ lnP(Ci)
)

(13.28)

Expectation Step

In the expectation step, we compute the expected value of the log-likelihood for

the labeled data given in Eq. (13.28). The expectation is over the missing cluster

information cj treating µi , 6i , P(Ci), and xj as fixed. Owing to the linearity of

expectation, the expected value of the log-likelihood is given as

E[lnP(D|θ)]=
n
∑

j=1

k
∑

i=1

E[cji]
(

lnf (xj |µi,6i)+ lnP(Ci)
)

The expected value E[cji] can be computed as

E[cji]= 1 ·P(cji = 1|xj)+ 0 ·P(cji = 0|xj)= P(cji = 1|xj)= P(Ci |xj)

= P(xj |Ci)P (Ci)

P (xj )
= f (xj |µi,6i)P (Ci)

f (xj )

=wij (13.29)

Thus, in the expectation step we use the values of θ = {µi,6i,P (Ci)}ki=1 to estimate the

posterior probabilities or weights wij for each point for each cluster. Using E[cji]=wij ,

the expected value of the log-likelihood function can be rewritten as

E[lnP(D|θ)]=
n
∑

j=1

k
∑

i=1

wij

(

lnf (xj |µi,6i)+ lnP(Ci)
)

(13.30)
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Maximization Step

In the maximization step, we maximize the expected value of the log-likelihood

[Eq. (13.30)]. Taking the derivative with respect to µi , 6i or P(Ci) we can ignore the

terms for all the other clusters.

The derivative of Eq. (13.30) with respect to µi is given as

∂

∂µi

lnE[P(D|θ)]= ∂

∂µi

n
∑

j=1

wij lnf (xj |µi,6i)

=
n
∑

j=1

wij ·
1

f (xj |µi,6i)

∂

∂µi

f (xj |µi,6i)

=
n
∑

j=1

wij ·
1

f (xj |µi,6i)
·f (xj |µi,6i) 6−1

i (xj −µi)

=
n
∑

j=1

wij 6−1
i (xj −µi)

where we used the observation that

∂

∂µi

f (xj |µi,6i)= f (xj |µi,6i) 6−1
i (xj −µi)

which follows from Eqs. (13.14), (13.17), and (13.18). Setting the derivative of the

expected value of the log-likelihood to the zero vector, and multiplying on both sides

by 6i , we get

µi =
∑n

j=1 wij xj
∑n

j=1 wij

matching the formula in Eq. (13.11).

Making use of Eqs. (13.22) and (13.14), we obtain the derivative of Eq. (13.30) with

respect to 6−1
i as follows:

∂

∂6−1
i

lnE[P(D|θ)]

=
n
∑

j=1

wij ·
1

f (xj |µi,6i)
· 1
2

f (xj |µi,6i)
(

6i − (xj −µi)(xj −µi)
T
)

= 1

2

n
∑

j=1

wij ·
(

6i − (xj −µi)(xj −µi)
T
)

Setting the derivative to the d× d zero matrix and solving for 6i yields

6i =
∑n

j=1 wij (xj −µi)(xj −µi)
T

∑n

j=1 wij

which is the same as that in Eq. (13.12).
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Using the Lagrange multiplier α for the constraint
∑k

i=1 P(Ci)= 1, and noting that

in the log-likelihood function [Eq. (13.30)], the term lnf (xj |µi,6i) is a constant with

respect to P(Ci), we obtain the following:

∂

∂P (Ci)

(

lnE[P(D|θ)]+α
(

k
∑

i=1

P(Ci)− 1
)

)

= ∂

∂P (Ci)

(

wij lnP(Ci)+αP(Ci)
)

=





n
∑

j=1

wij ·
1

P(Ci)



+α

Setting the derivative to zero, we get

n
∑

j=1

wij =−α ·P(Ci)

Using the same derivation as in Eq. (13.26) we obtain

P(Ci)=
∑n

j=1 wij

n

which is identical to the re-estimation formula in Eq. (13.13).

13.4 FURTHER READING
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and Hartigan (1975). Kernel k-means was first proposed in Schölkopf, Smola, and

Müller (1996). The EM algorithm was proposed in Dempster, Laird, and Rubin (1977).

A good review on EM method can be found in McLachlan and Krishnan (2008).

For a scalable and incremental representative-based clustering method that can also

generate hierarchical clusterings see Zhang, Ramakrishnan, and Livny (1996).
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Zhang, T., Ramakrishnan, R., and Livny, M. (1996). “BIRCH: an efficient data

clustering method for very large databases.” ACM SIGMOD Record, 25 (2):

103–114.

13.5 EXERCISES

Q1. Given the following points: 2,4,10,12,3,20,30,11,25. Assume k = 3, and that we

randomly pick the initial means µ1= 2, µ2= 4 and µ3= 6. Show the clusters obtained

using K-means algorithm after one iteration, and show the new means for the next

iteration.

Table 13.1. Dataset for Q2

x P (C1|x) P (C2|x)

2 0.9 0.1

3 0.8 0.1

7 0.3 0.7

9 0.1 0.9

2 0.9 0.1

1 0.8 0.2

Q2. Given the data points in Table 13.1, and their probability of belonging to two clusters.

Assume that these points were produced by a mixture of two univariate normal

distributions. Answer the following questions:

(a) Find the maximum likelihood estimate of the means µ1 and µ2.

(b) Assume that µ1 = 2, µ2 = 7, and σ1 = σ2 = 1. Find the probability that the point

x = 5 belongs to cluster C1 and to cluster C2. You may assume that the prior

probability of each cluster is equal (i.e., P (C1) = P (C2) = 0.5), and the prior

probability P (x = 5)= 0.029.

Table 13.2. Dataset for Q3

X1 X2

x1 0 2

x2 0 0

x3 1.5 0

x4 5 0

x5 5 2

Q3. Given the two-dimensional points in Table 13.2, assume that k = 2, and that initially

the points are assigned to clusters as follows: C1 = {x1,x2,x4} and C2 = {x3,x5}.
Answer the following questions:

(a) Apply the K-means algorithm until convergence, that is, the clusters do not

change, assuming (1) the usual Euclidean distance or the L2-norm as the distance
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between points, defined as
∥

∥xi − xj

∥

∥

2
=
(

∑d
a=1(xia − xja)

2
)1/2

, and (2) the

Manhattan distance or the L1-norm defined as
∥

∥xi − xj

∥

∥

1
=
∑d

a=1 |xia − xja|.
(b) Apply the EM algorithm with k= 2 assuming that the dimensions are independent.

Show one complete execution of the expectation and the maximization steps.

Start with the assumption that P (Ci |xja)= 0.5 for a = 1,2 and j = 1, . . . ,5.

Q4. Given the categorical database in Table 13.3. Find k = 2 clusters in this data using

the EM method. Assume that each attribute is independent, and that the domain of

each attribute is {A,C,T}. Initially assume that the points are partitioned as follows:

C1 = {x1,x4}, and C2 = {x2,x3}. Assume that P (C1)= P (C2)= 0.5.

Table 13.3. Dataset for Q4

X1 X2

x1 A T

x2 A A

x3 C C

x4 A C

The probability of an attribute value given a cluster is given as

P (xja |Ci)=
No. of times the symbol xja occurs in cluster Ci

No. of objects in cluster Ci

for a = 1,2. The probability of a point given a cluster is then given as

P (xj |Ci)=
2
∏

a=1

P (xja |Ci)

Instead of computing the mean for each cluster, generate a partition of the objects

by doing a hard assignment. That is, in the expectation step compute P (Ci |xj ), and

in the maximization step assign the point xj to the cluster with the largest P (Ci |xj )

value, which gives a new partitioning of the points. Show one full iteration of the EM

algorithm and show the resulting clusters.

Table 13.4. Dataset for Q5

X1 X2 X3

x1 0.5 4.5 2.5

x2 2.2 1.5 0.1

x3 3.9 3.5 1.1

x4 2.1 1.9 4.9

x5 0.5 3.2 1.2

x6 0.8 4.3 2.6

x7 2.7 1.1 3.1

x8 2.5 3.5 2.8

x9 2.8 3.9 1.5

x10 0.1 4.1 2.9
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Q5. Given the points in Table 13.4, assume that there are two clusters: C1 and C2, with

µ1 = (0.5,4.5,2.5)T and µ2 = (2.5,2,1.5)T . Initially assign each point to the closest

mean, and compute the covariance matrices 6i and the prior probabilities P (Ci) for

i = 1,2. Next, answer which cluster is more likely to have produced x8?

Q6. Consider the data in Table 13.5. Answer the following questions:

(a) Compute the kernel matrix K between the points assuming the following kernel:

K(xi ,xj )= 1+ xT
i xj

(b) Assume initial cluster assignments of C1 = {x1,x2} and C2 = {x3,x4}. Using kernel

K-means, which cluster should x1 belong to in the next step?

Table 13.5. Data for Q6

X1 X2 X3

x1 0.4 0.9 0.6

x2 0.5 0.1 0.6

x3 0.6 0.3 0.6

x4 0.4 0.8 0.5

Q7. Prove the following equivalence for the multivariate normal density function:

∂

∂µi

f (xj |µi,6i)= f (xj |µi ,6i) 6−1
i (xj −µi)



CHAPTER 14 Hierarchical Clustering

Given n points in a d-dimensional space, the goal of hierarchical clustering is to create

a sequence of nested partitions, which can be conveniently visualized via a tree or

hierarchy of clusters, also called the cluster dendrogram. The clusters in the hierarchy

range from the fine-grained to the coarse-grained – the lowest level of the tree (the

leaves) consists of each point in its own cluster, whereas the highest level (the root)

consists of all points in one cluster. Both of these may be considered to be trivial cluster-

ings. At some intermediate level, we may find meaningful clusters. If the user supplies

k, the desired number of clusters, we can choose the level at which there are k clusters.

There are two main algorithmic approaches to mine hierarchical clusters:

agglomerative and divisive. Agglomerative strategies work in a bottom-up manner.

That is, starting with each of the n points in a separate cluster, they repeatedly merge

the most similar pair of clusters until all points are members of the same cluster.

Divisive strategies do just the opposite, working in a top-down manner. Starting with

all the points in the same cluster, they recursively split the clusters until all points are

in separate clusters. In this chapter we focus on agglomerative strategies. We discuss

some divisive strategies in Chapter 16, in the context of graph partitioning.

14.1 PRELIMINARIES

Given a dataset D = {x1, . . . ,xn}, where xi ∈ R
d , a clustering C = {C1, . . . ,Ck} is a

partition of D, that is, each cluster is a set of points Ci ⊆ D, such that the clusters

are pairwise disjoint Ci ∩ Cj = ∅ (for all i 6= j), and ∪k
i=1Ci = D. A clustering

A= {A1, . . . ,Ar } is said to be nested in another clustering B = {B1, . . . ,Bs} if and only

if r > s, and for each cluster Ai ∈ A, there exists a cluster Bj ∈ B, such that Ai ⊆ Bj .

Hierarchical clustering yields a sequence of n nested partitions C1, . . . ,Cn, ranging from

the trivial clustering C1 =
{

{x1}, . . . ,{xn}
}

where each point is in a separate cluster, to

the other trivial clustering Cn =
{

{x1, . . . ,xn}
}

, where all points are in one cluster. In

general, the clustering Ct−1 is nested in the clustering Ct . The cluster dendrogram is

a rooted binary tree that captures this nesting structure, with edges between cluster

Ci ∈ Ct−1 and cluster Cj ∈ Ct if Ci is nested in Cj , that is, if Ci ⊂ Cj . In this way the

dendrogram captures the entire sequence of nested clusterings.

364
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Figure 14.1. Hierarchical clustering dendrogram.

Example 14.1. Figure 14.1 shows an example of hierarchical clustering of five labeled

points: A, B, C, D, and E. The dendrogram represents the following sequence of

nested partitions:

Clustering Clusters

C1 {A},{B},{C},{D},{E}
C2 {AB},{C},{D},{E}
C3 {AB},{CD},{E}
C4 {ABCD},{E}
C5 {ABCDE}

with Ct−1 ⊂ Ct for t = 2, . . . ,5. We assume that A and B are merged before C and D.

Number of Hierarchical Clusterings

The number of different nested or hierarchical clusterings corresponds to the number

of different binary rooted trees or dendrograms with n leaves with distinct labels. Any

tree with t nodes has t − 1 edges. Also, any rooted binary tree with m leaves has m− 1

internal nodes. Thus, a dendrogram with m leaf nodes has a total of t = m+m− 1 =
2m−1 nodes, and consequently t−1= 2m−2 edges. To count the number of different

dendrogram topologies, let us consider how we can extend a dendrogram with m leaves

by adding an extra leaf, to yield a dendrogram with m+1 leaves. Note that we can add

the extra leaf by splitting (i.e., branching from) any of the 2m− 2 edges. Further, we

can also add the new leaf as a child of a new root, giving 2m− 2+ 1 = 2m− 1 new

dendrograms with m+ 1 leaves. The total number of different dendrograms with n

leaves is thus obtained by the following product:

n−1
∏

m=1

(2m− 1)= 1× 3× 5× 7×·· ·× (2n− 3)= (2n− 3)!! (14.1)
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Figure 14.2. Number of hierarchical clusterings.

The index m in Eq. (14.1) goes up to n−1 because the last term in the product denotes

the number of dendrograms one obtains when we extend a dendrogram with n− 1

leaves by adding one more leaf, to yield dendrograms with n leaves.

The number of possible hierarchical clusterings is thus given as (2n− 3)!!, which

grows extremely rapidly. It is obvious that a naive approach of enumerating all possible

hierarchical clusterings is simply infeasible.

Example 14.2. Figure 14.2 shows the number of trees with one, two, and three leaves.

The gray nodes are the virtual roots, and the black dots indicate locations where a

new leaf can be added. There is only one tree possible with a single leaf, as shown

in Figure 14.2a. It can be extended in only one way to yield the unique tree with

two leaves in Figure 14.2b. However, this tree has three possible locations where the

third leaf can be added. Each of these cases is shown in Figure 14.2c. We can further

see that each of the trees with m = 3 leaves has five locations where the fourth leaf

can be added, and so on, which confirms the equation for the number of hierarchical

clusterings in Eq. (14.1).

14.2 AGGLOMERATIVE HIERARCHICAL CLUSTERING

In agglomerative hierarchical clustering, we begin with each of the n points in a

separate cluster. We repeatedly merge the two closest clusters until all points are

members of the same cluster, as shown in the pseudo-code given in Algorithm 14.1.

Formally, given a set of clusters C = {C1,C2, ..,Cm}, we find the closest pair of clusters

Ci and Cj and merge them into a new cluster Cij =Ci ∪Cj . Next, we update the set of

clusters by removing Ci and Cj and adding Cij , as follows C =
(

C \ {Ci,Cj }
)

∪ {Cij }.
We repeat the process until C contains only one cluster. Because the number of

clusters decreases by one in each step, this process results in a sequence of n nested

clusterings. If specified, we can stop the merging process when there are exactly k

clusters remaining.
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ALGORITHM 14.1. Agglomerative Hierarchical Clustering Algorithm

AGGLOMERATIVECLUSTERING(D,k):

C←{Ci = {xi} | xi ∈D} // Each point in separate cluster1

1←{δ(xi,xj ) : xi,xj ∈D} // Compute distance matrix2

repeat3

Find the closest pair of clusters Ci,Cj ∈ C4

Cij←Ci ∪Cj // Merge the clusters5

C←
(

C \ {Ci,Cj }
)

∪{Cij } // Update the clustering6

Update distance matrix 1 to reflect new clustering7

until |C| = k8

14.2.1 Distance between Clusters

The main step in the algorithm is to determine the closest pair of clusters. Several

distance measures, such as single link, complete link, group average, and others

discussed in the following paragraphs, can be used to compute the distance between

any two clusters. The between-cluster distances are ultimately based on the distance

between two points, which is typically computed using the Euclidean distance or

L2-norm, defined as

δ(x,y)=
∥

∥x− y
∥

∥

2
=
(

d
∑

i=1

(xi − yi)
2
)1/2

However, one may use other distance metrics, or if available one may a user-specified

distance matrix.

Single Link

Given two clusters Ci and Cj , the distance between them, denoted δ(Ci,Cj ), is defined

as the minimum distance between a point in Ci and a point in Cj

δ(Ci,Cj )=min{δ(x,y) | x ∈Ci,y ∈Cj }

The name single link comes from the observation that if we choose the minimum

distance between points in the two clusters and connect those points, then (typically)

only a single link would exist between those clusters because all other pairs of points

would be farther away.

Complete Link

The distance between two clusters is defined as the maximum distance between a point

in Ci and a point in Cj :

δ(Ci,Cj )=max{δ(x,y) | x ∈Ci,y ∈Cj }

The name complete link conveys the fact that if we connect all pairs of points from the

two clusters with distance at most δ(Ci,Cj ), then all possible pairs would be connected,

that is, we get a complete linkage.
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Group Average

The distance between two clusters is defined as the average pairwise distance between

points in Ci and Cj :

δ(Ci,Cj )=
∑

x∈Ci

∑

y∈Cj
δ(x,y)

ni ·nj

where ni = |Ci| denotes the number of points in cluster Ci .

Mean Distance

The distance between two clusters is defined as the distance between the means or

centroids of the two clusters:

δ(Ci,Cj )= δ(µi,µj ) (14.2)

where µi = 1
ni

∑

x∈Ci
x.

Minimum Variance: Ward’s Method

The distance between two clusters is defined as the increase in the sum of squared

errors (SSE) when the two clusters are merged. The SSE for a given cluster Ci is

given as

SSEi =
∑

x∈Ci

‖x−µi‖2

which can also be written as

SSEi =
∑

x∈Ci

‖x−µi‖2

=
∑

x∈Ci

xTx− 2
∑

x∈Ci

xTµi +
∑

x∈Ci

µT
i µi

=
(

∑

x∈Ci

xTx
)

−niµ
T
i µi (14.3)

The SSE for a clustering C = {C1, . . . ,Cm} is given as

SSE=
m
∑

i=1

SSEi =
m
∑

i=1

∑

x∈Ci

‖x−µi‖2

Ward’s measure defines the distance between two clusters Ci and Cj as the net

change in the SSE value when we merge Ci and Cj into Cij , given as

δ(Ci,Cj )=1SSEij = SSEij −SSEi −SSEj (14.4)

We can obtain a simpler expression for the Ward’s measure by plugging

Eq. (14.3) into Eq. (14.4), and noting that because Cij = Ci ∪Cj and Ci ∩Cj = ∅, we
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have |Cij | = nij = ni +nj , and therefore

δ(Ci,Cj )=1SSEij

=
∑

z∈Cij

∥

∥z−µij

∥

∥

2−
∑

x∈Ci

‖x−µi‖2−
∑

y∈Cj

∥

∥y−µj

∥

∥

2

=
∑

z∈Cij

zTz−nijµ
T
ijµij −

∑

x∈Ci

xTx+niµ
T
i µi −

∑

y∈Cj

yTy+njµ
T
j µj

= niµ
T
i µi +njµ

T
j µj − (ni +nj )µ

T
ijµij (14.5)

The last step follows from the fact that
∑

z∈Cij
zTz=

∑

x∈Ci
xTx+

∑

y∈Cj
yTy. Noting that

µij =
niµi +njµj

ni +nj

we obtain

µT
ijµij =

1

(ni +nj )2

(

n2
i µ

T
i µi + 2ninjµ

T
i µj +n2

j µ
T
j µj

)

Plugging the above into Eq. (14.5), we finally obtain

δ(Ci,Cj )=1SSEij

= niµ
T
i µi +njµ

T
j µj −

1

(ni +nj)

(

n2
i µ

T
i µi + 2ninjµ

T
i µj +n2

j µ
T
j µj

)

=
ni(ni +nj )µ

T
i µi +nj (ni +nj )µ

T
j µj −n2

i µ
T
i µi − 2ninjµ

T
i µj −n2

j µ
T
j µj

ni +nj

=
ninj

(

µT
i µi − 2µT

i µj +µT
j µj

)

ni +nj

=
(

ninj

ni +nj

)

∥

∥µi −µj

∥

∥

2

Ward’s measure is therefore a weighted version of the mean distance measure

because if we use Euclidean distance, the mean distance in Eq. (14.2) can be

rewritten as

δ(µi,µj )=
∥

∥µi −µj

∥

∥

2
(14.6)

We can see that the only difference is that Ward’s measure weights the distance

between the means by half of the harmonic mean of the cluster sizes, where the

harmonic mean of two numbers n1 and n2 is given as 2
1
n1
+ 1

n2

= 2n1n2
n1+n2

.

Example 14.3 (Single Link). Consider the single link clustering shown in Figure 14.3

on a dataset of five points, whose pairwise distances are also shown on the bottom

left. Initially, all points are in their own cluster. The closest pair of points are

(A,B) and (C,D), both with δ = 1. We choose to first merge A and B, and

derive a new distance matrix for the merged cluster. Essentially, we have to
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Figure 14.3. Single link agglomerative clustering.

compute the distances of the new cluster AB to all other clusters. For example,

δ(AB,E) = 3 because δ(AB,E) = min{δ(A,E),δ(B,E)} = min{4,3} = 3. In the next

step we merge C and D because they are the closest clusters, and we obtain a new

distance matrix for the resulting set of clusters. After this, AB and CD are merged,

and finally, E is merged with ABCD. In the distance matrices, we have shown

(circled) the minimum distance used at each iteration that results in a merging of

the two closest pairs of clusters.

14.2.2 Updating Distance Matrix

Whenever two clusters Ci and Cj are merged into Cij , we need to update the distance

matrix by recomputing the distances from the newly created cluster Cij to all other

clusters Cr (r 6= i and r 6= j). The Lance–Williams formula provides a general equation

to recompute the distances for all of the cluster proximity measures we considered

earlier; it is given as

δ(Cij ,Cr )= αi · δ(Ci,Cr )+αj · δ(Cj ,Cr )+
β · δ(Ci,Cj )+ γ ·

∣

∣δ(Ci,Cr )− δ(Cj ,Cr )
∣

∣ (14.7)
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Table 14.1. Lance–Williams formula for cluster proximity

Measure αi αj β γ

Single link 1
2

1
2

0 − 1
2

Complete link 1
2

1
2

0 1
2

Group average ni

ni+nj

nj

ni+nj
0 0

Mean distance ni

ni+nj

nj

ni+nj

−ni ·nj

(ni+nj )2 0

Ward’s measure ni+nr

ni+nj+nr

nj+nr

ni+nj+nr

−nr

ni+nj+nr
0
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Figure 14.4. Iris dataset: complete link.

The coefficients αi ,αj ,β, and γ differ from one measure to another. Let ni = |Ci |
denote the cardinality of cluster Ci ; then the coefficients for the different distance

measures are as shown in Table 14.1.

Example 14.4. Consider the two-dimensional Iris principal components dataset

shown in Figure 14.4, which also illustrates the results of hierarchical clustering using

the complete-link method, with k= 3 clusters. Table 14.2 shows the contingency table

comparing the clustering results with the ground-truth Iris types (which are not used

in clustering). We can observe that 15 points are misclustered in total; these points

are shown in white in Figure 14.4. Whereas iris-setosa is well separated, the other

two Iris types are harder to separate.

14.2.3 Computational Complexity

In agglomerative clustering, we need to compute the distance of each cluster to all

other clusters, and at each step the number of clusters decreases by 1. Initially it takes
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Table 14.2. Contingency table: clusters versus Iris types

iris-setosa iris-virginica iris-versicolor

C1 (circle) 50 0 0

C2 (triangle) 0 1 36

C3 (square) 0 49 14

O(n2) time to create the pairwise distance matrix, unless it is specified as an input to

the algorithm.

At each merge step, the distances from the merged cluster to the other clusters

have to be recomputed, whereas the distances between the other clusters remain the

same. This means that in step t , we compute O(n − t) distances. The other main

operation is to find the closest pair in the distance matrix. For this we can keep the

n2 distances in a heap data structure, which allows us to find the minimum distance

in O(1) time; creating the heap takes O(n2) time. Deleting/updating distances from

the heap takes O(logn) time for each operation, for a total time across all merge

steps of O(n2 logn). Thus, the computational complexity of hierarchical clustering is

O(n2 logn).

14.3 FURTHER READING

Hierarchical clustering has a long history, especially in taxonomy or classificatory

systems, and phylogenetics; see, for example, Sokal and Sneath (1963). The generic

Lance–Williams formula for distance updates appears in Lance and Williams (1967).

Ward’s measure is from Ward (1963). Efficient methods for single-link and

complete-link measures with O(n2) complexity are given in Sibson (1973) and Defays

(1977), respectively. For a good discussion of hierarchical clustering, and clustering in

general, see Jain and Dubes (1988).

Defays, D. (Nov. 1977). “An efficient algorithm for a complete link method.”

Computer Journal, 20 (4): 364–366.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Upper Saddle

River, NJ: Prentice-Hall.
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Ward, J. H. (1963). “Hierarchical grouping to optimize an objective function.” Journal

of the American Statistical Association, 58 (301): 236–244.
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14.4 EXERCISES AND PROJECTS

Q1. Consider the 5-dimensional categorical data shown in Table 14.3.

Table 14.3. Data for Q1

Point X1 X2 X3 X4 X5

x1 1 0 1 1 0

x2 1 1 0 1 0

x3 0 0 1 1 0

x4 0 1 0 1 0

x5 1 0 1 0 1

x6 0 1 1 0 0

The similarity between categorical data points can be computed in terms of the

number of matches and mismatches for the different attributes. Let n11 be the number

of attributes on which two points xi and xj assume the value 1, and let n10 denote the

number of attributes where xi takes value 1, but xj takes on the value of 0. Define

n01 and n00 in a similar manner. The contingency table for measuring the similarity is

then given as

xj

1 0

xi 1 n11 n10

0 n01 n00

Define the following similarity measures:

• Simple matching coefficient: SMC(Xi ,Xj )= n11+n00
n11+n10+n01+n00

• Jaccard coefficient: JC(Xi ,Xj )= n11
n11+n10+n01

• Rao’s coefficient: RC(Xi ,Xj )= n11
n11+n10+n01+n00

Find the cluster dendrograms produced by the hierarchical clustering algorithm under

the following scenarios:

(a) We use single link with RC.

(b) We use complete link with SMC.

(c) We use group average with JC.

Q2. Given the dataset in Figure 14.5, show the dendrogram resulting from the single-link

hierarchical agglomerative clustering approach using the L1-norm as the distance

between points

δ(x,y)=
2
∑

a=1

|xia − yia |

Whenever there is a choice, merge the cluster that has the lexicographically smallest

labeled point. Show the cluster merge order in the tree, stopping when you have k= 4

clusters. Show the full distance matrix at each step.
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Figure 14.5. Dataset for Q2.

Table 14.4. Dataset for Q3

A B C D E

A 0 1 3 2 4

B 0 3 2 3

C 0 1 3

D 0 5

E 0

Q3. Using the distance matrix from Table 14.4, use the average link method to generate

hierarchical clusters. Show the merging distance thresholds.

Q4. Prove that in the Lance–Williams formula [Eq. (14.7)]

(a) If αi = ni

ni+nj
, αj = nj

ni+nj
, β = 0 and γ = 0, then we obtain the group average

measure.

(b) If αi = ni+nr

ni+nj+nr
, αj = nj+nr

ni+nj+nr
, β = −nr

ni+nj+nr
and γ = 0, then we obtain Ward’s

measure.

Q5. If we treat each point as a vertex, and add edges between two nodes with distance

less than some threshold value, then the single-link method corresponds to a well

known graph algorithm. Describe this graph-based algorithm to hierarchically cluster

the nodes via single-link measure, using successively higher distance thresholds.



CHAPTER 15 Density-based Clustering

The representative-based clustering methods like K-means and expectation-

maximization are suitable for finding ellipsoid-shaped clusters, or at best convex

clusters. However, for nonconvex clusters, such as those shown in Figure 15.1, these

methods have trouble finding the true clusters, as two points from different clusters

may be closer than two points in the same cluster. The density-based methods we

consider in this chapter are able to mine such nonconvex clusters.

15.1 THE DBSCAN ALGORITHM

Density-based clustering uses the local density of points to determine the clusters,

rather than using only the distance between points. We define a ball of radius ǫ around

a point x ∈Rd , called the ǫ-neighborhood of x, as follows:

Nǫ(x)=Bd(x,ǫ)= {y | δ(x,y)≤ ǫ}

Here δ(x,y) represents the distance between points x and y, which is usually assumed

to be the Euclidean distance, that is, δ(x,y)=‖x−y‖2. However, other distance metrics

can also be used.

For any point x∈D, we say that x is a core point if there are at least minpts points in

its ǫ-neighborhood. In other words, x is a core point if |Nǫ(x)| ≥minpts, where minpts

is a user-defined local density or frequency threshold. A border point is defined as a

point that does not meet the minpts threshold, that is, it has |Nǫ(x)| < minpts, but it

belongs to the ǫ-neighborhood of some core point z, that is, x∈Nǫ(z). Finally, if a point

is neither a core nor a border point, then it is called a noise point or an outlier.

Example 15.1. Figure 15.2a shows the ǫ-neighborhood of the point x, using the

Euclidean distance metric. Figure 15.2b shows the three different types of points,

using minpts = 6. Here x is a core point because |Nǫ(x)| = 6, y is a border point

because |Nǫ(y)|< minpts, but it belongs to the ǫ-neighborhood of the core point x,

i.e., y ∈Nǫ(x). Finally, z is a noise point.

We say that a point x is directly density reachable from another point y if x ∈Nǫ(y)

and y is a core point. We say that x is density reachable from y if there exists a chain

375
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Figure 15.1. Density-based dataset.
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Figure 15.2. (a) Neighborhood of a point. (b) Core, border, and noise points.

of points, x0,x1, . . . ,xl , such that x = x0 and y = xl , and xi is directly density reachable

from xi−1 for all i = 1, . . . , l. In other words, there is set of core points leading from y to

x. Note that density reachability is an asymmetric or directed relationship. Define any

two points x and y to be density connected if there exists a core point z, such that both

x and y are density reachable from z. A density-based cluster is defined as a maximal

set of density connected points.

The pseudo-code for the DBSCAN density-based clustering method is shown in

Algorithm 15.1. First, DBSCAN computes the ǫ-neighborhood Nǫ(xi) for each point

xi in the dataset D, and checks if it is a core point (lines 2–5). It also sets the cluster

id id(xi) = ∅ for all points, indicating that they are not assigned to any cluster. Next,

starting from each unassigned core point, the method recursively finds all its density

connected points, which are assigned to the same cluster (line 10). Some border point
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ALGORITHM 15.1. Density-based Clustering Algorithm

DBSCAN (D, ǫ, minpts):

Core←∅1

foreach xi ∈D do // Find the core points2

Compute Nǫ(xi)3

id(xi)←∅ // cluster id for xi4

if Nǫ(xi)≥minpts then Core←Core∪{xi}5

k← 0 // cluster id6

foreach xi ∈Core, such that id(xi)= ∅ do7

k← k+ 18

id(xi)← k // assign xi to cluster id k9

DENSITYCONNECTED (xi,k)10

C←{Ci}ki=1, where Ci←{x ∈D | id(x)= i}11

Noise←{x ∈D | id(x)= ∅}12

Border←D \ {Core∪Noise}13

return C,Core,Border,Noise14

DENSITYCONNECTED (x, k):

foreach y ∈Nǫ(x) do15

id(y)← k // assign y to cluster id k16

if y ∈Core then DENSITYCONNECTED (y,k)17

may be reachable from core points in more than one cluster; they may either be

arbitrarily assigned to one of the clusters or to all of them (if overlapping clusters are

allowed). Those points that do not belong to any cluster are treated as outliers or noise.

DBSCAN can also be considered as a search for the connected components in

a graph where the vertices correspond to the core points in the dataset, and there

exists an (undirected) edge between two vertices (core points) if the distance between

them is less than ǫ, that is, each of them is in the ǫ-neighborhood of the other

point. The connected components of this graph correspond to the core points of each

cluster. Next, each core point incorporates into its cluster any border points in its

neighborhood.

One limitation of DBSCAN is that it is sensitive to the choice of ǫ, in particular if

clusters have different densities. If ǫ is too small, sparser clusters will be categorized as

noise. If ǫ is too large, denser clusters may be merged together. In other words, if there

are clusters with different local densities, then a single ǫ value may not suffice.

Example 15.2. Figure 15.3 shows the clusters discovered by DBSCAN on the

density-based dataset in Figure 15.1. For the parameter values ǫ = 15 and

minpts = 10, found after parameter tuning, DBSCAN yields a near-perfect clustering

comprising all nine clusters. Cluster are shown using different symbols and shading;

noise points are shown as plus symbols.
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Figure 15.3. Density-based clusters.
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(a) ǫ = 0.2, minpts = 5
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(b) ǫ = 0.36, minpts = 3

Figure 15.4. DBSCAN clustering: Iris dataset.

Example 15.3. Figure 15.4 shows the clusterings obtained via DBSCAN on the

two-dimensional Iris dataset (over sepal length and sepal width attributes) for

two different parameter settings. Figure 15.4a shows the clusters obtained with radius

ǫ = 0.2 and core threshold minpts = 5. The three clusters are plotted using different

shaped points, namely circles, squares, and triangles. Shaded points are core points,

whereas the border points for each cluster are showed unshaded (white). Noise points

are shown as plus symbols. Figure 15.4b shows the clusters obtained with a larger

value of radius ǫ = 0.36, with minpts = 3. Two clusters are found, corresponding to

the two dense regions of points.

For this dataset tuning the parameters is not that easy, and DBSCAN is not very

effective in discovering the three Iris classes. For instance it identifies too many

points (47 of them) as noise in Figure 15.4a. However, DBSCAN is able to find

the two main dense sets of points, distinguishing iris-setosa (in triangles) from

the other types of Irises, in Figure 15.4b. Increasing the radius more than ǫ = 0.36

collapses all points into a single large cluster.
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Computational Complexity

The main cost in DBSCAN is for computing the ǫ-neighborhood for each point. If

the dimensionality is not too high this can be done efficiently using a spatial index

structure in O(n logn) time. When dimensionality is high, it takes O(n2) to compute

the neighborhood for each point. Once Nǫ(x) has been computed the algorithm needs

only a single pass over all the points to find the density connected clusters. Thus, the

overall complexity of DBSCAN is O(n2) in the worst-case.

15.2 KERNEL DENSITY ESTIMATION

There is a close connection between density-based clustering and density estimation.

The goal of density estimation is to determine the unknown probability density

function by finding the dense regions of points, which can in turn be used for clustering.

Kernel density estimation is a nonparametric technique that does not assume any

fixed probability model of the clusters, as in the case of K-means or the mixture

model assumed in the EM algorithm. Instead, it tries to directly infer the underlying

probability density at each point in the dataset.

15.2.1 Univariate Density Estimation

Assume that X is a continuous random variable, and let x1,x2, . . . ,xn be a random

sample drawn from the underlying probability density function f (x), which is assumed

to be unknown. We can directly estimate the cumulative distribution function from the

data by counting how many points are less than or equal to x:

F̂ (x)= 1

n

n
∑

i=1

I(xi ≤ x)

where I is an indicator function that has value 1 only when its argument is true, and 0

otherwise. We can estimate the density function by taking the derivative of F̂ (x), by

considering a window of small width h centered at x, that is,

f̂ (x)=
F̂
(

x+ h

2

)

− F̂
(

x− h

2

)

h
= k/n

h
= k

nh
(15.1)

where k is the number of points that lie in the window of width h centered at x, that

is, within the closed interval [x − h

2
, x + h

2
]. Thus, the density estimate is the ratio of

the fraction of the points in the window (k/n) to the volume of the window (h). Here

h plays the role of “influence.” That is, a large h estimates the probability density over

a large window by considering many points, which has the effect of smoothing the

estimate. On the other hand, if h is small, then only the points in close proximity to x

are considered. In general we want a small value of h, but not too small, as in that case

no points will fall in the window and we will not be able to get an accurate estimate of

the probability density.
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Kernel Estimator

Kernel density estimation relies on a kernel function K that is non-negative, symmetric,

and integrates to 1, that is, K(x)≥ 0, K(−x)=K(x) for all values x, and
∫

K(x)dx = 1.

Thus, K is essentially a probability density function. Note that K should not be

confused with the positive semidefinite kernel mentioned in Chapter 5.

Discrete Kernel The density estimate f̂ (x) from Eq. (15.1) can also be rewritten in

terms of the kernel function as follows:

f̂ (x)= 1

nh

n
∑

i=1

K

(

x− xi

h

)

where the discrete kernel function K computes the number of points in a window of

width h, and is defined as

K(z)=
{

1 If |z| ≤ 1
2

0 Otherwise
(15.2)

We can see that if |z| = | x−xi

h
| ≤ 1

2
, then the point xi is within a window of width h

centered at x, as

∣

∣

∣

∣

x− xi

h

∣

∣

∣

∣

≤ 1

2
implies that− 1

2
≤ xi − x

h
≤ 1

2
, or

− h

2
≤ xi − x ≤ h

2
, and finally

x− h

2
≤ xi ≤ x+ h

2

Example 15.4. Figure 15.5 shows the kernel density estimates using the discrete

kernel for different values of the influence parameter h, for the one-dimensional Iris

dataset comprising the sepal length attribute. The x-axis plots the n = 150 data

points. Because several points have the same value, they are shown stacked, where

the stack height corresponds to the frequency of that value.

When h is small, as shown in Figure 15.5a, the density function has many local

maxima or modes. However, as we increase h from 0.25 to 2, the number of modes

decreases, until h becomes large enough to yield a unimodal distribution, as shown in

Figure 15.5d. We can observe that the discrete kernel yields a non-smooth (or jagged)

density function.

Gaussian Kernel The width h is a parameter that denotes the spread or smoothness

of the density estimate. If the spread is too large we get a more averaged value. If it is

too small we do not have enough points in the window. Further, the kernel function in

Eq. (15.2) has an abrupt influence. For points within the window (|z| ≤ 1
2
) there is a net

contribution of 1
hn

to the probability estimate f̂ (x). On the other hand, points outside

the window (|z|> 1
2
) contribute 0.
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Figure 15.5. Kernel density estimation: discrete kernel (varying h).

Instead of the discrete kernel, we can define a more smooth transition of influence

via a Gaussian kernel:

K (z)= 1√
2π

exp

{

−z2

2

}

Thus, we have

K

(

x− xi

h

)

= 1√
2π

exp

{

− (x− xi)
2

2h2

}

Here x, which is at the center of the window, plays the role of the mean, and h acts as

the standard deviation.

Example 15.5. Figure 15.6 shows the univariate density function for the

1-dimensional Iris dataset (over sepal length) using the Gaussian kernel. Plots are

shown for increasing values of the spread parameter h. The data points are shown

stacked along the x-axis, with the heights corresponding to the value frequencies.

As h varies from 0.1 to 0.5, we can see the smoothing effect of increasing h on the

density function. For instance, for h= 0.1 there are many local maxima, whereas for

h= 0.5 there is only one density peak. Compared to the discrete kernel case shown

in Figure 15.5, we can clearly see that the Gaussian kernel yields much smoother

estimates, without discontinuities.
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Figure 15.6. Kernel density estimation: Gaussian kernel (varying h).

15.2.2 Multivariate Density Estimation

To estimate the probability density at a d-dimensional point x = (x1,x2, . . . ,xd)
T,

we define the d-dimensional “window” as a hypercube in d dimensions, that is, a

hypercube centered at x with edge length h. The volume of such a d-dimensional

hypercube is given as

vol(Hd(h))= hd

The density is then estimated as the fraction of the point weight lying within the

d-dimensional window centered at x, divided by the volume of the hypercube:

f̂ (x)= 1

nhd

n
∑

i=1

K

(

x− xi

h

)

(15.3)

where the multivariate kernel function K satisfies the condition
∫

K(z)dz= 1.

Discrete Kernel For any d-dimensional vector z= (z1,z2, . . . ,zd)
T, the discrete kernel

function in d-dimensions is given as

K(z)=
{

1 If |zj | ≤ 1
2
, for all dimensions j = 1, . . . ,d

0 Otherwise
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Figure 15.7. Density estimation: 2D Iris dataset (varying h).

For z = x−xi

h
, we see that the kernel computes the number of points within the

hypercube centered at x because K(
x−xi

h
) = 1 if and only if | xj−xij

h
| ≤ 1

2
for all

dimensions j . Each point within the hypercube thus contributes a weight of 1
n

to the

density estimate.

Gaussian Kernel The d-dimensional Gaussian kernel is given as

K (z)= 1

(2π)d/2
exp

{

−zTz

2

}

(15.4)

where we assume that the covariance matrix is the d×d identity matrix, that is, 6 = Id .

Plugging z= x−xi

h
in Eq. (15.4), we have

K

(

x− xi

h

)

= 1

(2π)d/2
exp

{

− (x− xi)
T(x− xi)

2h2

}

Each point contributes a weight to the density estimate inversely proportional to its

distance from x tempered by the width parameter h.

Example 15.6. Figure 15.7 shows the probability density function for the 2D

Iris dataset comprising the sepal length and sepal width attributes, using the

Gaussian kernel. As expected, for small values of h the density function has

several local maxima, whereas for larger values the number of maxima reduce, and

ultimately for a large enough value we obtain a unimodal distribution.
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Figure 15.8. Density estimation: density-based dataset.

Example 15.7. Figure 15.8 shows the kernel density estimate for the density-based

dataset in Figure 15.1, using a Gaussian kernel with h = 20. One can clearly

discern that the density peaks closely correspond to regions with higher density of

points.

15.2.3 Nearest Neighbor Density Estimation

In the preceding density estimation formulation we implicitly fixed the volume by

fixing the width h, and we used the kernel function to find out the number or weight

of points that lie inside the fixed volume region. An alternative approach to density

estimation is to fix k, the number of points required to estimate the density, and

allow the volume of the enclosing region to vary to accommodate those k points. This

approach is called the k nearest neighbors (KNN) approach to density estimation. Like

kernel density estimation, KNN density estimation is also a nonparametric approach.

Given k, the number of neighbors, we estimate the density at x as follows:

f̂ (x)= k

nvol(Sd(hx))

where hx is the distance from x to its kth nearest neighbor, and vol(Sd(hx)) is the volume

of the d-dimensional hypersphere Sd(hx) centered at x, with radius hx [Eq. (6.4)]. In

other words, the width (or radius) hx is now a variable, which depends on x and the

chosen value k.
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15.3 DENSITY-BASED CLUSTERING: DENCLUE

Having laid the foundations of kernel density estimation, we can develop a general

formulation of density-based clustering. The basic approach is to find the peaks in the

density landscape via gradient-based optimization, and find the regions with density

above a given threshold.

Density Attractors and Gradient

A point x∗ is called a density attractor if it is a local maxima of the probability density

function f . A density attractor can be found via a gradient ascent approach starting at

some point x. The idea is to compute the density gradient, the direction of the largest

increase in the density, and to move in the direction of the gradient in small steps, until

we reach a local maxima.

The gradient at a point x can be computed as the multivariate derivative of the

probability density estimate in Eq. (15.3), given as

∇f̂ (x)= ∂

∂x
f̂ (x)= 1

nhd

n
∑

i=1

∂

∂x
K

(

x− xi

h

)

(15.5)

For the Gaussian kernel [Eq. (15.4)], we have

∂

∂x
K(z)=

(

1

(2π)d/2
exp

{

−zTz

2

})

·−z · ∂z

∂x

=K(z) ·−z · ∂z

∂x

Setting z= x−xi

h
above, we get

∂

∂x
K

(

x− xi

h

)

=K

(

x− xi

h

)

·
(

xi − x

h

)

·
(

1

h

)

which follows from the fact that ∂

∂x

(

x−xi

h

)

= 1
h
. Substituting the above in Eq. (15.5), the

gradient at a point x is given as

∇f̂ (x)= 1

nhd+2

n
∑

i=1

K

(

x− xi

h

)

· (xi − x) (15.6)

This equation can be thought of as having two parts. A vector (xi − x) and a scalar

influence value K(
x−xi

h
). For each point xi , we first compute the direction away from

x, that is, the vector (xi − x). Next, we scale it using the Gaussian kernel value as the

weight K
(

x−xi

h

)

. Finally, the vector ∇f̂ (x) is the net influence at x, as illustrated in

Figure 15.9, that is, the weighted sum of the difference vectors.

We say that x∗ is a density attractor for x, or alternatively that x is density attracted to

x∗, if a hill climbing process started at x converges to x∗. That is, there exists a sequence

of points x= x0→ x1→ . . .→ xm, starting from x and ending at xm, such that ‖xm−x∗‖≤
ǫ, that is, xm converges to the attractor x∗.

The typical approach is to use the gradient-ascent method to compute x∗, that is,

starting from x, we iteratively update it at each step t via the update rule:

xt+1 = xt + δ · ∇f̂ (xt)



386 Density-based Clustering

0

1

2

3

0 1 2 3 4 5

x
x1

x2x3 ∇f̂ (x)

Figure 15.9. The gradient vector ∇ f̂ (x) (shown in thick black) obtained as the sum of difference vectors

xi − x (shown in gray).

where δ > 0 is the step size. That is, each intermediate point is obtained after a small

move in the direction of the gradient vector. However, the gradient-ascent approach

can be slow to converge. Instead, one can directly optimize the move direction by

setting the gradient [Eq. (15.6)] to the zero vector:

∇f̂ (x)= 0

1

nhd+2

n
∑

i=1

K

(

x− xi

h

)

· (xi − x)= 0

x ·
n
∑

i=1

K

(

x− xi

h

)

=
n
∑

i=1

K

(

x− xi

h

)

xi

x=
∑n

i=1 K
( x−xi

h

)

xi
∑n

i=1 K
(

x−xi

h

)

The point x is involved on both the left- and right-hand sides above; however, it can be

used to obtain the following iterative update rule:

xt+1 =
∑n

i=1 K
( xt−xi

h

)

xi
∑n

i=1 K
(

xt−xi

h

) (15.7)

where t denotes the current iteration and xt+1 is the updated value for the current

vector xt . This direct update rule is essentially a weighted average of the influence

(computed via the kernel function K) of each point xi ∈D on the current point xt . The

direct update rule results in much faster convergence of the hill-climbing process.

Center-defined Cluster

A cluster C ⊆ D, is called a center-defined cluster if all the points x ∈ C are density

attracted to a unique density attractor x∗, such that f̂ (x∗)≥ ξ , where ξ is a user-defined
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minimum density threshold. In other words,

f̂ (x∗)= 1

nhd

n
∑

i=1

K

(

x∗− xi

h

)

≥ ξ

Density-based Cluster

An arbitrary-shaped cluster C⊆D is called a density-based cluster if there exists a set

of density attractors x∗1,x∗2, . . . ,x∗m, such that

1. Each point x ∈C is attracted to some attractor x∗i .

2. Each density attractor has density above ξ . That is, f̂ (x∗i )≥ ξ .

3. Any two density attractors x∗i and x∗j are density reachable, that is, there exists a path

from x∗i to x∗j , such that for all points y on the path, f̂ (y)≥ ξ .

DENCLUE Algorithm

The pseudo-code for DENCLUE is shown in Algorithm 15.2. The first step is to

compute the density attractor x∗ for each point x in the dataset (line 4). If the density

at x∗ is above the minimum density threshold ξ , the attractor is added to the set of

attractors A. The data point x is also added to the set of points R(x∗) attracted to x∗

ALGORITHM 15.2. DENCLUE Algorithm

DENCLUE (D,h,ξ,ǫ):

A←∅1

foreach x ∈D do // find density attractors2

x∗← FINDATTRACTOR(x,D,h,ǫ)44

if f̂ (x∗)≥ ξ then5

A←A∪{x∗}77

R(x∗)←R(x∗)∪{x}99

C←{maximal C⊆A | ∀x∗i ,x∗j ∈C,x∗i and x∗j are density reachable}1111

foreach C ∈ C do // density-based clusters12

foreach x∗ ∈C do C←C∪R(x∗)13

return C14

FINDATTRACTOR (x,D,h,ǫ):

t← 01616

xt← x17

repeat18

xt+1←
∑n

i=1 K
(

xt−xi
h

)

·xt

∑n
i=1 K

(

xt−xi
h

)

2020

t← t + 121

until ‖xt − xt−1‖ ≤ ǫ22

return xt2424
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(line 9). In the second step, DENCLUE finds all the maximal subsets of attractors

C ⊆ A, such that any pair of attractors in C is density-reachable from each other

(line 11). These maximal subsets of mutually reachable attractors form the seed for

each density-based cluster. Finally, for each attractor x∗ ∈ C, we add to the cluster

all of the points R(x∗) that are attracted to x∗, which results in the final set of

clusters C.

The FINDATTRACTOR method implements the hill-climbing process using the

direct update rule [Eq. (15.7)], which results in fast convergence. To further speed

up the influence computation, it is possible to compute the kernel values for only the

nearest neighbors of xt . That is, we can index the points in the dataset D using a spatial

index structure, so that we can quickly compute all the nearest neighbors of xt within

some radius r . For the Gaussian kernel, we can set r = h · z, where h is the influence

parameter that plays the role of standard deviation, and z specifies the number of

standard deviations. Let Bd(xt ,r) denote the set of all points in D that lie within a

d-dimensional ball of radius r centered at xt . The nearest neighbor based update rule

can then be expressed as

xt+1 =
∑

xi∈Bd (xt ,r)
K
( xt−xi

h

)

xi
∑

xi∈Bd (xt ,r)
K
(

xt−xi

h

)

which can be used in line 20 in Algorithm 15.2. When the data dimensionality is not

high, this can result in a significant speedup. However, the effectiveness deteriorates

rapidly with increasing number of dimensions. This is due to two effects. The first is that

finding Bd(xt ,r) reduces to a linear-scan of the data taking O(n) time for each query.

Second, due to the curse of dimensionality (see Chapter 6), nearly all points appear

to be equally close to xt , thereby nullifying any benefits of computing the nearest

neighbors.

Example 15.8. Figure 15.10 shows the DENCLUE clustering for the 2-dimensional

Iris dataset comprising the sepal length and sepal width attributes. The results

were obtained with h = 0.2 and ξ = 0.08, using a Gaussian kernel. The clustering is

obtained by thresholding the probability density function in Figure 15.7b at ξ = 0.08.

The two peaks correspond to the two final clusters. Whereas iris setosa is well

separated, it is hard to separate the other two types of Irises.

Example 15.9. Figure 15.11 shows the clusters obtained by DENCLUE on the

density-based dataset from Figure 15.1. Using the parameters h = 10 and ξ = 9.5×
10−5, with a Gaussian kernel, we obtain eight clusters. The figure is obtained by

slicing the density function at the density value ξ ; only the regions above that value

are plotted. All the clusters are correctly identified, with the exception of the two

semicircular clusters on the lower right that appear merged into one cluster.

DENCLUE: Special Cases

It can be shown that DBSCAN is a special case of the general kernel density estimate

based clustering approach, DENCLUE. If we let h = ǫ and ξ = minpts, then using a
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Figure 15.10. DENCLUE: Iris 2D dataset.
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Figure 15.11. DENCLUE: density-based dataset.

discrete kernel DENCLUE yields exactly the same clusters as DBSCAN. Each density

attractor corresponds to a core point, and the set of connected core points define the

attractors of a density-based cluster. It can also be shown that K-means is a special

case of density-based clustering for appropriates value of h and ξ , with the density

attractors corresponding to the cluster centroids. Further, it is worth noting that the

density-based approach can produce hierarchical clusters, by varying the ξ threshold.
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For example, decreasing ξ can result in the merging of several clusters found at higher

thresholds values. At the same time it can also lead to new clusters if the peak density

satisfies the lower ξ value.

Computational Complexity

The time for DENCLUE is dominated by the cost of the hill-climbing process. For each

point x ∈ D, finding the density attractor takes O(nt) time, where t is the maximum

number of hill-climbing iterations. This is because each iteration takes O(n) time for

computing the sum of the influence function over all the points xi ∈D. The total cost to

compute density attractors is therefore O(n2t). We assume that for reasonable values

of h and ξ , there are only a few density attractors, that is, |A| = m≪ n. The cost of

finding the maximal reachable subsets of attractors is O(m2), and the final clusters can

be obtained in O(n) time.
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15.5 EXERCISES

Q1. Consider Figure 15.12 and answer the following questions, assuming that we use the

Euclidean distance between points, and that ǫ = 2 and minpts = 3

(a) List all the core points.

(b) Is a directly density reachable from d?

(c) Is o density reachable from i? Show the intermediate points on the chain or the

point where the chain breaks.

(d) Is density reachable a symmetric relationship, that is, if x is density reachable

from y, does it imply that y is density reachable from x? Why or why not?

(e) Is l density connected to x? Show the intermediate points that make them density

connected or violate the property, respectively.

(f) Is density connected a symmetric relationship?

(g) Show the density-based clusters and the noise points.

1
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9
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a b c
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h i j
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o

p q r s t u

v w

x

Figure 15.12. Dataset for Q1.

Q2. Consider the points in Figure 15.13. Define the following distance measures:

L∞(x,y)= d
max
i=1

{

|xi − yi |
}

L 1
2
(x,y)=

(

d
∑

i=1

|xi − yi |
1
2

)2
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Lmin(x,y)=
d

min
i=1

{

|xi − yi |
}

Lpow(x,y)=
(

d
∑

i=1

2i−1(xi − yi)
2
)1/2

(a) Using ǫ = 2, minpts = 5, and L∞ distance, find all core, border, and noise points.

(b) Show the shape of the ball of radius ǫ= 4 using the L 1
2

distance. Using minpts= 3

show all the clusters found by DBSCAN.

(c) Using ǫ = 1, minpts = 6, and Lmin, list all core, border, and noise points.

(d) Using ǫ = 4, minpts = 3, and Lpow, show all clusters found by DBSCAN.
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Figure 15.13. Dataset for Q2 and Q3.

Q3. Consider the points shown in Figure 15.13. Define the following two kernels:

K1(z)=
{

1 If L∞(z,0)≤ 1

0 Otherwise

K2(z)=
{

1 If
∑d

j=1 |zj | ≤ 1

0 Otherwise

Using each of the two kernels K1 and K2, answer the following questions assuming

that h= 2:

(a) What is the probability density at e?

(b) What is the gradient at e?

(c) List all the density attractors for this dataset.

Q4. The Hessian matrix is defined as the set of partial derivatives of the gradient vector

with respect to x. What is the Hessian matrix for the Gaussian kernel? Use the

gradient in Eq. (15.6).

Q5. Let us compute the probability density at a point x using the k-nearest neighbor

approach, given as

f̂ (x)= k

nVx
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where k is the number of nearest neighbors, n is the total number of points, and Vx is

the volume of the region encompassing the k nearest neighbors of x. In other words,

we fix k and allow the volume to vary based on those k nearest neighbors of x. Given

the following points

2,2.5,3,4,4.5,5,6.1

Find the peak density in this dataset, assuming k = 4. Keep in mind that this may

happen at a point other than those given above. Also, a point is its own nearest

neighbor.



CHAPTER 16 Spectral and Graph Clustering

In this chapter we consider clustering over graph data, that is, given a graph, the

goal is to cluster the nodes by using the edges and their weights, which represent

the similarity between the incident nodes. Graph clustering is related to divisive

hierarchical clustering, as many methods partition the set of nodes to obtain the final

clusters using the pairwise similarity matrix between nodes. As we shall see, graph

clustering also has a very strong connection to spectral decomposition of graph-based

matrices. Finally, if the similarity matrix is positive semidefinite, it can be considered

as a kernel matrix, and graph clustering is therefore also related to kernel-based

clustering.

16.1 GRAPHS AND MATRICES

Given a dataset D = {xi}ni=1 consisting of n points in R
d , let A denote the n × n

symmetric similarity matrix between the points, given as

A=











a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann











(16.1)

where A(i,j) = aij denotes the similarity or affinity between points xi and xj . We

require the similarity to be symmetric and non-negative, that is, aij = aji and aij ≥ 0,

respectively. The matrix A may be considered to be a weighted adjacency matrix of the

weighted (undirected) graph G = (V,E), where each vertex is a point and each edge

joins a pair of points, that is,

V= {xi | i = 1, . . . ,n}
E=

{

(xi,xj ) | 1≤ i,j ≤ n
}

Further, the similarity matrix A gives the weight on each edge, that is, aij denotes the

weight of the edge (xi,xj ). If all affinities are 0 or 1, then A represents the regular

adjacency relationship between the vertices.

394
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For a vertex xi , let di denote the degree of the vertex, defined as

di =
n
∑

j=1

aij

We define the degree matrix 1 of graph G as the n×n diagonal matrix:

1=











d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn











=











∑n

j=1 a1j 0 · · · 0

0
∑n

j=1 a2j · · · 0
...

...
. . .

...

0 0 · · ·
∑n

j=1 anj











1 can be compactly written as 1(i, i)= di for all 1≤ i ≤ n.

Example 16.1. Figure 16.1 shows the similarity graph for the Iris dataset, obtained

as follows. Each of the n = 150 points xi ∈ R4 in the Iris dataset is represented by a

node in G. To create the edges, we first compute the pairwise similarity between the

points using the Gaussian kernel [Eq. (5.10)]:

aij = exp

{

−
∥

∥xi − xj

∥

∥

2

2σ 2

}

using σ = 1. Each edge (xi,xj ) has the weight aij . Next, for each node xi we compute

the top q nearest neighbors in terms of the similarity value, given as

Nq(xi)=
{

xj ∈V : aij ≤ aiq

}

where aiq represents the similarity value between xi and its qth nearest neighbor. We

used a value of q = 16, as in this case each node records at least 15 nearest neighbors

(not including the node itself), which corresponds to 10% of the nodes. An edge is

added between nodes xi and xj if and only if both nodes are mutual nearest neighbors,

that is, if xj ∈Nq(xi) and xi ∈Nq(xj). Finally, if the resulting graph is disconnected, we

add the top q most similar (i.e., highest weighted) edges between any two connected

components.

The resulting Iris similarity graph is shown in Figure 16.1. It has |V| = n = 150

nodes and |E| =m = 1730 edges. Edges with similarity aij ≥ 0.9 are shown in black,

and the remaining edges are shown in gray. Although aii = 1.0 for all nodes, we do

not show the self-edges or loops.

Normalized Adjacency Matrix

The normalized adjacency matrix is obtained by dividing each row of the adjacency

matrix by the degree of the corresponding node. Given the weighted adjacency matrix
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Figure 16.1. Iris similarity graph.

A for a graph G, its normalized adjacency matrix is defined as

M=1−1A=















a11
d1

a12
d1
· · · a1n

d1

a21
d2

a22
d2
· · · a2n

d2

...
...

. . .
...

an1
dn

an2
dn
· · · ann

dn















(16.2)

Because A is assumed to have non-negative elements, this implies that each element

of M, namely mij is also non-negative, as mij = aij

di
≥ 0. Consider the sum of the ith row

in M; we have

n
∑

j=1

mij =
n
∑

j=1

aij

di

= di

di

= 1 (16.3)

Thus, each row in M sums to 1. This implies that 1 is an eigenvalue of M. In fact,

λ1 = 1 is the largest eigenvalue of M, and the other eigenvalues satisfy the property

that |λi | ≤ 1. Also, if G is connected then the eigenvector corresponding to λ1 is

u1 = 1√
n
(1,1, . . . ,1)T = 1√

n
1. Because M is not symmetric, its eigenvectors are not

necessarily orthogonal.
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Figure 16.2. Example graph.

Example 16.2. Consider the graph in Figure 16.2. Its adjacency and degree matrices

are given as

A=























0 1 0 1 0 1 0

1 0 1 1 0 0 0

0 1 0 1 0 0 1

1 1 1 0 1 0 0

0 0 0 1 0 1 1

1 0 0 0 1 0 1

0 0 1 0 1 1 0























1=























3 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 4 0 0 0

0 0 0 0 3 0 0

0 0 0 0 0 3 0

0 0 0 0 0 0 3























The normalized adjacency matrix is as follows:

M=1−1A=























0 0.33 0 0.33 0 0.33 0

0.33 0 0.33 0.33 0 0 0

0 0.33 0 0.33 0 0 0.33

0.25 0.25 0.25 0 0.25 0 0

0 0 0 0.33 0 0.33 0.33

0.33 0 0 0 0.33 0 0.33

0 0 0.33 0 0.33 0.33 0























The eigenvalues of M sorted in decreasing order are as follows:

λ1 = 1 λ2 = 0.483 λ3 = 0.206 λ4 =−0.045

λ5 =−0.405 λ6 =−0.539 λ7 =−0.7

The eigenvector corresponding to λ1 = 1 is

u1 =
1√
7
(1,1,1,1,1,1,1)T = (0.38,0.38,0.38,0.38,0.38,0.38,0.38)T
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Graph Laplacian Matrices

The Laplacian matrix of a graph is defined as

L=1−A

=











∑n

j=1 a1j 0 · · · 0

0
∑n

j=1 a2j · · · 0
...

...
. . .

...

0 0 · · ·
∑n

j=1 anj











−











a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann











=











∑

j 6=1 a1j −a12 · · · −a1n

−a21

∑

j 6=2 a2j · · · −a2n

...
... · · ·

...

−an1 −an2 · · ·
∑

j 6=n anj











(16.4)

It is interesting to note that L is a symmetric, positive semidefinite matrix, as for

any c ∈Rn, we have

cTLc= cT(1−A)c= cT1c− cTAc

=
n
∑

i=1

dic
2
i −

n
∑

i=1

n
∑

j=1

cicjaij

= 1

2





n
∑

i=1

dic
2
i − 2

n
∑

i=1

n
∑

j=1

cicjaij +
n
∑

j=1

djc
2
j





= 1

2





n
∑

i=1

n
∑

j=1

aijc
2
i − 2

n
∑

i=1

n
∑

j=1

cicjaij +
n
∑

i=j

n
∑

i=1

aijc
2
j





= 1

2

n
∑

i=1

n
∑

j=1

aij (ci − cj )
2

≥ 0 because aij ≥ 0 and (ci − cj)
2 ≥ 0

(16.5)

This means that L has n real, non-negative eigenvalues, which can be arranged in

decreasing order as follows: λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. Because L is symmetric, its

eigenvectors are orthonormal. Further, from Eq. (16.4) we can see that the first column

(and the first row) is a linear combination of the remaining columns (rows). That is, if

Li denotes the ith column of L, then we can observe that L1+L2+L3+ ·· · +Ln = 0.

This implies that the rank of L is at most n− 1, and the smallest eigenvalue is λn = 0,

with the corresponding eigenvector given as un = 1√
n
(1,1, . . . ,1)T = 1√

n
1, provided the

graph is connected. If the graph is disconnected, then the number of eigenvalues equal

to zero specifies the number of connected components in the graph.
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Example 16.3. Consider the graph in Figure 16.2, whose adjacency and degree

matrices are shown in Example 16.2. The graph Laplacian is given as

L=1−A=























3 −1 0 −1 0 −1 0

−1 3 −1 −1 0 0 0

0 −1 3 −1 0 0 −1

−1 −1 −1 4 −1 0 0

0 0 0 −1 3 −1 −1

−1 0 0 0 −1 3 −1

0 0 −1 0 −1 −1 3























The eigenvalues of L are as follows:

λ1 = 5.618 λ2 = 4.618 λ3 = 4.414 λ4 = 3.382

λ5 = 2.382 λ6 = 1.586 λ7 = 0

The eigenvector corresponding to λ7 = 0 is

u7 =
1√
7
(1,1,1,1,1,1,1)T = (0.38,0.38,0.38,0.38,0.38,0.38,0.38)T

The normalized symmetric Laplacian matrix of a graph is defined as

Ls =1−1/2L1−1/2 (16.6)

=1−1/2(1−A)1−1/2 =1−1/211−1/2−1−1/2A1−1/2

= I−1−1/2A1−1/2

where 11/2 is the diagonal matrix given as 11/2(i, i) =
√

di , and 1−1/2 is the diagonal

matrix given as 1−1/2(i, i) = 1√
di

(assuming that di 6= 0), for 1 ≤ i ≤ n. In other words,

the normalized Laplacian is given as

Ls =1−1/2L1−1/2

=



















∑

j 6=1 a1j√
d1d1

− a12√
d1d2

· · · − a1n√
d1dn

− a21√
d2d1

∑

j 6=2 a2j√
d2d2

· · · − a2n√
d2dn

...
...

. . .
...

− an1√
dnd1

− an2√
dnd2

· · ·
∑

j 6=n anj√
dndn



















(16.7)

Like the derivation in Eq. (16.5), we can show that Ls is also positive semidefinite

because for any c ∈Rd , we get

cTLsc= 1

2

n
∑

i=1

n
∑

j=1

aij

(

ci√
di

− cj
√

dj

)2

≥ 0 (16.8)
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Further, if Ls
i denotes the ith column of Ls , then from Eq. (16.7) we can see that

√

d1L
s
1+

√

d2L
s
2+

√

d3L
s
3+ ·· ·+

√

dnLs
n = 0

That is, the first column is a linear combination of the other columns, which means that

Ls has rank at most n− 1, with the smallest eigenvalue λn = 0, and the corresponding

eigenvector 1√
∑

i di

(
√

d1,
√

d2, . . . ,
√

dn)
T = 1√

∑

i di

11/21. Combined with the fact that

Ls is positive semidefinite, we conclude that Ls has n (not necessarily distinct) real,

positive eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn = 0.

Example 16.4. We continue with Example 16.3. For the graph in Figure 16.2, its

normalized symmetric Laplacian is given as

Ls =























1 −0.33 0 −0.29 0 −0.33 0

−0.33 1 −0.33 −0.29 0 0 0

0 −0.33 1 −0.29 0 0 −0.33

−0.29 −0.29 −0.29 1 −0.29 0 0

0 0 0 −0.29 1 −0.33 −0.33

−0.33 0 0 0 −0.33 1 −0.33

0 0 −0.33 0 −0.33 −0.33 1























The eigenvalues of Ls are as follows:

λ1 = 1.7 λ2 = 1.539 λ3 = 1.405 λ4 = 1.045

λ5 = 0.794 λ6 = 0.517 λ7 = 0

The eigenvector corresponding to λ7 = 0 is

u7 =
1√
22

(
√

3,
√

3,
√

3,
√

4,
√

3,
√

3,
√

3)T

= (0.37,0.37,0.37,0.43,0.37,0.37,0.37)T

The normalized asymmetric Laplacian matrix is defined as

La =1−1L

=1−1(1−A)= I−1−1A

=

















∑

j 6=1 a1j

d1
− a12

d1
· · · − a1n

d1

− a21
d2

∑

j 6=2 a2j

d2
· · · − a2n

d2
...

...
. . .

...

− an1
dn

− an2
dn

· · ·
∑

j 6=n anj

dn

















(16.9)

Consider the eigenvalue equation for the symmetric Laplacian Ls :

Lsu= λu
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Left multiplying by 1−1/2 on both sides, we get

1−1/2Lsu= λ1−1/2u

1−1/2
(

1−1/2L1−1/2
)

u= λ1−1/2u

1−1L
(

1−1/2u
)

= λ
(

1−1/2u
)

Lav= λv

where v = 1−1/2u is an eigenvector of La , and u is an eigenvector of Ls . Further, La

has the same set of eigenvalues as Ls , which means that La is a positive semi-definite

matrix with n real eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn = 0. From Eq. (16.9) we can see that

if La
i denotes the ith column of La , then La

1 + La
2 + ·· · + La

n = 0, which implies that

vn = 1√
n
1 is the eigenvector corresponding to the smallest eigenvalue λn = 0.

Example 16.5. For the graph in Figure 16.2, its normalized asymmetric Laplacian

matrix is given as

La =1−1L=























1 −0.33 0 −0.33 0 −0.33 0

−0.33 1 −0.33 −0.33 0 0 0

0 −0.33 1 −0.33 0 0 −0.33

−0.25 −0.25 −0.25 1 −0.25 0 0

0 0 0 −0.33 1 −0.33 −0.33

−0.33 0 0 0 −0.33 1 −0.33

0 0 −0.33 0 −0.33 −0.33 1























The eigenvalues of La are identical to those for Ls , namely

λ1 = 1.7 λ2 = 1.539 λ3 = 1.405 λ4 = 1.045

λ5 = 0.794 λ6 = 0.517 λ7 = 0

The eigenvector corresponding to λ7 = 0 is

u7 =
1√
7
(1,1,1,1,1,1,1)T = (0.38,0.38,0.38,0.38,0.38,0.38,0.38)T

16.2 CLUSTERING AS GRAPH CUTS

A k-way cut in a graph is a partitioning or clustering of the vertex set, given as

C = {C1, . . . ,Ck}, such that Ci 6= ∅ for all i, Ci ∩Cj = ∅ for all i,j , and V =
⋃

i Ci . We

require C to optimize some objective function that captures the intuition that nodes

within a cluster should have high similarity, and nodes from different clusters should

have low similarity.

Given a weighted graph G defined by its similarity matrix [Eq. (16.1)], let S,T⊆V

be any two subsets of the vertices. We denote by W(S,T) the sum of the weights on all
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edges with one vertex in S and the other in T, given as

W(S,T)=
∑

vi∈S

∑

vj∈T

aij

Given S ⊆ V, we denote by S the complementary set of vertices, that is, S = V− S. A

(vertex) cut in a graph is defined as a partitioning of V into S⊂ V and S. The weight of

the cut or cut weight is defined as the sum of all the weights on edges between vertices

in S and S, given as W(S,S).

Given a clustering C = {C1, . . . ,Ck} comprising k clusters, the size of a cluster Ci is

the number of nodes in the cluster, given as |Ci |. The volume of a cluster Ci is defined

as the sum of all the weights on edges with one end in cluster Ci :

vol(Ci)=
∑

vj ∈Ci

dj =
∑

vj∈Ci

∑

vr∈V

ajr =W(Ci,V)

Let ci ∈ {0,1}n be the cluster indicator vector that records the cluster membership for

cluster Ci , defined as

cij =
{

1 if vj ∈Ci

0 if vj 6∈Ci

Because a clustering creates pairwise disjoint clusters, we immediately have

cT
i cj = 0

Further, the cluster size can be written as

|Ci| = cT
i ci = ‖ci‖2

The following identities allow us to express the weight of a cut in terms of matrix

operations. Let us derive an expression for the sum of the weights for all edges with

one end in Ci . These edges include internal cluster edges (with both ends in Ci), as well

as external cluster edges (with the other end in another cluster Cj 6=i).

vol(Ci)=W(Ci,V)=
∑

vr∈Ci

dr =
∑

vr∈Ci

cirdrcir

=
n
∑

r=1

n
∑

s=1

cir1rscis = cT
i 1ci (16.10)

Consider the sum of weights of all internal edges:

W(Ci,Ci)=
∑

vr∈Ci

∑

vs∈Ci

ars

=
n
∑

r=1

n
∑

s=1

cirarscis = cT
i Aci (16.11)
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We can get the sum of weights for all the external edges, or the cut weight by

subtracting Eq. (16.11) from Eq. (16.10), as follows:

W(Ci,Ci)=
∑

vr∈Ci

∑

vs∈V−Ci

ars =W(Ci,V)−W(Ci,Ci)

= ci(1−A)ci = cT
i Lci (16.12)

Example 16.6. Consider the graph in Figure 16.2. Assume that C1 = {1,2,3,4} and

C2 = {5,6,7} are two clusters. Their cluster indicator vectors are given as

c1 = (1,1,1,1,0,0,0)T c2 = (0,0,0,0,1,1,1)T

As required, we have cT
1 c2= 0, and cT

1 c1=‖c1‖2= 4 and cT
2 c2= 3 give the cluster sizes.

Consider the cut weight between C1 and C2. Because there are three edges between

the two clusters, we have W(C1,C1) = W(C1,C2) = 3. Using the Laplacian matrix

from Example 16.3, by Eq. (16.12) we have

W(C1,C1)= cT
1 Lc1

= (1,1,1,1,0,0,0)























3 −1 0 −1 0 −1 0

−1 3 −1 −1 0 0 0

0 −1 3 −1 0 0 −1

−1 −1 −1 4 −1 0 0

0 0 0 −1 3 −1 −1

−1 0 0 0 −1 3 −1

0 0 −1 0 −1 −1 3













































1

1

1

1

0

0

0























= (1,0,1,1,−1,−1,−1)(1,1,1,1,0,0,0)T = 3

16.2.1 Clustering Objective Functions: Ratio and Normalized Cut

The clustering objective function can be formulated as an optimization problem

over the k-way cut C = {C1, . . . ,Ck}. We consider two common minimization

objectives, namely ratio and normalized cut. We consider maximization objectives in

Section 16.2.3, after describing the spectral clustering algorithm.

Ratio Cut

The ratio cut objective is defined over a k-way cut as follows:

min
C

Jrc(C)=
k
∑

i=1

W(Ci,Ci)

|Ci|
=

k
∑

i=1

cT
i Lci

cT
i ci

=
k
∑

i=1

cT
i Lci

‖ci‖2
(16.13)

where we make use of Eq. (16.12), that is, W(Ci,Ci)= cT
i Lci .

Ratio cut tries to minimize the sum of the similarities from a cluster Ci to other

points not in the cluster Ci , taking into account the size of each cluster. One can observe

that the objective function has a lower value when the cut weight is minimized and

when the cluster size is large.
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Unfortunately, for binary cluster indicator vectors ci , the ratio cut objective is

NP-hard. An obvious relaxation is to allow ci to take on any real value. In this case, we

can rewrite the objective as

min
C

Jrc(C)=
k
∑

i=1

cT
i Lci

‖ci‖2
=

k
∑

i=1

(

ci

‖ci‖

)T

L

(

ci

‖ci‖

)

=
k
∑

i=1

uT
i Lui (16.14)

where ui = ci

‖ci‖ is the unit vector in the direction of ci ∈Rn, that is, ci is assumed to be

an arbitrary real vector.

To minimize Jrc we take its derivative with respect to ui and set it to the zero vector.

To incorporate the constraint that uT
i ui = 1, we introduce the Lagrange multiplier λi

for each cluster Ci . We have

∂

∂ui

(

k
∑

i=1

uT
i Lui +

n
∑

i=1

λi(1−uT
i ui)

)

= 0, which implies that

2Lui − 2λiui = 0, and thus

Lui = λiui (16.15)

This implies that ui is one of the eigenvectors of the Laplacian matrix L, corresponding

to the eigenvalue λi . Using Eq. (16.15), we can see that

uT
i Lui = uT

i λiui = λi

which in turn implies that to minimize the ratio cut objective [Eq. (16.14)], we should

choose the k smallest eigenvalues, and the corresponding eigenvectors, so that

min
C

Jrc(C)= uT
n Lun + ·· · + uT

n−k+1Lun−k+1

= λn + ·· · + λn−k+1 (16.16)

where we assume that the eigenvalues have been sorted so that λ1 ≥ λ2 ≥ ·· · ≥ λn.

Noting that the smallest eigenvalue of L is λn = 0, the k smallest eigenvalues are as

follows: 0 = λn ≤ λn−1 ≤ λn−k+1. The corresponding eigenvectors un,un−1, . . . ,un−k+1

represent the relaxed cluster indicator vectors. However, because un = 1√
n
1, it does not

provide any guidance on how to separate the graph nodes if the graph is connected.

Normalized Cut

Normalized cut is similar to ratio cut, except that it divides the cut weight of each

cluster by the volume of a cluster instead of its size. The objective function is

given as

min
C

Jnc(C)=
k
∑

i=1

W(Ci,Ci)

vol(Ci)
=

k
∑

i=1

cT
i Lci

cT
i 1ci

(16.17)

where we use Eqs. (16.12) and (16.10), that is, W(Ci,Ci)= cT
i Lci and vol(Ci)= cT

i 1ci ,

respectively. The Jnc objective function has lower values when the cut weight is low and

when the cluster volume is high, as desired.
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As in the case of ratio cut, we can obtain an optimal solution to the normalized cut

objective if we relax the condition that ci be a binary cluster indicator vector. Instead

we assume ci to be an arbitrary real vector. Using the observation that the diagonal

degree matrix 1 can be written as 1=11/211/2, and using the fact that I=11/21−1/2

and 1T = 1 (because 1 is diagonal), we can rewrite the normalized cut objective in

terms of the normalized symmetric Laplacian, as follows:

min
C

Jnc(C)=
k
∑

i=1

cT
i Lci

cT
i 1ci

=
k
∑

i=1

cT
i

(

11/21−1/2
)

L
(

1−1/211/2
)

ci

cT
i

(

11/211/2
)

ci

=
k
∑

i=1

(11/2ci)
T(1−1/2L1−1/2)(11/2ci)

(11/2ci)T(11/2ci)

=
k
∑

i=1

(

11/2ci
∥

∥11/2ci

∥

∥

)T

Ls

(

11/2ci
∥

∥11/2ci

∥

∥

)

=
k
∑

i=1

uT
i Lsui

where ui = 11/2ci

‖11/2ci‖ is the unit vector in the direction of 11/2ci . Following the same

approach as in Eq. (16.15), we conclude that the normalized cut objective is optimized

by selecting the k smallest eigenvalues of the normalized Laplacian matrix Ls , namely

0= λn ≤ ·· · ≤ λn−k+1.

The normalized cut objective [Eq. (16.17)], can also be expressed in terms of the

normalized asymmetric Laplacian, by differentiating Eq. (16.17) with respect to ci and

setting the result to the zero vector. Noting that all terms other than that for ci are

constant with respect to ci , we have:

∂

∂ci





k
∑

j=1

cT
j Lcj

cT
j 1cj



= ∂

∂ci

(

cT
i Lci

cT
i 1ci

)

= 0

Lci(c
T
i 1ci)−1ci(c

T
i Lci)

(cT
i 1ci)2

= 0

Lci =
(

cT
i Lci

cT
i 1ci

)

1ci

1−1Lci = λici

Laci = λici

where λi =
cT
i

Lci

cT
i
1ci

is the eigenvalue corresponding to the ith eigenvector ci of the

asymmetric Laplacian matrix La . To minimize the normalized cut objective we

therefore choose the k smallest eigenvalues of La, namely, 0= λn ≤ ·· · ≤ λn−k+1.

To derive the clustering, for La , we can use the corresponding eigenvectors

un, . . . ,un−k+1, with ci = ui representing the real-valued cluster indicator vectors.
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However, note that for La , we have cn = un = 1√
n
1. Further, for the normalized

symmetric Laplacian Ls , the real-valued cluster indicator vectors are given as

ci = 1−1/2ui , which again implies that cn = 1√
n
1. This means that the eigenvector un

corresponding to the smallest eigenvalue λn = 0 does not by itself contain any useful

information for clustering if the graph is connected.

16.2.2 Spectral Clustering Algorithm

Algorithm 16.1 gives the pseudo-code for the spectral clustering approach. We assume

that the underlying graph is connected. The method takes a dataset D as input and

computes the similarity matrix A. Alternatively, the matrix A may be directly input as

well. Depending on the objective function, we choose the corresponding matrix B. For

instance, for normalized cut B is chosen to be either Ls or La , whereas for ratio cut

we choose B= L. Next, we compute the k smallest eigenvalues and eigenvectors of B.

However, the main problem we face is that the eigenvectors ui are not binary, and thus

it is not immediately clear how we can assign points to clusters. One solution to this

problem is to treat the n× k matrix of eigenvectors as a new data matrix:

U=





| | |
un un−1 · · · un−k+1

| | |



=









un,1 un−1,1 · · · un−k+1,1

un2 un−1,2 · · · un−k+1,2

| | · · · |
un,n un−1,n · · · un−k+1,n









(16.18)

Next, we normalize each row of U to obtain the unit vector:

yi =
1

√

∑k

j=1 u2
n−j+1,i

(un,i, un−1,i, . . . , un−k+1,i)
T (16.19)

which yields the new normalized data matrix Y∈Rn×k comprising n points in a reduced

k dimensional space:

Y=











— yT
1 —

— yT
2 —
...

— yT
n —











ALGORITHM 16.1. Spectral Clustering Algorithm

SPECTRAL CLUSTERING (D,k):

Compute the similarity matrix A ∈Rn×n
1

if ratio cut then B← L2

else if normalized cut then B← Ls or La
3

Solve Bui = λiui for i = n,. . . ,n− k+ 1, where λn ≤ λn−1 ≤ ·· · ≤ λn−k+14

U←
(

un un−1 · · · un−k+1

)

5

Y← normalize rows of U using Eq. (16.19)6

C←{C1, . . . ,Ck} via K-means on Y7
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We can now cluster the new points in Y into k clusters via the K-means algorithm or

any other fast clustering method, as it is expected that the clusters are well-separated in

the k-dimensional eigen-space. Note that for L, Ls , and La , the cluster indicator vector

corresponding to the smallest eigenvalue λn = 0 is a vector of all 1’s, which does not

provide any information about how to separate the nodes. The real information for

clustering is contained in eigenvectors starting from the second smallest eigenvalue.

However, if the graph is disconnected, then even the eigenvector corresponding to λn

can contain information valuable for clustering. Thus, we retain all k eigenvectors in U

in Eq. (16.18).

Strictly speaking, the normalization step [Eq. (16.19)] is recommended only for

the normalized symmetric Laplacian Ls . This is because the eigenvectors of Ls and the

cluster indicator vectors are related as 11/2ci = ui . The j th entry of ui , corresponding

to vertex vj , is given as

uij =
√

djcij
√

∑n

r=1 drc
2
ir

If vertex degrees vary a lot, vertices with small degrees would have very small values

uij . This can cause problems for K-means for correctly clustering these vertices. The

normalization step helps alleviate this problem for Ls , though it can also help other

objectives.

Computational Complexity

The computational complexity of the spectral clustering algorithm is O(n3), because

computing the eigenvectors takes that much time. However, if the graph is sparse, the

complexity to compute the eigenvectors is O(mn) where m is the number of edges in

the graph. In particular, if m =O(n), then the complexity reduces to O(n2). Running

the K-means method on Y takes O(tnk2) time, where t is the number of iterations

K-means takes to converge.

Example 16.7. Consider the normalized cut approach applied to the graph in

Figure 16.2. Assume that we want to find k = 2 clusters. For the normalized

asymmetric Laplacian matrix from Example 16.5, we compute the eigenvectors, v7

and v6, corresponding to the two smallest eigenvalues, λ7 = 0 and λ6 = 0.517. The

matrix composed of both the eigenvectors is given as

U=































u1 u2

−0.378 −0.226

−0.378 −0.499

−0.378 −0.226

−0.378 −0.272

−0.378 0.425

−0.378 0.444

−0.378 0.444






























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−1

−0.5

0

0.5

−1 −0.9 −0.8 −0.7 −0.6

u1

u2

bC

bC

bC bC

bC bCbC

1,3

2

4

5 6,7

Figure 16.3. K-means on spectral dataset Y.

We treat the ith component of u1 and u2 as the ith point (u1i,u2i) ∈ R
2, and after

normalizing all points to have unit length we obtain the new dataset:

Y=



























−0.859 −0.513

−0.604 −0.797

−0.859 −0.513

−0.812 −0.584

−0.664 0.747

−0.648 0.761

−0.648 0.761



























For instance the first point is computed as

y1 =
1

√

(−0.378)2+ (−0.2262)
(−0.378,−0.226)T= (−0.859,−0.513)T

Figure 16.3 plots the new dataset Y. Clustering the points into k= 2 groups using

K-means yields the two clusters C1 = {1,2,3,4} and C2 = {5,6,7}.

Example 16.8. We apply spectral clustering on the Iris graph in Figure 16.1 using

the normalized cut objective with the asymmetric Laplacian matrix La . Figure 16.4

shows the k = 3 clusters. Comparing them with the true Iris classes (not used in

the clustering), we obtain the contingency table shown in Table 16.1, indicating

the number of points clustered correctly (on the main diagonal) and incorrectly

(off-diagonal). We can see that cluster C1 corresponds mainly to iris-setosa, C2

to iris-virginica, and C3 to iris-versicolor. The latter two are more difficult

to separate. In total there are 18 points that are misclustered when compared to the

true Iris types.
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bC

bC
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bC

bCbC

bC bC

bC

bC

bC

bC
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bC

bC

bC
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bC
bC

bC

bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

rS

rS

rS
rS

rS

rS
rS

rS

rS

rS

rS
rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS
rS rS

rS

rS

rS

rS
rS

rS

uT
uT

uT

uT

uT uT

uT
uT uT

uT
uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uTuT

uT uT uT

uT

uT
uT

uT

uT

uT

uT
uT

uT

uT

uT

uT

uT

uT

uT
uT

uTuT

uT

uT

uT
uT

uT

uT

uTuT

uT

uT

Figure 16.4. Normalized cut on Iris graph.

Table 16.1. Contingency table: clusters versus Iris types

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 4

C2 (square) 0 36 0

C3 (circle) 0 14 46

16.2.3 Maximization Objectives: Average Cut and Modularity

We now discuss two clustering objective functions that can be formulated as

maximization problems over the k-way cut C = {C1, . . . ,Ck}. These include average

weight and modularity. We also explore their connections with normalized cut and

kernel K-means.

Average Weight

The average weight objective is defined as

max
C

Jaw(C)=
k
∑

i=1

W(Ci,Ci)

|Ci |
=

k
∑

i=1

cT
i Aci

cT
i ci

(16.20)

where we used the equivalence W(Ci,Ci) = cT
i Aci established in Eq. (16.11). Instead

of trying to minimize the weights on edges between clusters as in ratio cut, average

weight tries to maximize the within cluster weights. The problem of maximizing Jaw for

binary cluster indicator vectors is also NP-hard; we can obtain a solution by relaxing
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the constraint on ci , by assuming that it can take on any real values for its elements.

This leads to the relaxed objective

max
C

Jaw(C)=
k
∑

i=1

uT
i Aui (16.21)

where ui = ci

‖ci‖ . Following the same approach as in Eq. (16.15), we can maximize

the objective by selecting the k largest eigenvalues of A, and the corresponding

eigenvectors

max
C

Jaw(C)= uT
1 Au1+ ·· ·+uT

k Auk

= λ1+ ·· ·+λk

where λ1 ≥ λ2 ≥ ·· · ≥ λn.

If we assume that A is the weighted adjacency matrix obtained from a symmetric

and positive semidefinite kernel, that is, with aij = K(xi,xj ), then A will be positive

semidefinite and will have non-negative real eigenvalues. In general, if we threshold A

or if A is the unweighted adjacency matrix for an undirected graph, then even though A

is symmetric, it may not be positive semidefinite. This means that in general A can have

negative eigenvalues, though they are all real. Because Jaw is a maximization problem,

this means that we must consider only the positive eigenvalues and the corresponding

eigenvectors.

Example 16.9. For the graph in Figure 16.2, with the adjacency matrix shown in

Example 16.3, its eigenvalues are as follows:

λ1 = 3.18 λ2 = 1.49 λ3 = 0.62 λ4 =−0.15

λ5 =−1.27 λ6 =−1.62 λ7 =−2.25

We can see that the eigenvalues can be negative, as A is the adjacency graph and is

not positive semidefinite.

Average Weight and Kernel K-means The average weight objective leads to an

interesting connection between kernel K-means and graph cuts. If the weighted

adjacency matrix A represents the kernel value between a pair of points, so that

aij = K(xi,xj ), then we may use the sum of squared errors objective [Eq. (13.3)] of

kernel K-means for graph clustering. The SSE objective is given as

min
C

Jsse(C)=
n
∑

j=1

K(xj ,xj )−
k
∑

i=1

1

|Ci |
∑

xr∈Ci

∑

xs∈Ci

K(xr,xs)

=
n
∑

j=1

ajj −
k
∑

i=1

1

|Ci|
∑

vr∈Ci

∑

vs∈Ci

ars



16.2 Clustering as Graph Cuts 411

=
n
∑

j=1

ajj −
k
∑

i=1

cT
i Aci

cT
i ci

=
n
∑

j=1

ajj − Jaw(C) (16.22)

We can observe that because
∑n

j=1 ajj is independent of the clustering, minimizing the

SSE objective is the same as maximizing the average weight objective. In particular, if

aij represents the linear kernel xT
i xj between the nodes, then maximizing the average

weight objective [Eq. (16.20)] is equivalent to minimizing the regular K-means SSE

objective [Eq. (13.1)]. Thus, spectral clustering using Jaw and kernel K-means represent

two different approaches to solve the same problem. Kernel K-means tries to solve the

NP-hard problem by using a greedy iterative approach to directly optimize the SSE

objective, whereas the graph cut formulation tries to solve the same NP-hard problem

by optimally solving a relaxed problem.

Modularity

Informally, modularity is defined as the difference between the observed and expected

fraction of edges within a cluster. It measures the extent to which nodes of the same

type (in our case, the same cluster) are linked to each other.

Unweighted Graphs Let us assume for the moment that the graph G is unweighted,

and that A is its binary adjacency matrix. The number of edges within a cluster Ci is

given as

1

2

∑

vr∈Ci

∑

vs∈Ci

ars

where we divide by 1
2

because each edge is counted twice in the summation. Over all

the clusters, the observed number of edges within the same cluster is given as

1

2

k
∑

i=1

∑

vr∈Ci

∑

vs∈Ci

ars (16.23)

Let us compute the expected number of edges between any two vertices vr and

vs , assuming that edges are placed at random, and allowing multiple edges between

the same pair of vertices. Let |E| = m be the total number of edges in the graph. The

probability that one end of an edge is vr is given as dr

2m
, where dr is the degree of vr . The

probability that one end is vr and the other vs is then given as

1

2
prs =

dr

2m
· ds

2m
= drds

4m2

The number of edges between vr and vs follows a binomial distribution with success

probability prs over 2m trials (because we are selecting the two ends of m edges). The

expected number of edges between vr and vs is given as

2m ·prs =
drds

2m
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The expected number of edges within a cluster Ci is then

1

2

∑

vr∈Ci

∑

vs∈Ci

drds

2m

and the expected number of edges within the same cluster, summed over all k clusters,

is given as

1

2

k
∑

i=1

∑

vr∈Ci

∑

vs∈Ci

drds

2m
(16.24)

where we divide by 2 because each edge is counted twice. The modularity of the

clustering C is defined as the difference between the observed and expected fraction

of edges within the same cluster, obtained by subtracting Eq. (16.24) from Eq. (16.23),

and dividing by the number of edges:

Q= 1

2m

k
∑

i=1

∑

vr∈Ci

∑

vs∈Ci

(

ars −
drds

2m

)

Because 2m=
∑n

i=1 di , we can rewrite modularity as follows:

Q=
k
∑

i=1

∑

vr∈Ci

∑

vs∈Ci







ars
∑n

j=1 dj

− drds
(

∑n

j=1 dj

)2






(16.25)

Weighted Graphs One advantage of the modularity formulation in Eq. (16.25) is that

it directly generalizes to weighted graphs. Assume that A is the weighted adjacency

matrix; we interpret the modularity of a clustering as the difference between the

observed and expected fraction of weights on edges within the clusters.

From Eq. (16.11) we have
∑

vr∈Ci

∑

vs∈Ci

ars =W(Ci,Ci)

and from Eq. (16.10) we have

∑

vr∈Ci

∑

vs∈Ci

drds =
(

∑

vr∈Ci

dr

)(

∑

vs∈Ci

ds

)

=W(Ci,V)2

Further, note that

n
∑

j=1

dj =W(V,V)

Using the above equivalences, can write the modularity objective [Eq. (16.25)] in terms

of the weight function W as follows:

max
C

JQ(C)=
k
∑

i=1

(

W(Ci,Ci)

W(V,V)
−
(

W(Ci,V)

W(V,V)

)2)

(16.26)
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We now express the modularity objective [Eq. (16.26)] in matrix terms. From

Eq. (16.11), we have

W(Ci,Ci)= cT
i Aci

Also note that

W(Ci,V)=
∑

vr∈Ci

dr =
∑

vr∈Ci

drcir =
n
∑

j=1

djcij =
n
∑

j=1

dTci

where d= (d1,d2, . . . ,dn)
T is the vector of vertex degrees. Further, we have

W(V,V)=
n
∑

j=1

dj = tr(1)

where tr(1) is the trace of 1, that is, sum of the diagonal entries of 1.

The clustering objective based on modularity can then be written as

max
C

JQ(C)=
k
∑

i=1

(

cT
i Aci

tr(1)
− (dT

i ci)
2

tr(1)2

)

=
k
∑

i=1

(

cT
i

(

A

tr(1)

)

ci − cT
i

(

d ·dT

tr(1)2

)

ci

)

=
k
∑

i=1

cT
i Qci (16.27)

where Q is the modularity matrix:

Q= 1

tr(1)

(

A− d ·dT

tr(1)

)

Directly maximizing objective Eq. (16.27) for binary cluster vectors ci is hard.

We resort to the approximation that elements of ci can take on real values. Further,

we require that cT
i ci = ‖ci‖2 = 1 to ensure that JQ does not increase without bound.

Following the approach in Eq. (16.15), we conclude that ci is an eigenvector of Q.

However, because this a maximization problem, instead of selecting the k smallest

eigenvalues, we select the k largest eigenvalues and the corresponding eigenvectors

to obtain

max
C

JQ(C)= uT
1 Qu1+ ·· ·+uT

k Quk

= λ1+ ·· ·+λk

where ui is the eigenvector corresponding to λi , and the eigenvalues are sorted so that

λ1 ≥ ·· · ≥ λn. The relaxed cluster indicator vectors are given as ci = ui . Note that the

modularity matrix Q is symmetric, but it is not positive semidefinite. This means that

although it has real eigenvalues, they may be negative too. Also note that if Qi denotes

the ith column of Q, then we have Q1 +Q2 + ·· · +Qn = 0, which implies that 0 is

an eigenvalue of Q with the corresponding eigenvector 1√
n
1. Thus, for maximizing the

modularity one should use only the positive eigenvalues.
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Example 16.10. Consider the graph in Figure 16.2. The degree vector is d =
(3,3,3,4,3,3,3)T, and the sum of degrees is tr(1) = 22. The modularity matrix is

given as

Q= 1

tr(1)
A− 1

tr(1)2
d ·dT

= 1

22























0 1 0 1 0 1 0

1 0 1 1 0 0 0

0 1 0 1 0 0 1

1 1 1 0 1 0 0

0 0 0 1 0 1 1

1 0 0 0 1 0 1

0 0 1 0 1 1 0























− 1

484























9 9 9 12 9 9 9

9 9 9 12 9 9 9

9 9 9 12 9 9 9

12 12 12 16 12 12 12

9 9 9 12 9 9 9

9 9 9 12 9 9 9

9 9 9 12 9 9 9























=























−0.019 0.027 −0.019 0.021 −0.019 0.027 −0.019

0.027 −0.019 0.027 0.021 −0.019 −0.019 −0.019

−0.019 0.027 −0.019 0.021 −0.019 −0.019 0.027

0.021 0.021 0.021 −0.033 0.021 −0.025 −0.025

−0.019 −0.019 −0.019 0.021 −0.019 0.027 0.027

0.027 −0.019 −0.019 −0.025 0.027 −0.019 0.027

−0.019 −0.019 0.027 −0.025 0.027 0.027 −0.019























The eigenvalues of Q are as follows:

λ1 = 0.0678 λ2 = 0.0281 λ3 = 0 λ4 =−0.0068

λ5 =−0.0579 λ6 =−0.0736 λ7 =−0.1024

The eigenvector corresponding to λ3 = 0 is

u3 =
1√
7
(1,1,1,1,1,1,1)T = (0.38,0.38,0.38,0.38,0.38,0.38,0.38)T

Modularity as Average Weight Consider what happens to the modularity matrix Q if

we use the normalized adjacency matrix M=1−1A in place of the standard adjacency

matrix A in Eq. (16.27). In this case, we know by Eq. (16.3) that each row of M sums to

1, that is,

n
∑

j=1

mij = di = 1, for all i = 1, . . . ,n

We thus have tr(1) =
∑n

i=1 di = n, and further d · dT = 1n×n, where 1n×n is the n× n

matrix of all 1’s. The modularity matrix can then be written as

Q= 1

n
M− 1

n2
1n×n

For large graphs with many nodes, n is large and the second term practically

vanishes, as 1

n2 will be very small. Thus, the modularity matrix can be reasonably
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approximated as

Q≃ 1

n
M (16.28)

Substituting the above in the modularity objective [Eq. (16.27)], we get

max
C

JQ(C)=
k
∑

i=1

cT
i Qci =

k
∑

i=1

cT
i Mci (16.29)

where we dropped the 1
n

factor because it is a constant for a given graph; it only scales

the eigenvalues without effecting the eigenvectors.

In conclusion, if we use the normalized adjacency matrix, maximizing the

modularity is equivalent to selecting the k largest eigenvalues and the corresponding

eigenvectors of the normalized adjacency matrix M. Note that in this case modularity

is also equivalent to the average weight objective and kernel K-means as established

in Eq. (16.22).

Normalized Modularity as Normalized Cut Define the normalized modularity

objective as follows:

max
C

JnQ(C)=
k
∑

i=1

1

W(Ci,V)

(

W(Ci,Ci)

W(V,V)
−
(

W(Ci,V)

W(V,V)

)2)

(16.30)

We can observe that the main difference from the modularity objective [Eq. (16.26)] is

that we divide by vol(Ci)=W(C,Vi) for each cluster. Simplifying the above, we obtain

JnQ(C)= 1

W(V,V)

k
∑

i=1

(

W(Ci,Ci)

W(Ci,V)
−W(Ci,V)

W(V,V)

)

= 1

W(V,V)

( k
∑

i=1

(

W(Ci,Ci)

W(Ci,V)

)

−
k
∑

i=1

(

W(Ci,V)

W(V,V)

))

= 1

W(V,V)

( k
∑

i=1

(

W(Ci,Ci)

W(Ci,V)

)

− 1

)

Now consider the expression (k− 1)−W(V,V) · JnQ(C), we have

(k− 1)−W(V,V)JnQ(C)= (k− 1)−
( k
∑

i=1

(

W(Ci,Ci)

W(Ci,V)

)

− 1

)

= k−
k
∑

i=1

W(Ci,Ci)

W(Ci ,V)

=
k
∑

i=1

1−W(Ci,Ci)

W(Ci,V)

=
k
∑

i=1

W(Ci,V)−W(Ci,Ci)

W(Ci,V)
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=
k
∑

i=1

W(Ci,Ci)

W(Ci,V)

=
k
∑

i=1

W(Ci,Ci)

vol(Ci)

= Jnc(C)

In other words the normalized cut objective [Eq. (16.17)] is related to the normalized

modularity objective [Eq. (16.30)] by the following equation:

Jnc(C)= (k− 1)−W(V,V) · JnQ(C)

Since W(V,V) is a constant for a given graph, we observe that minimizing normalized

cut is equivalent to maximizing normalized modularity.

Spectral Clustering Algorithm

Both average weight and modularity are maximization objectives; therefore we have

to slightly modify Algorithm 16.1 for spectral clustering to use these objectives. The

matrix B is chosen to be A if we are maximizing average weight or Q for the modularity

objective. Next, instead of computing the k smallest eigenvalues we have to select the

k largest eigenvalues and their corresponding eigenvectors. Because both A and Q can

have negative eigenvalues, we must select only the positive eigenvalues. The rest of the

algorithm remains the same.

16.3 MARKOV CLUSTERING

We now consider a graph clustering method based on simulating a random walk on

a weighted graph. The basic intuition is that if node transitions reflect the weights on

the edges, then transitions from one node to another within a cluster are much more

likely than transitions between nodes from different clusters. This is because nodes

within a cluster have higher similarities or weights, and nodes across clusters have

lower similarities.

Given the weighted adjacency matrix A for a graph G, the normalized adjacency

matrix [Eq. (16.2)] is given as M=1−1A. The matrix M can be interpreted as the n×n

transition matrix where the entry mij = aij

di
can be interpreted as the probability of

transitioning or jumping from node i to node j in the graph G. This is because M is a

row stochastic or Markov matrix, which satisfies the following conditions: (1) elements

of the matrix are non-negative, that is, mij ≥ 0, which follows from the fact that A is

non-negative, and (2) rows of M are probability vectors, that is, row elements add to 1,

because

n
∑

j=1

mij =
n
∑

j=1

aij

di

= 1

The matrix M is thus the transition matrix for a Markov chain or a Markov random

walk on graph G. A Markov chain is a discrete-time stochastic process over a set of



16.3 Markov Clustering 417

states, in our case the set of vertices V. The Markov chain makes a transition from

one node to another at discrete timesteps t = 1,2, . . . , with the probability of making a

transition from node i to node j given as mij . Let the random variable Xt denote the

state at time t . The Markov property means that the probability distribution of Xt over

the states at time t depends only on the probability distribution of Xt−1, that is,

P(Xt = i|X0,X1, . . . ,Xt−1)= P(Xt = i|Xt−1)

Further, we assume that the Markov chain is homogeneous, that is, the transition

probability

P(Xt = j |Xt−1 = i)=mij

is independent of the time step t .

Given node i the transition matrix M specifies the probabilities of reaching any

other node j in one time step. Starting from node i at t = 0, let us consider the

probability of being at node j at t = 2, that is, after two steps. We denote by mij (2)

the probability of reaching j from i in two time steps. We can compute this as follows:

mij(2)= P(X2 = j |X0 = i)=
n
∑

a=1

P(X1 = a|X0 = i)P (X2 = j |X1 = a)

=
n
∑

a=1

miamaj =mT
i Mj (16.31)

where mi = (mi1,mi2, . . . ,min)
T denotes the vector corresponding to the ith row of

M and Mj = (m1j ,m2j , . . . ,mnj )
T denotes the vector corresponding to the j th column

of M.

Consider the product of M with itself:

M2 =M ·M=













— mT
1 —

— mT
2 —
...

— mT
n —

















| | |
M1 M2 · · · Mn

| | |





=
{

mT
i Mj

}n

i,j=1

=
{

mij (2)

}n

i,j=1

(16.32)

Equations (16.31) and (16.32) imply that M2 is precisely the transition probability

matrix for the Markov chain over two time-steps. Likewise, the three-step transition

matrix is M2 ·M =M3. In general, the transition probability matrix for t time steps is

given as

Mt−1 ·M=Mt (16.33)

A random walk on G thus corresponds to taking successive powers of the transition

matrix M. Let π0 specify the initial state probability vector at time t = 0, that is,

π0i = P(X0 = i) is the probability of starting at node i, for all i = 1, . . . ,n. Starting
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from π0, we can obtain the state probability vector for Xt , that is, the probability of

being at node i at time-step t , as follows

πT
t = πT

t−1M

=
(

πT
t−2M

)

·M= πT
t−2M2

=
(

πT
t−3M2

)

·M= πT
t−3M3

=
...

= πT
0 Mt

Equivalently, taking transpose on both sides, we get

πt = (Mt )Tπ0 = (MT)tπ0

The state probability vector thus converges to the dominant eigenvector of MT,

reflecting the steady-state probability of reaching any node in the graph, regardless

of the starting node. Note that if the graph is directed, then the steady-state vector is

equivalent to the normalized prestige vector [Eq. (4.6)].

Transition Probability Inflation

We now consider a variation of the random walk, where the probability of transitioning

from node i to j is inflated by taking each element mij to the power r ≥ 1. Given a

transition matrix M, define the inflation operator ϒ as follows:

ϒ(M,r)=
{

(mij )
r

∑n

a=1(mia)r

}n

i,j=1

(16.34)

The inflation operation results in a transformed or inflated transition probability matrix

because the elements remain non-negative, and each row is normalized to sum to 1.

The net effect of the inflation operator is to increase the higher probability transitions

and decrease the lower probability transitions.

16.3.1 Markov Clustering Algorithm

The Markov clustering algorithm (MCL) is an iterative method that interleaves matrix

expansion and inflation steps. Matrix expansion corresponds to taking successive

powers of the transition matrix, leading to random walks of longer lengths. On the

other hand, matrix inflation makes the higher probability transitions even more likely

and reduces the lower probability transitions. Because nodes in the same cluster are

expected to have higher weights, and consequently higher transition probabilities

between them, the inflation operator makes it more likely to stay within the cluster.

It thus limits the extent of the random walk.

The pseudo-code for MCL is given in Algorithm 16.2. The method works on the

weighted adjacency matrix for a graph. Instead of relying on a user-specified value for

k, the number of output clusters, MCL takes as input the inflation parameter r ≥ 1.

Higher values lead to more, smaller clusters, whereas smaller values lead to fewer,

but larger clusters. However, the exact number of clusters cannot be pre-determined.

Given the adjacency matrix A, MCL first adds loops or self-edges to A if they do
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ALGORITHM 16.2. Markov Clustering Algorithm (MCL)

MARKOV CLUSTERING (A,r,ǫ):

t← 01

Add self-edges to A if they do not exist2

Mt ←1−1A3

repeat4

t← t + 15

Mt←Mt−1 ·Mt−16

Mt←ϒ(Mt ,r)7

until ‖Mt −Mt−1‖F ≤ ǫ8

Gt← directed graph induced by Mt9

C←{weakly connected components in Gt }10

not exist. If A is a similarity matrix, then this is not required, as a node is most

similar to itself, and thus A should have high values on the diagonals. For simple,

undirected graphs, if A is the adjacency matrix, then adding self-edges associates return

probabilities with each node.

The iterative MCL expansion and inflation process stops when the transition

matrix converges, that is, when the difference between the transition matrix from two

successive iterations falls below some threshold ǫ ≥ 0. The matrix difference is given in

terms of the Frobenius norm:

‖Mt −Mt−1‖F =

√

√

√

√

n
∑

i=1

n
∑

j=1

(

Mt (i,j)−Mt−1(i,j)
)2

The MCL process stops when ‖Mt −Mt−1‖F ≤ ǫ.

MCL Graph

The final clusters are found by enumerating the weakly connected components in

the directed graph induced by the converged transition matrix Mt . The directed

graph induced by Mt is denoted as Gt = (Vt ,Et ). The vertex set is the same

as the set of nodes in the original graph, that is, Vt = V, and the edge set is

given as

Et =
{

(i,j) |Mt (i,j) > 0
}

In other words, a directed edge (i,j) exists only if node i can transition to node j

within t steps of the expansion and inflation process. A node j is called an attractor

if Mt (j,j) > 0, and we say that node i is attracted to attractor j if Mt (i,j) > 0.

The MCL process yields a set of attractor nodes, Va ⊆ V, such that other nodes are

attracted to at least one attractor in Va. That is, for all nodes i there exists a node

j ∈ Va , such that (i,j) ∈ Et . A strongly connected component in a directed graph
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is defined a maximal subgraph such that there exists a directed path between all

pairs of vertices in the subgraph. To extract the clusters from Gt , MCL first finds

the strongly connected components S1,S2, . . . ,Sq over the set of attractors Va. Next,

for each strongly connected set of attractors Sj , MCL finds the weakly connected

components consisting of all nodes i ∈Vt−Va attracted to an attractor in Sj . If a node i

is attracted to multiple strongly connected components, it is added to each such cluster,

resulting in possibly overlapping clusters.

Example 16.11. We apply the MCL method to find k = 2 clusters for the graph

shown in Figure 16.2. We add the self-loops to the graph to obtain the adjacency

matrix:

A=























1 1 0 1 0 1 0

1 1 1 1 0 0 0

0 1 1 1 0 0 1

1 1 1 1 1 0 0

0 0 0 1 1 1 1

1 0 0 0 1 1 1

0 0 1 0 1 1 1























The corresponding Markov matrix is given as

M0 =1−1A=























0.25 0.25 0 0.25 0 0.25 0

0.25 0.25 0.25 0.25 0 0 0

0 0.25 0.25 0.25 0 0 0.25

0.20 0.20 0.20 0.20 0.20 0 0

0 0 0 0.25 0.25 0.25 0.25

0.25 0 0 0 0.25 0.25 0.25

0 0 0.25 0 0.25 0.25 0.25























In the first iteration, we apply expansion and then inflation (with r = 2.5) to obtain

M1 =M0 ·M0 =























0.237 0.175 0.113 0.175 0.113 0.125 0.062

0.175 0.237 0.175 0.237 0.050 0.062 0.062

0.113 0.175 0.237 0.175 0.113 0.062 0.125

0.140 0.190 0.140 0.240 0.090 0.100 0.100

0.113 0.050 0.113 0.113 0.237 0.188 0.188

0.125 0.062 0.062 0.125 0.188 0.250 0.188

0.062 0.062 0.125 0.125 0.188 0.188 0.250























M1 =ϒ(M1,2.5)=























0.404 0.188 0.062 0.188 0.062 0.081 0.014

0.154 0.331 0.154 0.331 0.007 0.012 0.012

0.062 0.188 0.404 0.188 0.062 0.014 0.081

0.109 0.234 0.109 0.419 0.036 0.047 0.047

0.060 0.008 0.060 0.060 0.386 0.214 0.214

0.074 0.013 0.013 0.074 0.204 0.418 0.204

0.013 0.013 0.074 0.074 0.204 0.204 0.418






















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Figure 16.5. MCL attractors and clusters.

MCL converges in 10 iterations (using ǫ = 0.001), with the final transition matrix

M=



























1 2 3 4 5 6 7

1 0 0 0 1 0 0 0

2 0 0 0 1 0 0 0

3 0 0 0 1 0 0 0

4 0 0 0 1 0 0 0

5 0 0 0 0 0 0.5 0.5

6 0 0 0 0 0 0.5 0.5

7 0 0 0 0 0 0.5 0.5



























Figure 16.5 shows the directed graph induced by the converged M matrix, where

an edge (i,j) exists if and only if M(i,j) > 0. The nonzero diagonal elements of

M are the attractors (nodes with self-loops, shown in gray). We can observe that

M(4,4), M(6,6), and M(7,7) are all greater than zero, making nodes 4, 6, and 7 the

three attractors. Because both 6 and 7 can reach each other, the equivalence classes

of attractors are {4} and {6,7}. Nodes 1,2, and 3 are attracted to 4, and node 5 is

attracted to both 6 and 7. Thus, the two weakly connected components that make up

the two clusters are C1 = {1,2,3,4} and C2 = {5,6,7}.

Example 16.12. Figure 16.6a shows the clusters obtained via the MCL algorithm

on the Iris graph from Figure 16.1, using r = 1.3 in the inflation step. MCL yields

three attractors (shown as gray nodes; self-loops omitted), which separate the graph

into three clusters. The contingency table for the discovered clusters versus the

true Iris types is given in Table 16.2. One point with class iris-versicolor is

(wrongly) grouped with iris-setosa in C1, but 14 points from iris-virginica are

misclustered.

Notice that the only parameter for MCL is r , the exponent for the inflation step.

The number of clusters is not explicitly specified, but higher values of r result in more

clusters. The value of r = 1.3 was used above because it resulted in three clusters.

Figure 16.6b shows the results for r = 2. MCL yields nine clusters, where one of the

clusters (top-most) has two attractors.
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Table 16.2. Contingency table: MCL clusters versus Iris types

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 1

C2 (square) 0 36 0

C3 (circle) 0 14 49
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Figure 16.6. MCL on Iris graph.

Computational Complexity

The computational complexity of the MCL algorithm is O(tn3), where t is the number

of iterations until convergence. This follows from the fact that whereas the inflation

operation takes O(n2) time, the expansion operation requires matrix multiplication,

which takes O(n3) time. However, the matrices become sparse very quickly, and it is

possible to use sparse matrix multiplication to obtain O(n2) complexity for expansion

in later iterations. On convergence, the weakly connected components in Gt can be

found in O(n+m) time, where m is the number of edges. Because Gt is very sparse,

with m=O(n), the final clustering step takes O(n) time.

16.4 FURTHER READING

Spectral partitioning of graphs was first proposed in Donath and Hoffman (1973).

Properties of the second smallest eigenvalue of the Laplacian matrix, also called alge-

braic connectivity, were studied in Fiedler (1973). A recursive bipartitioning approach

to find k clusters using the normalized cut objective was given in Shi and Malik (2000).

The direct k-way partitioning approach for normalized cut, using the normalized

symmetric Laplacian matrix, was proposed in Ng, Jordan, and Weiss (2001). The

connection between spectral clustering objective and kernel K-means was established
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in Dhillon, Guan, and Kulis (2007). The modularity objective was introduced in

Newman (2003), where it was called assortativity coefficient. The spectral algorithm

using the modularity matrix was first proposed in Smyth and White (2005). The

relationship between modularity and normalized cut was shown in Yu and Ding (2010).

For an excellent tutorial on spectral clustering techniques see Luxburg (2007). The

Markov clustering algorithm was originally proposed in van Dongen (2000). For an

extensive review of graph clustering methods see Fortunato (2010).
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16.5 EXERCISES

Q1. Show that if Qi denotes the ith column of the modularity matrix Q, then
∑n

i=1 Qi = 0.

Q2. Prove that both the normalized symmetric and asymmetric Laplacian matrices Ls

[Eq. (16.6)] and La [Eq. (16.9)] are positive semidefinite. Also show that the smallest

eigenvalue is λn = 0 for both.

Q3. Prove that the largest eigenvalue of the normalized adjacency matrix M [Eq. (16.2)]

is 1, and further that all eigenvalues satisfy the condition that |λi | ≤ 1.
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Q4. Show that
∑

vr∈Ci
cirdrcir =

∑n
r=1

∑n
s=1 cir1rscis , where ci is the cluster indicator

vector for cluster Ci and 1 is the degree matrix for the graph.

Q5. For the normalized symmetric Laplacian Ls , show that for the normalized cut

objective the real-valued cluster indicator vector corresponding to the smallest

eigenvalue λn = 0 is given as cn = 1√
n
1.

1

2 4

3

Figure 16.7. Graph for Q6.

Q6. Given the graph in Figure 16.7, answer the following questions:

(a) Cluster the graph into two clusters using ratio cut and normalized cut.

(b) Use the normalized adjacency matrix M for the graph and cluster it into two

clusters using average weight and kernel K-means, using K=M.

(c) Cluster the graph using the MCL algorithm with inflation parameters r = 2 and

r = 2.5.

Table 16.3. Data for Q7

X1 X2 X3

x1 0.4 0.9 0.6

x2 0.5 0.1 0.6

x3 0.6 0.3 0.6

x4 0.4 0.8 0.5

Q7. Consider Table 16.3. Assuming these are nodes in a graph, define the weighted

adjacency matrix A using the linear kernel

A(i,j )= 1+ xT
i xj

Cluster the data into two groups using the modularity objective.



CHAPTER 17 Clustering Validation

There exist many different clustering methods, depending on the type of clusters

sought and on the inherent data characteristics. Given the diversity of clustering

algorithms and their parameters it is important to develop objective approaches to

assess clustering results. Cluster validation and assessment encompasses three main

tasks: clustering evaluation seeks to assess the goodness or quality of the clustering,

clustering stability seeks to understand the sensitivity of the clustering result to various

algorithmic parameters, for example, the number of clusters, and clustering tendency

assesses the suitability of applying clustering in the first place, that is, whether the

data has any inherent grouping structure. There are a number of validity measures and

statistics that have been proposed for each of the aforementioned tasks, which can be

divided into three main types:

External: External validation measures employ criteria that are not inherent to the

dataset. This can be in form of prior or expert-specified knowledge about the

clusters, for example, class labels for each point.

Internal: Internal validation measures employ criteria that are derived from the data

itself. For instance, we can use intracluster and intercluster distances to obtain

measures of cluster compactness (e.g., how similar are the points in the same

cluster?) and separation (e.g., how far apart are the points in different clusters?).

Relative: Relative validation measures aim to directly compare different clusterings,

usually those obtained via different parameter settings for the same algorithm.

In this chapter we study some of the main techniques for clustering validation and

assessment spanning all three types of measures.

17.1 EXTERNAL MEASURES

As the name implies, external measures assume that the correct or ground-truth

clustering is known a priori. The true cluster labels play the role of external information

425
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that is used to evaluate a given clustering. In general, we would not know the correct

clustering; however, external measures can serve as way to test and validate different

methods. For instance, classification datasets that specify the class for each point

can be used to evaluate the quality of a clustering. Likewise, synthetic datasets with

known cluster structure can be created to evaluate various clustering algorithms by

quantifying the extent to which they can recover the known groupings.

Let D = {xi}ni=1 be a dataset consisting of n points in a d-dimensional space,

partitioned into k clusters. Let yi ∈ {1,2, . . . ,k} denote the ground-truth cluster

membership or label information for each point. The ground-truth clustering is given

as T = {T1,T2, . . . ,Tk}, where the cluster Tj consists of all the points with label j , i.e.,

Tj = {xi ∈D|yi = j }. Also, let C = {C1, . . . ,Cr} denote a clustering of the same dataset

into r clusters, obtained via some clustering algorithm, and let ŷi ∈ {1,2, . . . ,r} denote

the cluster label for xi . For clarity, henceforth, we will refer to T as the ground-truth

partitioning, and to each Ti as a partition. We will call C a clustering, with each Ci

referred to as a cluster. Because the ground truth is assumed to be known, typically

clustering methods will be run with the correct number of clusters, that is, with r = k.

However, to keep the discussion more general, we allow r to be different from k.

External evaluation measures try capture the extent to which points from the same

partition appear in the same cluster, and the extent to which points from different

partitions are grouped in different clusters. There is usually a trade-off between

these two goals, which is either explicitly captured by a measure or is implicit in its

computation. All of the external measures rely on the r × k contingency table N that is

induced by a clustering C and the ground-truth partitioning T , defined as follows

N(i,j)= nij =
∣

∣Ci ∩Tj

∣

∣

In other words, the count nij denotes the number of points that are common to cluster

Ci and ground-truth partition Tj . Further, for clarity, let ni = |Ci| denote the number

of points in cluster Ci , and let mj = |Tj | denote the number of points in partition Tj .

The contingency table can be computed from T and C in O(n) time by examining

the partition and cluster labels, yi and ŷi , for each point xi ∈ D and incrementing the

corresponding count nyi ŷi
.

17.1.1 Matching Based Measures

Purity

Purity quantifies the extent to which a cluster Ci contains entities from only one

partition. In other words, it measures how “pure” each cluster is. The purity of cluster

Ci is defined as

purityi =
1

ni

k
max
j=1
{nij }

The purity of clustering C is defined as the weighted sum of the clusterwise purity

values:

purity=
r
∑

i=1

ni

n
purityi =

1

n

r
∑

i=1

k
max
j=1
{nij }
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where the ratio ni

n
denotes the fraction of points in cluster Ci . The larger the purity of C,

the better the agreement with the groundtruth. The maximum value of purity is 1, when

each cluster comprises points from only one partition. When r = k, a purity value of 1

indicates a perfect clustering, with a one-to-one correspondence between the clusters

and partitions. However, purity can be 1 even for r > k, when each of the clusters is a

subset of a ground-truth partition. When r < k, purity can never be 1, because at least

one cluster must contain points from more than one partition.

Maximum Matching

The maximum matching measure selects the mapping between clusters and partitions,

such that the sum of the number of common points (nij ) is maximized, provided that

only one cluster can match with a given partition. This is unlike purity, where two

different clusters may share the same majority partition.

Formally, we treat the contingency table as a complete weighted bipartite graph

G = (V,E), where each partition and cluster is a node, that is, V = C ∪ T , and there

exists an edge (Ci,Tj ) ∈ E, with weight w(Ci,Tj ) = nij , for all Ci ∈ C and Tj ∈ T . A

matching M in G is a subset of E, such that the edges in M are pairwise nonadjacent,

that is, they do not have a common vertex. The maximum matching measure is defined

as the maximum weight matching in G:

match= argmax
M

{

w(M)

n

}

where the weight of a matching M is simply the sum of all the edge weights in M, given

as w(M)=
∑

e∈M w(e). The maximum matching can be computed in time O(|V|2 · |E|)=
O((r + k)2rk), which is equivalent to O(k4) if r =O(k).

F-Measure

Given cluster Ci , let ji denote the partition that contains the maximum number of

points from Ci , that is, ji =maxk
j=1{nij }. The precision of a cluster Ci is the same as its

purity:

preci =
1

ni

k
max
j=1

{

nij

}

= niji

ni

It measures the fraction of points in Ci from the majority partition Tji
.

The recall of cluster Ci is defined as

recalli =
niji

|Tji
| =

niji

mji

where mji
= |Tji

|. It measures the fraction of point in partition Tji
shared in common

with cluster Ci .

The F-measure is the harmonic mean of the precision and recall values for each

cluster. The F-measure for cluster Ci is therefore given as

Fi =
2

1
preci
+ 1

recalli

= 2 ·preci · recalli

preci + recalli
= 2 niji

ni +mji

(17.1)



428 Clustering Validation

The F-measure for the clustering C is the mean of clusterwise F-measure values:

F = 1

r

r
∑

i=1

Fi

F-measure thus tries to balance the precision and recall values across all the clusters.

For a perfect clustering, when r = k, the maximum value of the F-measure is 1.

Example 17.1. Figure 17.1 shows two different clusterings obtained via the K-means

algorithm on the Iris dataset, using the first two principal components as the two

dimensions. Here n = 150, and k = 3. Visual inspection confirms that Figure 17.1a

is a better clustering than that in Figure 17.1b. We now examine how the different

contingency table based measures can be used to evaluate these two clusterings.

Consider the clustering in Figure 17.1a. The three clusters are illustrated with

different symbols; the gray points are in the correct partition, whereas the white

ones are wrongly clustered compared to the ground-truth Iris types. For instance,

C3 mainly corresponds to partition T3 (Iris-virginica), but it has three points (the

white triangles) from T2. The complete contingency table is as follows:

iris-setosa iris-versicolor iris-virginica

T1 T2 T3 ni

C1(squares) 0 47 14 61

C2(circles) 50 0 0 50

C3(triangles) 0 3 36 39

mj 50 50 50 n= 100

To compute purity, we first note for each cluster the partition with the maximum

overlap. We have the correspondence (C1,T2), (C2,T1), and (C3,T3). Thus, purity is

given as

purity= 1

150
(47+ 50+ 36)= 133

150
= 0.887

For this contingency table, the maximum matching measure gives the same result,

as the correspondence above is in fact a maximum weight matching. Thus, match =
0.887.

The cluster C1 contains n1 = 47 + 14 = 61 points, whereas its corresponding

partition T2 contains m2 = 47+ 3 = 50 points. Thus, the precision and recall for C1

are given as

prec1 = 47
61
= 0.77

recall1 = 47
50
= 0.94

The F-measure for C1 is therefore

F1 =
2 · 0.77 · 0.94

0.77+ 0.94
= 1.45

1.71
= 0.85
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Figure 17.1. K-means: Iris principal components dataset.

We can also directly compute F1 using Eq. (17.1)

F1 = 2·n12
n1+m2

= 2 · 47

61+ 50
= 94

111
= 0.85

Likewise, we obtain F2 = 1.0 and F3 = 0.81. Thus, the F-measure value for the

clustering is given as

F = 1

3
(F1+F2+F3)=

2.66

3
= 0.88

For the clustering in Figure 17.1b, we have the following contingency table:

iris-setosa iris-versicolor iris-virginica

T1 T2 T3 ni

C1 30 0 0 30

C2 20 4 0 24

C3 0 46 50 96

mj 50 50 50 n= 150
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For the purity measure, the partition with which each cluster shares the most points

is given as (C1,T1), (C2,T1), and (C3,T3). Thus, the purity value for this clustering is

purity= 1

150
(30+ 20+ 50)= 100

150
= 0.67

We can see that both C1 and C2 choose partition T1 as the maximum overlapping

partition. However, the maximum weight matching is different; it yields the

correspondence (C1,T1), (C2,T2), and (C3,T3), and thus

match= 1

150
(30+ 4+ 50)= 84

150
= 0.56

The table below compares the different contingency based measures for the two

clusterings shown in Figure 17.1.

purity match F

(a) Good 0.887 0.887 0.885

(b) Bad 0.667 0.560 0.658

As expected, the good clustering in Figure 17.1a has higher scores for the purity,

maximum matching, and F-measure.

17.1.2 Entropy-based Measures

Conditional Entropy

The entropy of a clustering C is defined as

H(C)=−
r
∑

i=1

pCi
logpCi

where pCi
= ni

n
is the probability of cluster Ci . Likewise, the entropy of the partitioning

T is defined as

H(T )=−
k
∑

j=1

pTj
logpTj

where pTj
= mj

n
is the probability of partition Tj .

The cluster-specific entropy of T , that is, the conditional entropy of T with respect

to cluster Ci is defined as

H(T |Ci)=−
k
∑

j=1

(

nij

ni

)

log

(

nij

ni

)

The conditional entropy of T given clustering C is then defined as the weighted sum:

H(T |C)=
r
∑

i=1

ni

n
H(T |Ci)=−

r
∑

i=1

k
∑

j=1

nij

n
log

(

nij

ni

)

=−
r
∑

i=1

k
∑

j=1

pij log

(

pij

pCi

)

(17.2)
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where pij = nij

n
is the probability that a point in cluster i also belongs to partition j . The

more a cluster’s members are split into different partitions, the higher the conditional

entropy. For a perfect clustering, the conditional entropy value is zero, whereas the

worst possible conditional entropy value is logk. Further, expanding Eq. (17.2), we can

see that

H(T |C)=−
r
∑

i=1

k
∑

j=1

pij

(

logpij − logpCi

)

=−
( r
∑

i=1

k
∑

j=1

pij logpij

)

+
r
∑

i=1

(

logpCi

k
∑

j=1

pij

)

=−
r
∑

i=1

k
∑

j=1

pij logpij +
r
∑

i=1

pCi
logpCi

=H(C,T )−H(C) (17.3)

where H(C,T )=−
∑r

i=1

∑k

j=1 pij logpij is the joint entropy of C and T . The conditional

entropy H(T |C) thus measures the remaining entropy of T given the clustering C. In

particular, H(T |C)= 0 if and only if T is completely determined by C, corresponding

to the ideal clustering. On the other hand, if C and T are independent of each other,

then H(T |C)=H(T ), which means that C provides no information about T .

Normalized Mutual Information

The mutual information tries to quantify the amount of shared information between

the clustering C and partitioning T , and it is defined as

I(C,T )=
r
∑

i=1

k
∑

j=1

pij log

(

pij

pCi
·pTj

)

(17.4)

It measures the dependence between the observed joint probability pij of C and T , and

the expected joint probability pCi
· pTj

under the independence assumption. When C

and T are independent then pij = pCi
·pTj

, and thus I(C,T )= 0. However, there is no

upper bound on the mutual information.

Expanding Eq. (17.4) we observe that I(C,T ) = H(C) +H(T ) −H(C,T ). Using

Eq. (17.3), we obtain the two equivalent expressions:

I(C,T )=H(T )−H(T |C)

I(C,T )=H(C)−H(C|T )

Finally, because H(C|T ) ≥ 0 and H(T |C) ≥ 0, we have the inequalities I(C,T ) ≤H(C)

and I(C,T ) ≤ H(T ). We can obtain a normalized version of mutual information

by considering the ratios I(C,T )/H(C) and I(C,T )/H(T ), both of which can be at
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most one. The normalized mutual information (NMI) is defined as the geometric mean

of these two ratios:

NMI(C,T )=
√

I(C,T )

H(C)
· I(C,T )

H(T )
= I(C,T )√

H(C) ·H(T )

The NMI value lies in the range [0,1]. Values close to 1 indicate a good clustering.

Variation of Information

This criterion is based on the mutual information between the clustering C and the

ground-truth partitioning T , and their entropy; it is defined as

VI(C,T )= (H(T )− I(C,T ))+ (H(C)− I(C,T ))

=H(T )+H(C)− 2I(C,T ) (17.5)

Variation of information (VI) is zero only when C and T are identical. Thus, the lower

the VI value the better the clustering C.

Using the equivalence I(C,T ) = H(T )−H(T |C) = H(C)−H(C|T ), we can also

express Eq. (17.5) as

VI(C,T )=H(T |C)+H(C|T )

Finally, noting that H(T |C)=H(T ,C)−H(C), another expression for VI is given as

VI(C,T )= 2H(T ,C)−H(T )−H(C)

Example 17.2. We continue with Example 1, which compares the two clusterings

shown in Figure 17.1. For the entropy-based measures, we use base 2 for the

logarithms; the formulas are valid for any base as such.

For the clustering in Figure 17.1a, we have the following contingency table:

iris-setosa iris-versicolor iris-virginica

T1 T2 T3 ni

C1 0 47 14 61

C2 50 0 0 50

C3 0 3 36 39

mj 50 50 50 n= 100

Consider the conditional entropy for cluster C1:

H(T |C1)=−
0

61
log2

(

0

61

)

− 47

61
log2

(

47

61

)

− 14

61
log2

(

14

61

)

=−0− 0.77log2(0.77)− 0.23log2(0.23)= 0.29+ 0.49= 0.78

In a similar manner, we obtain H(T |C2) = 0 and H(T |C3) = 0.39. The conditional

entropy for the clustering C is then given as

H(T |C)= 61

150
· 0.78+ 50

150
· 0+ 39

150
· 0.39= 0.32+ 0+ 0.10= 0.42
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To compute the normalized mutual information, note that

H(T )=−3

(

50

150
log2

(

50

150

))

= 1.585

H(C)=−
(

61

150
log2

(

61

150

)

+ 50

150
log2

(

50

150

)

+ 39

150
log2

(

39

150

))

= 0.528+ 0.528+ 0.505= 1.561

I(C,T )= 47

150
log2

(

47 · 150

61 · 50

)

+ 14

150
log2

(

14 · 150

61 · 50

)

+ 50

150
log2

(

50 · 150

50 · 50

)

+ 3

150

(

log2

3 · 150

39 · 50

)

+ 36

150
log2

(

36 · 150

39 · 50

)

= 0.379− 0.05+ 0.528− 0.042+ 0.353= 1.167

Thus, the NMI and VI values are

NMI(C,T )= I(C,T )√
H(T ) ·H(C)

= 1.167√
1.585× 1.561

= 0.742

VI(C,T )=H(T )+H(C)− 2I(C,T )= 1.585+ 1.561− 2 · 1.167= 0.812

We can likewise compute these measures for the other clustering in Figure 17.1b,

whose contingency table is shown in Example 1.

The table below compares the entropy based measures for the two clusterings

shown in Figure 17.1.

H(T |C) NMI VI

(a) Good 0.418 0.742 0.812

(b) Bad 0.743 0.587 1.200

As expected, the good clustering in Figure 17.1a has a higher score for

normalized mutual information, and lower scores for conditional entropy and

variation of information.

17.1.3 Pairwise Measures

Given clustering C and ground-truth partitioning T , the pairwise measures utilize the

partition and cluster label information over all pairs of points. Let xi,xj ∈D be any two

points, with i 6= j . Let yi denote the true partition label and let ŷi denote the cluster

label for point xi . If both xi and xj belong to the same cluster, that is, ŷi = ŷj , we call it

a positive event, and if they do not belong to the same cluster, that is, ŷi 6= ŷj , we call

that a negative event. Depending on whether there is agreement between the cluster

labels and partition labels, there are four possibilities to consider:

• True Positives: xi and xj belong to the same partition in T , and they are also in the same

cluster in C. This is a true positive pair because the positive event, ŷi = ŷj , corresponds

to the ground truth, yi = yj . The number of true positive pairs is given as

TP=
∣

∣{(xi ,xj ) : yi = yj and ŷi = ŷj }
∣

∣



434 Clustering Validation

• False Negatives: xi and xj belong to the same partition in T , but they do not belong to

the same cluster in C. That is, the negative event, ŷi 6= ŷj , does not correspond to the

truth, yi = yj . This pair is thus a false negative, and the number of all false negative

pairs is given as

FN=
∣

∣{(xi ,xj ) : yi = yj and ŷi 6= ŷj }
∣

∣

• False Positives: xi and xj do not belong to the same partition in T , but they do belong

to the same cluster in C. This pair is a false positive because the positive event, ŷi = ŷj ,

is actually false, that is, it does not agree with the ground-truth partitioning, which

indicates that yi 6= yj . The number of false positive pairs is given as

FP=
∣

∣{(xi ,xj ) : yi 6= yj and ŷi = ŷj }
∣

∣

• True Negatives: xi and xj neither belong to the same partition in T , nor do they belong

to the same cluster in C. This pair is thus a true negative, that is, ŷi 6= ŷj and yi 6= yj . The

number of such true negative pairs is given as

TN=
∣

∣{(xi ,xj ) : yi 6= yj and ŷi 6= ŷj }
∣

∣

Because there are N=
(

n

2

)

= n(n−1)

2
pairs of points, we have the following identity:

N= TP+FN+FP+TN (17.6)

A naive computation of the preceding four cases requires O(n2) time. However,

they can be computed more efficiently using the contingency table N =
{

nij

}

, with

1≤ i ≤ r and 1≤ j ≤ k. The number of true positives is given as

TP=
r
∑

i=1

k
∑

j=1

(

nij

2

)

=
r
∑

i=1

k
∑

j=1

nij (nij − 1)

2
= 1

2

( r
∑

i=1

k
∑

j=1

n2
ij −

r
∑

i=1

k
∑

j=1

nij

)

= 1

2

(

(

r
∑

i=1

k
∑

j=1

n2
ij

)

−n

)

(17.7)

This follows from the fact that each pair of points among the nij share the same cluster

label (i) and the same partition label (j). The last step follows from the fact that the

sum of all the entries in the contingency table must add to n, that is,
∑r

i=1

∑k

j=1 nij = n.

To compute the total number of false negatives, we remove the number of true

positives from the number of pairs that belong to the same partition. Because two

points xi and xj that belong to the same partition have yi = yj , if we remove the true

positives, that is, pairs with ŷi = ŷj , we are left with pairs for whom ŷi 6= ŷj , that is, the

false negatives. We thus have

FN=
k
∑

j=1

(

mj

2

)

−TP= 1

2

( k
∑

j=1

m2
j −

k
∑

j=1

mj −
r
∑

i=1

k
∑

j=1

n2
ij +n

)

= 1

2

( k
∑

j=1

m2
j −

r
∑

i=1

k
∑

j=1

n2
ij

)

(17.8)

The last step follows from the fact that
∑k

j=1 mj = n.
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The number of false positives can be obtained in a similar manner by subtracting

the number of true positives from the number of point pairs that are in the same cluster:

FP=
r
∑

i=1

(

ni

2

)

−TP= 1

2

( r
∑

i=1

n2
i −

r
∑

i=1

k
∑

j=1

n2
ij

)

(17.9)

Finally, the number of true negatives can be obtained via Eq. (17.6) as follows:

TN=N− (TP+FN+FP)= 1

2

(

n2−
r
∑

i=1

n2
i −

k
∑

j=1

m2
j +

r
∑

i=1

k
∑

j=1

n2
ij

)

(17.10)

Each of the four values can be computed in O(rk) time. Because the contingency

table can be obtained in linear time, the total time to compute the four values is

O(n+rk), which is much better than the naive O(n2) bound. We next consider pairwise

assessment measures based on these four values.

Jaccard Coefficient

The Jaccard Coefficient measures the fraction of true positive point pairs, but after

ignoring the true negatives. It is defined as follows:

Jaccard= TP

TP+FN+FP
(17.11)

For a perfect clustering C (i.e., total agreement with the partitioning T ), the Jaccard

Coefficient has value 1, as in that case there are no false positives or false negatives.

The Jaccard coefficient is asymmetric in terms of the true positives and negatives

because it ignores the true negatives. In other words, it emphasizes the similarity in

terms of the point pairs that belong together in both the clustering and ground-truth

partitioning, but it discounts the point pairs that do not belong together.

Rand Statistic

The Rand statistic measures the fraction of true positives and true negatives over all

point pairs; it is defined as

Rand= TP+TN

N
(17.12)

The Rand statistic, which is symmetric, measures the fraction of point pairs where both

C and T agree. A prefect clustering has a value of 1 for the statistic.

Fowlkes-Mallows Measure

Define the overall pairwise precision and pairwise recall values for a clustering C, as

follows:

prec= TP

TP+FP
recall= TP

TP+FN

Precision measures the fraction of true or correctly clustered point pairs compared to

all the point pairs in the same cluster. On the other hand, recall measures the fraction

of correctly labeled points pairs compared to all the point pairs in the same partition.
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The Fowlkes–Mallows (FM) measure is defined as the geometric mean of the

pairwise precision and recall

FM=
√

prec · recall= TP√
(TP+FN)(TP+FP)

(17.13)

The FM measure is also asymmetric in terms of the true positives and negatives

because it ignores the true negatives. Its highest value is also 1, achieved when there

are no false positives or negatives.

Example 17.3. Let us continue with Example 1. Consider again the contingency table

for the clustering in Figure 17.1a:












iris-setosa iris-versicolor iris-virginica
T1 T2 T3

C1 0 47 14

C2 50 0 0

C3 0 3 36













Using Eq. (17.7), we can obtain the number of true positives as follows:

TP=
(

47

2

)

+
(

14

2

)

+
(

50

2

)

+
(

3

2

)

+
(

36

2

)

= 1081+ 91+ 1225+ 3+630= 3030

Using Eqs. (17.8), (17.9), and (17.10), we obtain

FN= 645 FP= 766 TN= 6734

Note that there are a total of N=
(

150
2

)

= 11175 point pairs.

We can now compute the different pairwise measures for clustering

evaluation. The Jaccard coefficient [Eq. (17.11)], Rand statistic [Eq. (17.12)], and

Fowlkes–Mallows measure [Eq. (17.13)], are given as

Jaccard= 3030

3030+ 645+ 766
= 3030

4441
= 0.68

Rand= 3030+ 6734

11175
= 9764

11175
= 0.87

FM= 3030√
3675 · 3796

= 3030

3735
= 0.81

Using the contingency table for the clustering in Figure 17.1b from Example 1,

we obtain

TP= 2891 FN= 784 FP= 2380 TN= 5120

The table below compares the different contingency based measures on the two

clusterings in Figure 17.1.

Jaccard Rand FM

(a) Good 0.682 0.873 0.811

(b) Bad 0.477 0.717 0.657

As expected, the clustering in Figure 17.1a has higher scores for all three

measures.
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17.1.4 Correlation Measures

Let X and Y be two symmetric n× n matrices, and let N =
(

n

2

)

. Let x,y ∈ RN denote

the vectors obtained by linearizing the upper triangular elements (excluding the main

diagonal) of X and Y (e.g., in a row-wise manner), respectively. Let µX denote the

element-wise mean of x, given as

µX =
1

N

n−1
∑

i=1

n
∑

j=i+1

X(i,j)= 1

N
xTx

and let zx denote the centered x vector, defined as

zx = x− 1 ·µX

where 1 ∈RN is the vector of all ones. Likewise, let µY be the element-wise mean of y,

and zy the centered y vector.

The Hubert statistic is defined as the averaged element-wise product between X

and Y

Ŵ = 1

N

n−1
∑

i=1

n
∑

j=i+1

X(i,j) ·Y(i,j)= 1

N
xTy (17.14)

The normalized Hubert statistic is defined as the element-wise correlation between

X and Y

Ŵn =
∑n−1

i=1

∑n

j=i+1

(

X(i,j)−µX

)(

·Y(i,j)−µY

)

√

∑n−1
i=1

∑n

j=i+1

(

X(i,j)−µX

)2 ∑n−1
i=1

∑n

j=i+1

(

Y[i]−µY

)2
= σXY
√

σ 2
Xσ 2

Y

where σ 2
X and σ 2

Y are the variances, and σXY the covariance, for the vectors x and y,

defined as

σ 2
X =

1

N

n−1
∑

i=1

n
∑

j=i+1

(

X(i,j)−µX

)2 = 1

N
zT
x zx =

1

N
‖zx‖2

σ 2
Y =

1

N

n−1
∑

i=1

n
∑

j=i+1

(

Y(i,j)−µY

)2 = 1

N
zT
y zy =

1

N

∥

∥zy

∥

∥

2

σXY =
1

N

n−1
∑

i=1

n
∑

j=i+1

(

X(i,j)−µX

)(

Y(i,j)−µY

)

= 1

N
zT
x zy

Thus, the normalized Hubert statistic can be rewritten as

Ŵn =
zT
x zy

‖zx‖ ·
∥

∥zy

∥

∥

= cosθ (17.15)
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where θ is the angle between the two centered vectors zx and zy . It follows immediately

that Ŵn ranges from −1 to +1.

When X and Y are arbitrary n× n matrices the above expressions can be easily

modified to range over all the n2 elements of the two matrices. The (normalized)

Hubert statistic can be used as an external evaluation measure, with appropriately

defined matrices X and Y, as described next.

Discretized Hubert Statistic

Let T and C be the n×n matrices defined as

T(i,j)=
{

1 if yi = yj , i 6= j

0 otherwise
C(i,j)=

{

1 if ŷi = ŷj , i 6= j

0 otherwise

Also, let t,c ∈ RN denote the N-dimensional vectors comprising the upper triangular

elements (excluding the diagonal) of T and C, respectively, where N=
(

n

2

)

denotes the

number of distinct point pairs. Finally, let zt and zc denote the centered t and c vectors.

The discretized Hubert statistic is computed via Eq. (17.14), by setting x = t and

y= c:

Ŵ = 1

N
tTc= TP

N
(17.16)

Because the ith element of t is 1 only when the ith pair of points belongs to the same

partition, and, likewise, the ith element of c is 1 only when the ith pair of points also

belongs to the same cluster, the dot product tTc is simply the number of true positives,

and thus the Ŵ value is equivalent to the fraction of all pairs that are true positives.

It follows that the higher the agreement between the ground-truth partitioning T and

clustering C, the higher the Ŵ value.

Normalized Discretized Hubert Statistic

The normalized version of the discretized Hubert statistic is simply the correlation

between t and c [Eq. (17.15)]:

Ŵn =
zT
t zc

‖zt‖ · ‖zc‖
= cosθ (17.17)

Note that µT = 1
N

tTt is the fraction of point pairs that belong to the same partition, that

is, with yi = yj , regardless of whether ŷi matches ŷj or not. Thus, we have

µT =
tTt

N
= TP+FN

N

Similarly, µC = 1
N

cTc is the fraction of point pairs that belong to the same cluster, that

is, with ŷi = ŷj , regardless of whether yi matches yj or not, so that

µC =
cTc

N
= TP+FP

N
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Substituting these into the numerator in Eq. (17.17), we get

zT
t zc = (t− 1 ·µT)T(c− 1 ·µC)

= tTc−µCtT1−µTcT1+ 1T1µTµC

= tTc−NµCµT−NµTµC+NµTµC

= tTc−NµTµC

= TP−NµTµC (17.18)

where 1 ∈ R
N is the vector of all 1’s. We also made use of identities tT1 = tTt and

cT1= cTc. Likewise, we can derive

‖zt‖2 = zT
t zt = tTt−Nµ2

T =NµT−Nµ2
T =NµT(1−µT) (17.19)

‖zc‖2 = zT
c zc = cTc−Nµ2

C =NµC−Nµ2
C =NµC(1−µC) (17.20)

Plugging Eqs. (17.18), (17.19), and (17.20) into Eq. (17.17) the normalized, discretized

Hubert statistic can be written as

Ŵn =
TP
N
−µTµC√

µTµC(1−µT)(1−µC)
(17.21)

because µT= TP+FN
N

and µC= TP+FP
N

, the normalized Ŵn statistic can be computed using

only the TP, FN, and FP values. The maximum value of Ŵn=+1 is obtained when there

are no false positives or negatives, that is, when FN= FP = 0. The minimum value of

Ŵn =−1 is when there are no true positives and negatives, that is, when TP= TN= 0.

Example 17.4. Continuing Example 17.3, for the good clustering in Figure 17.1a, we

have

TP= 3030 FN= 645 FP= 766 TN= 6734

From these values, we obtain

µT =
TP+FN

N
= 3675

11175
= 0.33

µC =
TP+FP

N
= 3796

11175
= 0.34

Using Eqs. (17.16) and (17.21) the Hubert statistic values are

Ŵ = 3030

11175
= 0.271

Ŵn =
0.27− 0.33 · 0.34√

0.33 · 0.34 · (1− 0.33) · (1− 0.34)
= 0.159

0.222
= 0.717

Likewise, for the bad clustering in Figure 17.1b, we have

TP= 2891 FN= 784 FP= 2380 TN= 5120
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and the values for the discretized Hubert statistic are given as

Ŵ = 0.258 Ŵn = 0.442

We observe that the good clustering has higher values, though the normalized

statistic is more discerning than the unnormalized version, that is, the good clustering

has a much higher value of Ŵn than the bad clustering, whereas the difference in Ŵ

for the two clusterings is not that high.

17.2 INTERNAL MEASURES

Internal evaluation measures do not have recourse to the ground-truth partitioning,

which is the typical scenario when clustering a dataset. To evaluate the quality of the

clustering, internal measures therefore have to utilize notions of intracluster similarity

or compactness, contrasted with notions of intercluster separation, with usually a

trade-off in maximizing these two aims. The internal measures are based on the n× n

distance matrix, also called the proximity matrix, of all pairwise distances among the n

points:

W=
{

δ(xi,xj )
}n

i,j=1
(17.22)

where

δ(xi,xj )=
∥

∥xi − xj

∥

∥

2

is the Euclidean distance between xi,xj ∈D, although other distance metrics can also

be used. Because W is symmetric and δ(xi,xi) = 0, usually only the upper triangular

elements of W (excluding the diagonal) are used in the internal measures.

The proximity matrix W can also be considered as the adjacency matrix of the

weighted complete graph G over the n points, that is, with nodes V={xi | xi ∈D}, edges

E= {(xi,xj ) | xi,xj ∈D}, and edge weights wij =W(i,j) for all xi,xj ∈D. There is thus

a close connection between the internal evaluation measures and the graph clustering

objectives we examined in Chapter 16.

For internal measures, we assume that we do not have access to a ground-truth

partitioning. Instead, we assume that we are given a clustering C = {C1, . . . ,Ck}
comprising r = k clusters, with cluster Ci containing ni =|Ci| points. Let ŷi ∈ {1,2, . . . ,k}
denote the cluster label for point xi . The clustering C can be considered as a k-way cut

in G because Ci 6= ∅ for all i, Ci ∩Cj = ∅ for all i,j , and
⋃

i Ci = V. Given any subsets

S,R⊂V, define W(S,R) as the sum of the weights on all edges with one vertex in S and

the other in R, given as

W(S,R)=
∑

xi∈S

∑

xj ∈R

wij

Also, given S⊆V, we denote by S the complementary set of vertices, that is, S=V−S.

The internal measures are based on various functions over the intracluster and

intercluster weights. In particular, note that the sum of all the intracluster weights over
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all clusters is given as

Win =
1

2

k
∑

i=1

W(Ci,Ci) (17.23)

We divide by 2 because each edge within Ci is counted twice in the summation given

by W(Ci,Ci). Also note that the sum of all intercluster weights is given as

Wout =
1

2

k
∑

i=1

W(Ci,Ci)=
k−1
∑

i=1

∑

j>i

W(Ci,Cj ) (17.24)

Here too we divide by 2 because each edge is counted twice in the summation across

clusters. The number of distinct intracluster edges, denoted Nin, and intercluster edges,

denoted Nout , are given as

Nin =
k
∑

i=1

(

ni

2

)

= 1

2

k
∑

i=1

ni(ni − 1)

Nout =
k−1
∑

i=1

k
∑

j=i+1

ni ·nj =
1

2

k
∑

i=1

k
∑

j=1
j 6=i

ni ·nj

Note that the total number of distinct pairs of points N satisfies the identity

N=Nin+Nout =
(

n

2

)

= 1

2
n(n− 1)

Example 17.5. Figure 17.2 shows the graphs corresponding to the two K-means

clusterings shown in Figure 17.1. Here, each vertex corresponds to a point xi ∈ D,

and an edge (xi,xj ) exists between each pair of points. However, only the intracluster

edges are shown (with intercluster edges omitted) to avoid clutter. Because internal

measures do not have access to a ground truth labeling, the goodness of a clustering

is measured based on intracluster and intercluster statistics.

BetaCV Measure

The BetaCV measure is the ratio of the mean intracluster distance to the mean

intercluster distance:

BetaCV= Win/Nin

Wout/Nout

= Nout

Nin

· Win

Wout

= Nout

Nin

∑k

i=1 W(Ci,Ci)
∑k

i=1 W(Ci,Ci)

The smaller the BetaCV ratio, the better the clustering, as it indicates that intracluster

distances are on average smaller than intercluster distances.

C-index

Let Wmin(Nin) be the sum of the smallest Nin distances in the proximity matrix W,

where Nin is the total number of intracluster edges, or point pairs. Let Wmax(Nin) be

the sum of the largest Nin distances in W.
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(a) K-means: good

−1.5

−1.0

−0.5

0

0.5

1.0

−4 −3 −2 −1 0 1 2 3

u1

u2

uT

uT

uT

bC

uT

bC
uT

uT

uT

uT

rS
rS

uT
uT bC

rS rS

uT

rS

uT

uT

uT

rS

uT

uT

rS

uT

bC

uT

uT

rS

rS

uT

uT

bC

uT

uT

rS

uTuT uT

uT

uT
uT

uT

bC

uT

uT

rS

rS

uT

uT
bC

uT

rS

uT

uT

uT

uT
uT

uT

uT

rS

rS

uT

uTuT

bC

rS

rS

uT

uT

uT

rS

bC
bC

bC

uT
bC

uT

uT

bC

uT

uT

uT

bC

uT

uT

rS

uT

bC

bC

uT

uT

uT

uT

bC

uT

uT

uTuT

uT

uT
uT

uT

bC
bC

uT

bC

bC

uT

rS

uT

rS

uT

rS

uT

uT

uT

uT

uT

bC

uT

uT

rS

bC

uT

rS

uT

uT

rS

uT

uT

rS

bC

rS

rS
uT

uT

uT

uT

uT

uTuT

uT

rS

uT

uT

uT

rS

(b) K-means: bad

Figure 17.2. Clusterings as graphs: Iris.

The C-index measures to what extent the clustering puts together the Nin points

that are the closest across the k clusters. It is defined as

Cindex = Win−Wmin(Nin)

Wmax(Nin)−Wmin(Nin)

where Win is the sum of all the intracluster distances [Eq. (17.23)]. The C-index lies in

the range [0,1]. The smaller the C-index, the better the clustering, as it indicates more

compact clusters with relatively smaller distances within clusters rather than between

clusters.

Normalized Cut Measure

The normalized cut objective [Eq. (16.17)] for graph clustering can also be used as an

internal clustering evaluation measure:

NC=
k
∑

i=1

W(Ci,Ci)

vol(Ci)
=

k
∑

i=1

W(Ci,Ci)

W(Ci,V)
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where vol(Ci)=W(Ci,V) is the volume of cluster Ci , that is, the total weights on edges

with at least one end in the cluster. However, because we are using the proximity

or distance matrix W, instead of the affinity or similarity matrix A, the higher the

normalized cut value the better.

To see this, we make use of the observation that W(Ci,V)=W(Ci,Ci)+W(Ci,Ci),

so that

NC=
k
∑

i=1

W(Ci,Ci)

W(Ci,Ci)+W(Ci,Ci)
=

k
∑

i=1

1

W(Ci,Ci)

W(Ci,Ci)
+ 1

We can see that NC is maximized when the ratios
W(Ci,Ci)

W(Ci,Ci)
(across the k clusters) are

as small as possible, which happens when the intracluster distances are much smaller

compared to intercluster distances, that is, when the clustering is good. The maximum

possible value of NC is k.

Modularity

The modularity objective for graph clustering [Eq. (16.26)] can also be used as an

internal measure:

Q=
k
∑

i=1

(

W(Ci,Ci)

W(V,V)
−
(

W(Ci,V)

W(V,V)

)2)

where

W(V,V)=
k
∑

i=1

W(Ci,V)

=
k
∑

i=1

W(Ci,Ci)+
k
∑

i=1

W(Ci,Ci)

= 2(Win+Wout)

The last step follows from Eqs. (17.23) and (17.24). Modularity measures the difference

between the observed and expected fraction of weights on edges within the clusters.

Since we are using the distance matrix, the smaller the modularity measure the better

the clustering, which indicates that the intracluster distances are lower than expected.

Dunn Index

The Dunn index is defined as the ratio between the minimum distance between point

pairs from different clusters and the maximum distance between point pairs from the

same cluster. More formally, we have

Dunn= Wmin
out

Wmax
in

where Wmin
out is the minimum intercluster distance:

Wmin
out =min

i,j>i

{

wab|xa ∈Ci,xb ∈Cj

}
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and Wmax
in is the maximum intracluster distance:

Wmax
in =max

i

{

wab|xa,xb ∈Ci

}

The larger the Dunn index the better the clustering because it means even the closest

distance between points in different clusters is much larger than the farthest distance

between points in the same cluster. However, the Dunn index may be insensitive

because the minimum intercluster and maximum intracluster distances do not capture

all the information about a clustering.

Davies–Bouldin Index

Let µi denote the cluster mean, given as

µi =
1

ni

∑

xj∈Ci

xj (17.25)

Further, let σµi
denote the dispersion or spread of the points around the cluster mean,

given as

σµi
=

√

∑

xj ∈Ci
δ(xj ,µi)2

ni

=
√

var(Ci)

where var(Ci) is the total variance [Eq. (1.4)] of cluster Ci .

The Davies–Bouldin measure for a pair of clusters Ci and Cj is defined as the ratio

DBij =
σµi
+σµj

δ(µi,µj )

DBij measures how compact the clusters are compared to the distance between the

cluster means. The Davies–Bouldin index is then defined as

DB= 1

k

k
∑

i=1

max
j 6=i
{DBij }

That is, for each cluster Ci , we pick the cluster Cj that yields the largest DBij ratio.

The smaller the DB value the better the clustering, as it means that the clusters are

well separated (i.e., the distance between cluster means is large), and each cluster is

well represented by its mean (i.e., has a small spread).

Silhouette Coefficient

The silhouette coefficient is a measure of both cohesion and separation of clusters,

and is based on the difference between the average distance to points in the closest

cluster and to points in the same cluster. For each point xi we calculate its silhouette

coefficient si as

si =
µmin

out (xi)−µin(xi)

max
{

µmin
out (xi),µin(xi)

} (17.26)
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where µin(xi) is the mean distance from xi to points in its own cluster ŷi :

µin(xi)=

∑

xj∈Cŷi
,j 6=i δ(xi,xj )

nŷi
− 1

and µmin
out (xi) is the mean of the distances from xi to points in the closest cluster:

µmin
out (xi)=min

j 6=ŷi

{∑

y∈Cj
δ(xi,y)

nj

}

The si value of a point lies in the interval [−1,+1]. A value close to +1 indicates

that xi is much closer to points in its own cluster and is far from other clusters. A value

close to zero indicates that xi is close to the boundary between two clusters. Finally, a

value close to−1 indicates that xi is much closer to another cluster than its own cluster,

and therefore, the point may be mis-clustered.

The silhouette coefficient is defined as the mean si value across all the points:

SC= 1

n

n
∑

i=1

si (17.27)

A value close to +1 indicates a good clustering.

Hubert Statistic

The Hubert Ŵ statistic [Eq. (17.14)], and its normalized version Ŵn [Eq. (17.15)], can

both be used as internal evaluation measures by letting X=W be the pairwise distance

matrix, and by defining Y as the matrix of distances between the cluster means:

Y=
{

δ(µŷi
,µŷj

)
}n

i,j=1
(17.28)

Because both W and Y are symmetric, both Ŵ and Ŵn are computed over their upper

triangular elements.

Example 17.6. Consider the two clusterings for the Iris principal components dataset

shown in Figure 17.1, along with their corresponding graph representations in

Figure 17.2. Let us evaluate these two clusterings using internal measures.

The good clustering shown in Figure 17.1a and Figure 17.2a has clusters with the

following sizes:

n1 = 61 n2 = 50 n3 = 39

Thus, the number of intracluster and intercluster edges (i.e., point pairs) is given as

Nin =
(

61

2

)

+
(

50

2

)

+
(

31

2

)

= 1830+ 1225+ 741= 3796

Nout = 61 · 50+ 61 · 39+ 50 · 39= 3050+ 2379+ 1950= 7379

In total there are N=Nin+Nout = 3796+ 7379= 11175 distinct point pairs.
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The weights on edges within each cluster W(Ci,Ci), and those from a cluster to

another W(Ci,Cj ), are as given in the intercluster weight matrix









W C1 C2 C3

C1 3265.69 10402.30 4418.62

C2 10402.30 1523.10 9792.45

C3 4418.62 9792.45 1252.36









(17.29)

Thus, the sum of all the intracluster and intercluster edge weights is

Win =
1

2
(3265.69+ 1523.10+1252.36)= 3020.57

Wout = (10402.30+ 4418.62+9792.45)= 24613.37

The BetaCV measure can then be computed as

BetaCV= Nout ·Win

Nin ·Wout

= 7379× 3020.57

3796× 24613.37
= 0.239

For the C-index, we first compute the sum of the Nin smallest and largest

pair-wise distances, given as

Wmin(Nin)= 2535.96 Wmax(Nin)= 16889.57

Thus, C-index is given as

Cindex = Win−Wmin(Nin)

Wmax(Nin)−Wmin(Nin)
= 3020.57− 2535.96

16889.57− 2535.96
= 484.61

14535.61
= 0.0338

For the normalized cut and modularity measures, we compute W(Ci,Ci),

W(Ci,V) =
∑k

j=1 W(Ci,Cj ) and W(V,V) =
∑k

i=1 W(Ci,V), using the intercluster

weight matrix [Eq. (17.29)]:

W(C1,C1)= 10402.30+ 4418.62= 14820.91

W(C2,C2)= 10402.30+ 9792.45= 20194.75

W(C3,C3)= 4418.62+ 9792.45= 14211.07

W(C1,V)= 3265.69+W(C1,C1)= 18086.61

W(C2,V)= 1523.10+W(C2,C2)= 21717.85

W(C3,V)= 1252.36+W(C3,C3)= 15463.43

W(V,V)=W(C1,V)+W(C2,V)+W(C3,V)= 55267.89
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The normalized cut and modularity values are given as

NC= 14820.91

18086.61
+ 20194.75

21717.85
+ 14211.07

15463.43
= 0.819+ 0.93+ 0.919= 2.67

Q=
(

3265.69

55267.89
−
(

18086.61

55267.89

)2
)

+
(

1523.10

55267.89
−
(

21717.85

55267.89

)2
)

+
(

1252.36

55267.89
−
(

15463.43

55267.89

)2
)

=−0.048− 0.1269− 0.0556=−0.2305

The Dunn index can be computed from the minimum and maximum distances

between pairs of points from two clusters Ci and Cj , computed as follows:









Wmin C1 C2 C3

C1 0 1.62 0.198

C2 1.62 0 3.49

C3 0.198 3.49 0

















Wmax C1 C2 C3

C1 2.50 4.85 4.81

C2 4.85 2.33 7.06

C3 4.81 7.06 2.55









The Dunn index value for the clustering is given as

Dunn= Wmin
out

Wmax
in

= 0.198

2.55
= 0.078

To compute the Davies–Bouldin index, we compute the cluster mean and

dispersion values:

µ1 =
(

−0.664

−0.33

)

µ2 =
(

2.64

0.19

)

µ3 =
(

−2.35

0.27

)

σµ1
= 0.723 σµ2

= 0.512 σµ3
= 0.695

and the DBij values for pairs of clusters:









DBij C1 C2 C3

C1 – 0.369 0.794

C2 0.369 – 0.242

C3 0.794 0.242 –









For example, DB12 =
σµ1
+σµ2

δ(µ1,µ2)
= 1.235

3.346
= 0.369. Finally, the DB index is given as

DB= 1

3
(0.794+ 0.369+ 0.794)= 0.652

The silhouette coefficient [Eq. (17.26)] for a chosen point, say x1, is given as

s1 =
1.902− 0.701

max{1.902,0.701} =
1.201

1.902
= 0.632

The average value across all points is SC= 0.598
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The Hubert statistic can be computed by taking the dot product over the upper

triangular elements of the proximity matrix W [Eq. (17.22)] and the n× n matrix of

distances among cluster means Y [Eq. (17.28)], and then dividing by the number of

distinct point pairs N:

Ŵ = wTy

N
= 91545.85

11175
= 8.19

where w,y ∈ RN are vectors comprising the upper triangular elements of W and Y.

The normalized Hubert statistic can be obtained as the correlation between w and y

[Eq. (17.15)]:

Ŵn =
zT
wzy

‖xw‖ ·
∥

∥zy

∥

∥

= 0.918

where zw,zy are the centered vectors corresponding to w and y, respectively.

The following table summarizes the various internal measure values for the good

and bad clusterings shown in Figure 17.1 and Figure 17.2.

Lower better Higher better

BetaCV Cindex Q DB NC Dunn SC Ŵ Ŵn

(a) Good 0.24 0.034 −0.23 0.65 2.67 0.08 0.60 8.19 0.92

(b) Bad 0.33 0.08 −0.20 1.11 2.56 0.03 0.55 7.32 0.83

Despite the fact that these internal measures do not have access to the

ground-truth partitioning, we can observe that the good clustering has higher values

for normalized cut, Dunn, silhouette coefficient, and the Hubert statistics, and

lower values for BetaCV, C-index, modularity, and Davies–Bouldin measures. These

measures are thus capable of discerning good versus bad clusterings of the data.

17.3 RELATIVE MEASURES

Relative measures are used to compare different clusterings obtained by varying

different parameters for the same algorithm, for example, to choose the number of

clusters k.

Silhouette Coefficient

The silhouette coefficient [Eq. (17.26)] for each point sj , and the average SC value

[Eq. (17.27)], can be used to estimate the number of clusters in the data. The approach

consists of plotting the sj values in descending order for each cluster, and to note the

overall SC value for a particular value of k, as well as clusterwise SC values:

SCi =
1

ni

∑

xj∈Ci

sj

We can then pick the value k that yields the best clustering, with many points having

high sj values within each cluster, as well as high values for SC and SCi (1≤ i ≤ k).
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Figure 17.3. Iris K-means: silhouette coefficient plot.

Example 17.7. Figure 17.3 shows the silhouette coefficient plot for the best clustering

results for the K-means algorithm on the Iris principal components dataset for three

different values of k, namely k = 2,3,4. The silhouette coefficient values si for points
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within each cluster are plotted in decreasing order. The overall average (SC) and

clusterwise averages (SCi , for 1≤ i ≤ k) are also shown, along with the cluster sizes.

Figure 17.3a shows that k= 2 has the highest average silhouette coefficient, SC=
0.706. It shows two well separated clusters. The points in cluster C1 start out with

high si values, which gradually drop as we get to border points. The second cluster C2

is even better separated, since it has a higher silhouette coefficient and the pointwise

scores are all high, except for the last three points, suggesting that almost all the

points are well clustered.

The silhouette plot in Figure 17.3b, with k = 3, corresponds to the “good”

clustering shown in Figure 17.1a. We can see that cluster C1 from Figure 17.3a has

been split into two clusters for k = 3, namely C1 and C3. Both of these have many

bordering points, whereas C2 is well separated with high silhouette coefficients across

all points.

Finally, the silhouette plot for k = 4 is shown in Figure 17.3c. Here C3 is the

well separated cluster, corresponding to C2 above, and the remaining clusters are

essentially subclusters of C1 for k = 2 (Figure 17.3a). Cluster C1 also has two points

with negative si values, indicating that they are probably misclustered.

Because k = 2 yields the highest silhouette coefficient, and the two clusters are

essentially well separated, in the absence of prior knowledge, we would choose k = 2

as the best number of clusters for this dataset.

Calinski–Harabasz Index

Given the dataset D= {xi}ni=1, the scatter matrix for D is given as

S= n6 =
n
∑

j=1

(

xj −µ
)(

xj −µ
)T

where µ= 1
n

∑n

j=1 xj is the mean and 6 is the covariance matrix. The scatter matrix can

be decomposed into two matrices S = SW + SB, where SW is the within-cluster scatter

matrix and SB is the between-cluster scatter matrix, given as

SW =
k
∑

i=1

∑

xj∈Ci

(

xj −µi

)(

xj −µi

)T

SB =
k
∑

i=1

ni (µi −µ)(µi −µ)T

where µi = 1
ni

∑

xj ∈Ci
xj is the mean for cluster Ci .

The Calinski–Harabasz (CH) variance ratio criterion for a given value of k is

defined as follows:

CH(k)= tr(SB)/(k− 1)

tr(SW)/(n− k)
= n− k

k− 1
· tr(SB)

tr(SW)

where tr(SW) and tr(SB) are the traces (the sum of the diagonal elements) of the

within-cluster and between-cluster scatter matrices.

For a good value of k, we expect the within-cluster scatter to be smaller relative to

the between-cluster scatter, which should result in a higher CH(k) value. On the other
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Figure 17.4. Calinski–Harabasz variance ratio criterion.

hand, we do not desire a very large value of k; thus the term n−k

k−1
penalizes larger values

of k. We could choose a value of k that maximizes CH(k). Alternatively, we can plot

the CH values and look for a large increase in the value followed by little or no gain.

For instance, we can choose the value k > 3 that minimizes the term

1(k)=
(

CH(k+ 1)−CH(k)
)

−
(

CH(k)−CH(k− 1)
)

The intuition is that we want to find the value of k for which CH(k) is much higher than

CH(k− 1) and there is only a little improvement or a decrease in the CH(k+ 1) value.

Example 17.8. Figure 17.4 shows the CH ratio for various values of k on the Iris

principal components dataset, using the K-means algorithm, with the best results

chosen from 200 runs.

For k = 3, the within-cluster and between-cluster scatter matrices are given as

SW =
(

39.14 −13.62

−13.62 24.73

)

SB =
(

590.36 13.62

13.62 11.36

)

Thus, we have

CH(3)= (150− 3)

(3− 1)
· (590.36+ 11.36)

(39.14+ 24.73)
= (147/2) · 601.72

63.87
= 73.5 · 9.42= 692.4

The successive CH(k) and 1(k) values are as follows:

k 2 3 4 5 6 7 8 9

CH(k) 570.25 692.40 717.79 683.14 708.26 700.17 738.05 728.63

1(k) – −96.78 −60.03 59.78 −33.22 45.97 −47.30 –
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If we choose the first large peak before a decrease we would choose k = 4. However,

1(k) suggests k = 3 as the best (lowest) value, representing the “knee-of-the-curve”.

One limitation of the 1(k) criteria is that values less than k = 3 cannot be evaluated,

since 1(2) depends on CH(1), which is not defined.

Gap Statistic

The gap statistic compares the sum of intracluster weights Win [Eq. (17.23)] for

different values of k with their expected values assuming no apparent clustering

structure, which forms the null hypothesis.

Let Ck be the clustering obtained for a specified value of k, using a chosen clustering

algorithm. Let Wk
in(D) denote the sum of intracluster weights (over all clusters) for Ck

on the input dataset D. We would like to compute the probability of the observed Wk
in

value under the null hypothesis that the points are randomly placed in the same data

space as D. Unfortunately, the sampling distribution of Win is not known. Further, it

depends on the number of clusters k, the number of points n, and other characteristics

of D.

To obtain an empirical distribution for Win, we resort to Monte Carlo simulations

of the sampling process. That is, we generate t random samples comprising n randomly

distributed points within the same d-dimensional data space as the input dataset D.

That is, for each dimension of D, say Xj , we compute its range [min(Xj),max(Xj )] and

generate values for the n points (for the j th dimension) uniformly at random within

the given range. Let Ri ∈ R
n×d , 1 ≤ i ≤ t denote the ith sample. Let Wk

in(Ri) denote

the sum of intracluster weights for a given clustering of Ri into k clusters. From each

sample dataset Ri , we generate clusterings for different values of k using the same

algorithm and record the intracluster values Wk
in(Ri). Let µW(k) and σW(k) denote the

mean and standard deviation of these intracluster weights for each value of k, given as

µW(k)= 1

t

t
∑

i=1

logWk
in(Ri)

σW(k)=

√

√

√

√

1

t

t
∑

i=1

(

logWk
in(Ri)−µW(k)

)2

where we use the logarithm of the Win values, as they can be quite large.

The gap statistic for a given k is then defined as

gap(k)= µW(k)− logWk
in(D)

It measures the deviation of the observed Wk
in value from its expected value under the

null hypothesis. We can select the value of k that yields the largest gap statistic because

that indicates a clustering structure far away from the uniform distribution of points.

A more robust approach is to choose k as follows:

k∗ = argmin
k

{

gap(k)≥ gap(k+ 1)−σW(k+ 1)
}

That is, we select the least value of k such that the gap statistic is within one standard

deviation of the gap at k+ 1.
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Figure 17.5. Gap statistic. (a) Randomly generated data. (b) Intracluster weights for different k. (c) Gap

statistic as a function of k.

Example 17.9. To compute the gap statistic we have to generate t random samples

of n points drawn from the same data space as the Iris principal components dataset.

A random sample of n = 150 points is shown in Figure 17.5a, which does not have

any apparent cluster structure. However, when we run K-means on this dataset it

will output some clustering, an example of which is also shown, with k = 3. From this

clustering, we can compute the log2 Wk
in(Ri) value; we use base 2 for all logarithms.

For Monte Carlo sampling, we generate t = 200 such random datasets, and

compute the mean or expected intracluster weight µW(k) under the null hypothesis,

for each value of k. Figure 17.5b shows the expected intracluster weights for different

values of k. It also shows the observed value of log2 Wk
in computed from the K-means

clustering of the Iris principal components dataset. For the Iris dataset, and each

of the uniform random samples, we run K-means 100 times and select the best

possible clustering, from which the Wk
in(Ri) values are computed. We can see that

the observed Wk
in(D) values are smaller than the expected values µW(k).
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Table 17.1. Gap statistic values as a function of k

k gap(k) σW(k) gap(k)−σW(k)

1 0.093 0.0456 0.047

2 0.346 0.0486 0.297

3 0.679 0.0529 0.626

4 0.753 0.0701 0.682

5 0.586 0.0711 0.515

6 0.715 0.0654 0.650

7 0.808 0.0611 0.746

8 0.680 0.0597 0.620

9 0.632 0.0606 0.571

From these values, we then compute the gap statistic gap(k) for different values

of k, which are plotted in Figure 17.5c. Table 17.1 lists the gap statistic and standard

deviation values. The optimal value for the number of clusters is k = 4 because

gap(4)= 0.753 > gap(5)−σW(5)= 0.515

However, if we had relaxed the gap test to be within two standard deviations, then

the optimal value would have been k = 3 because

gap(3)= 0.679 > gap(4)− 2σW(4)= 0.753− 2 · 0.0701= 0.613

Essentially, there is still some subjectivity in selecting the right number of clusters,

but the gap statistic plot can help in this task.

17.3.1 Cluster Stability

The main idea behind cluster stability is that the clusterings obtained from several

datasets sampled from the same underlying distribution as D should be similar or

“stable.” The cluster stability approach can be used to find good parameter values

for a given clustering algorithm; we will focus on the task of finding a good value for k,

the correct number of clusters.

The joint probability distribution for D is typically unknown. Therefore, to sample

a dataset from the same distribution we can try a variety of methods, including random

perturbations, subsampling, or bootstrap resampling. Let us consider the bootstrapping

approach; we generate t samples of size n by sampling from D with replacement, which

allows the same point to be chosen possibly multiple times, and thus each sample Di

will be different. Next, for each sample Di we run the same clustering algorithm with

different cluster values k ranging from 2 to kmax.

Let Ck(Di) denote the clustering obtained from sample Di , for a given value of k.

Next, the method compares the distance between all pairs of clusterings Ck(Di) and

Ck(Dj ) via some distance function. Several of the external cluster evaluation measures

can be used as distance measures, by setting, for example, C = Ck(Di) and T = Ck(Dj ),

or vice versa. From these values we compute the expected pairwise distance for each

value of k. Finally, the value k∗ that exhibits the least deviation between the clusterings
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ALGORITHM 17.1. Clustering Stability Algorithm for Choosing k

CLUSTERINGSTABILITY (A, t,kmax,D):

n←|D|1

// Generate t samples

for i = 1,2, . . . , t do2

Di← sample n points from D with replacement3

// Generate clusterings for different values of k

for i = 1,2, . . . , t do4

for k = 2,3, . . . ,kmax do5

Ck(Di)← cluster Di into k clusters using algorithm A6

// Compute mean difference between clusterings for each k

foreach pair Di,Dj with j > i do7

Dij ←Di ∩Dj // create common dataset using Eq. (17.30)8

for k = 2,3, . . . ,kmax do9

dij (k)← d
(

Ck(Di),Ck(Dj ),Dij

)

// distance between10

clusterings

for k = 2,3, . . . ,kmax do11

µd(k)← 2
t (t−1)

∑t

i=1

∑

j>i dij(k) // expected pairwise distance12

// Choose best k

k∗← argmink

{

µd(k)
}

13

obtained from the resampled datasets is the best choice for k because it exhibits the

most stability.

There is, however, one complication when evaluating the distance between a pair

of clusterings Ck(Di) and Ck(Dj ), namely that the underlying datasets Di and Dj are

different. That is, the set of points being clustered is different because each sample Di

is different. Before computing the distance between the two clusterings, we have to

restrict the clusterings only to the points common to both Di and Dj , denoted as Dij .

Because sampling with replacement allows multiple instances of the same point, we

also have to account for this when creating Dij . For each point xa in the input dataset

D, let ma
i and ma

j denote the number of occurrences of xa in Di and Dj , respectively.

Define

Dij =Di ∩Dj =
{

ma instances of xa | xa ∈D,ma =min{ma
i ,m

a
j }
}

(17.30)

That is, the common dataset Dij is created by selecting the minimum number of

instances of the point xa in Di or Dj .

Algorithm 17.1 shows the pseudo-code for the clustering stability method for

choosing the best k value. It takes as input the clustering algorithm A, the number

of samples t , the maximum number of clusters kmax, and the input dataset D.
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Figure 17.6. Clustering stability: Iris dataset.

It first generates the t bootstrap samples and clusters them using algorithm A. Next,

it computes the distance between the clusterings for each pair of datasets Di and Dj ,

for each value of k. Finally, the method computes the expected pairwise distance µd(k)

in line 12. We assume that the clustering distance function d is symmetric. If d is not

symmetric, then the expected difference should be computed over all ordered pairs,

that is, µd(k)= 1
t (t−1)

∑r

i=1

∑

j 6=i dij (k).

Instead of a distance function d , we can also evaluate clustering stability via a

similarity measure, in which case, after computing the average similarity between

pairs of clusterings for a given k, we can choose the best value k∗ as the one that

maximizes the expected similarity µs(k). In general, those external measures that

yield lower values for better agreement between Ck(Di) and Ck(Dj ) can be used as

distance functions, whereas those that yield higher values for better agreement can be

used as similarity functions. Examples of distance functions include normalized mutual

information, variation of information, and conditional entropy (which is asymmetric).

Examples of similarity functions include Jaccard, Fowlkes–Mallows, Hubert Ŵ statistic,

and so on.

Example 17.10. We study the clustering stability for the Iris principal components

dataset, with n = 150, using the K-means algorithm. We use t = 500 bootstrap

samples. For each dataset Di , and each value of k, we run K-means with 100 initial

starting configurations, and select the best clustering.

For the distance function, we used the variation of information [Eq. (17.5)]

between each pair of clusterings. We also used the Fowlkes–Mallows measure

[Eq. (17.13)] as an example of a similarity measure. The expected values of the

pairwise distance µd(k) for the VI measure, and the pairwise similarity µs(k) for the

FM measure are plotted in Figure 17.6. Both the measures indicate that k = 2 is the

best value, as for the VI measure this leads to the least expected distance between

pairs of clusterings, and for the FM measure this choice leads to the most expected

similarity between clusterings.
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17.3.2 Clustering Tendency

Clustering tendency or clusterability aims to determine whether the dataset D has

any meaningful groups to begin with. This is usually a hard task given the different

definitions of what it means to be a cluster, for example, partitional, hierarchical,

density-based, graph-based and so on. Even if we fix the cluster type, it is still a

hard task to define the appropriate null model (e.g., the one without any clustering

structure) for a given dataset D. Furthermore, if we do determine that the data is

clusterable, then we are still faced with the question of how many clusters there are.

Nevertheless, it is still worthwhile to assess the clusterability of a dataset; we look at

some approaches to answer the question whether the data is clusterable or not.

Spatial Histogram

One simple approach is to contrast the d-dimensional spatial histogram of the input

dataset D with the histogram from samples generated randomly in the same data

space. Let X1,X2, . . . ,Xd denote the d dimensions. Given b, the number of bins for

each dimension, we divide each dimension Xj into b equi-width bins, and simply count

how many points lie in each of the bd d-dimensional cells. From this spatial histogram,

we can obtain the empirical joint probability mass function (EPMF) for the dataset

D, which is an approximation of the unknown joint probability density function. The

EPMF is given as

f (i)= P(xj ∈ cell i)=
∣

∣{xj ∈ cell i}
∣

∣

n

where i = (i1, i2, . . . , id) denotes a cell index, with ij denoting the bin index along

dimension Xj .

Next, we generate t random samples, each comprising n points within the same

d-dimensional space as the input dataset D. That is, for each dimension Xj , we compute

its range [min(Xj),max(Xj )], and generate values uniformly at random within the

given range. Let Rj denote the j th such random sample. We can then compute the

corresponding EPMF gj (i) for each Rj , 1≤ j ≤ t .

Finally, we can compute how much the distribution f differs from gj (for

j = 1, . . . , t), using the Kullback–Leibler (KL) divergence from f to gj , defined as

KL(f |gj )=
∑

i

f (i) log

(

f (i)

gj (i)

)

(17.31)

The KL divergence is zero only when f and gj are the same distributions. Using these

divergence values, we can compute how much the dataset D differs from a random

dataset.

The main limitation of this approach is that as dimensionality increases, the

number of cells (bd) increases exponentially, and with a fixed sample size n, most

of the cells will be empty, or will have only one point, making it hard to estimate

the divergence. The method is also sensitive to the choice of parameter b. Instead of

histograms, and the corresponding EPMF, we can also use density estimation methods

(see Section 15.2) to determine the joint probability density function (PDF) for the
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Figure 17.7. Iris dataset: spatial histogram.
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dataset D, and see how it differs from the PDF for the random datasets. However, the

curse of dimensionality also causes problems for density estimation.

Example 17.11. Figure 17.7c shows the empirical joint probability mass function for

the Iris principal components dataset that has n = 150 points in d = 2 dimensions.

It also shows the EPMF for one of the datasets generated uniformly at random in the

same data space. Both EPMFs were computed using b= 5 bins in each dimension, for

a total of 25 spatial cells. The spatial grids/cells for the Iris dataset D, and the random

sample R, are shown in Figures 17.7a and 17.7b, respectively. The cells are numbered

starting from 0, from bottom to top, and then left to right. Thus, the bottom left cell

is 0, top left is 4, bottom right is 19, and top right is 24. These indices are used along

the x-axis in the EPMF plot in Figure 17.7c.

We generated t = 500 random samples from the null distribution, and computed

the KL divergence from f to gj for each 1 ≤ j ≤ t (using logarithm with

base 2). The distribution of the KL values is plotted in Figure 17.7d. The mean

KL value was µKL = 1.17, with a standard deviation of σKL = 0.18, indicating

that the Iris data is indeed far from the randomly generated data, and thus is

clusterable.

Distance Distribution

Instead of trying to estimate the density, another approach to determine clusterability

is to compare the pairwise point distances from D, with those from the randomly

generated samples Ri from the null distribution. That is, we create the EPMF

from the proximity matrix W for D [Eq. (17.22)] by binning the distances into b

bins:

f (i)= P(wpq ∈ bin i | xp,xq ∈D,p < q)=
∣

∣{wpq ∈ bin i}
∣

∣

n(n− 1)/2

Likewise, for each of the samples Rj , we can determine the EPMF for the pairwise

distances, denoted gj . Finally, we can compute the KL divergences between f and gj

using Eq. (17.31). The expected divergence indicates the extent to which D differs from

the null (random) distribution.

Example 17.12. Figure 17.8a shows the distance distribution for the Iris principal

components dataset D and the random sample Rj from Figure 17.7b. The distance

distribution is obtained by binning the edge weights between all pairs of points using

b= 25 bins.

We then compute the KL divergence from D to each Rj , over t = 500 samples.

The distribution of the KL divergences (using logarithm with base 2) is shown

in Figure 17.8b. The mean divergence is µKL = 0.18, with standard deviation

σKL = 0.017. Even though the Iris dataset has a good clustering tendency, the KL

divergence is not very large. We conclude that, at least for the Iris dataset, the

distance distribution is not as discriminative as the spatial histogram approach for

clusterability analysis.
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Figure 17.8. Iris dataset: distance distribution.

Hopkins Statistic

The Hopkins statistic is a sparse sampling test for spatial randomness. Given a dataset

D comprising n points, we generate t random subsamples Ri of m points each, where

m≪ n. These samples are drawn from the same data space as D, generated uniformly

at random along each dimension. Further, we also generate t subsamples of m points

directly from D, using sampling without replacement. Let Di denote the ith direct

subsample. Next, we compute the minimum distance between each point xj ∈ Di and

points in D

δmin(xj)= min
xi∈D,xi 6=xj

{

δ(xj ,xi)
}

Likewise, we compute the minimum distance δmin(yj ) between a point yj ∈ Ri and

points in D.

The Hopkins statistic (in d dimensions) for the ith pair of samples Ri and Di is

then defined as

HSi =
∑

yj ∈Ri

(

δmin(yj)
)d

∑

yj∈Ri

(

δmin(yj )
)d +

∑

xj∈Di

(

δmin(xj )
)d
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Figure 17.9. Iris dataset: Hopkins statistic distribution.

This statistic compares the nearest-neighbor distribution of randomly generated points

to the same distribution for random subsets of points from D. If the data is well

clustered we expect δmin(xj) values to be smaller compared to the δmin(yj ) values, and in

this case HSi tends to 1. If both nearest-neighbor distances are similar, then HSi takes

on values close to 0.5, which indicates that the data is essentially random, and there is

no apparent clustering. Finally, if δmin(xj ) values are larger compared to δmin(yj) values,

then HSi tends to 0, and it indicates point repulsion, with no clustering. From the t

different values of HSi we may then compute the mean and variance of the statistic to

determine whether D is clusterable or not.

Example 17.13. Figure 17.9 plots the distribution of the Hopkins statistic values over

t = 500 pairs of samples: Rj generated uniformly at random, and Dj subsampled

from the input dataset D. The subsample size was set as m = 30, using 20% of the

points in D, that is, the Iris principal components dataset, which has n= 150 points in

d = 2 dimensions. The mean of the Hopkins statistic is µHS = 0.935, with a standard

deviation of σHS = 0.025. Given the high value of the statistic, we conclude that the

Iris dataset has a good clustering tendency.

17.4 FURTHER READING

For an excellent introduction to clustering validation see Jain and Dubes (1988); the

book describes many of the external, internal, and relative measures discussed in

this chapter, including clustering tendency. Other good reviews appear in Halkidi,

Batistakis, and Vazirgiannis (2001) and Theodoridis and Koutroumbas (2008). For

recent work on formal properties for comparing clusterings via external measures see

Amigó et al. (2009) and Meilă (2007). For the silhouette plot see Rousseeuw (1987),

and for gap statistic see Tibshirani, Walther, and Hastie (2001). For an overview of

cluster stability methods see Luxburg (2009). A recent review of clusterability appears
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in Ackerman and Ben-David (2009). Overall reviews of clustering methods appear in

Xu and Wunsch (2005) and Jain, Murty, and Flynn (1999). See Kriegel, Kröger, and

Zimek (2009) for a review of subspace clustering methods.
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In Proceedings of 12th International Conference on Artificial Intelligence and
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17.5 EXERCISES

Q1. Prove that the maximum value of the entropy measure in Eq. (17.2) is logk.

Q2. Show that if C and T are independent of each other then H(T |C)=H(T ), and further

that H(C,T )=H(C)+H(T ).

Q3. Show that H(T |C)= 0 if and only if T is completely determined by C.

Q4. Show that I(C,T )=H(C)+H(T )−H(T ,C).

Q5. Show that the variation of information is 0 only when C and T are identical.
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Q6. Prove that the maximum value of the normalized discretized Hubert statistic in

Eq. (17.21) is obtained when FN= FP= 0, and the minimum value is obtained when

TP=TN= 0.

Q7. Show that the Fowlkes–Mallows measure can be considered as the correlation

between the pairwise indicator matrices for C and T , respectively. Define C(i,j )= 1

if xi and xj (with i 6= j) are in the same cluster, and 0 otherwise. Define T similarly

for the ground-truth partitions. Define 〈C,T〉 =
∑n

i,j=1 CijTij . Show that FM =
〈C,T〉√
〈T,T〉〈C,C〉

Q8. Show that the silhouette coefficient of a point lies in the interval [−1,+1].

Q9. Show that the scatter matrix can be decomposed as S = SW + SB, where SW and SB

are the within-cluster and between-cluster scatter matrices.
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Figure 17.10. Data for Q10 .

Q10. Consider the dataset in Figure 17.10. Compute the silhouette coefficient for the point

labeled c.

Q11. Describe how one may apply the gap statistic methodology for determining the

parameters of density-based clustering algorithms, such as DBSCAN and DEN-

CLUE (see Chapter 15).
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CHAPTER 18 Probabilistic Classification

Classification refers to the task of predicting a class label for a given unlabeled point.

In this chapter we consider three examples of the probabilistic classification approach.

The (full) Bayes classifier uses the Bayes theorem to predict the class as the one that

maximizes the posterior probability. The main task is to estimate the joint probability

density function for each class, which is modeled via a multivariate normal distribution.

The naive Bayes classifier assumes that attributes are independent, but it is still

surprisingly powerful for many applications. We also describe the nearest neighbors

classifier, which uses a non-parametric approach to estimate the density.

18.1 BAYES CLASSIFIER

Let the training dataset D consist of n points xi in a d-dimensional space, and let yi

denote the class for each point, with yi ∈ {c1,c2, . . . ,ck}. The Bayes classifier directly

uses the Bayes theorem to predict the class for a new test instance, x. It estimates the

posterior probability P(ci |x) for each class ci , and chooses the class that has the largest

probability. The predicted class for x is given as

ŷ = argmax
ci

{P(ci |x)} (18.1)

The Bayes theorem allows us to invert the posterior probability in terms of the

likelihood and prior probability, as follows:

P(ci |x)= P(x|ci) ·P(ci)

P (x)

where P(x|ci) is the likelihood, defined as the probability of observing x assuming that

the true class is ci , P(ci) is the prior probability of class ci , and P(x) is the probability

of observing x from any of the k classes, given as

P(x)=
k∑

j=1

P(x|cj ) ·P(cj )

467
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Because P(x) is fixed for a given point, Bayes rule [Eq. (18.1)] can be rewritten as

ŷ = argmax
ci

{P(ci |x)}

= argmax
ci

{
P(x|ci)P (ci)

P (x)

}
= argmax

ci

{
P(x|ci)P (ci)

}
(18.2)

In other words, the predicted class essentially depends on the likelihood of that class

taking its prior probability into account.

18.1.1 Estimating the Prior Probability

To classify points, we have to estimate the likelihood and prior probabilities directly

from the training dataset D. Let Di denote the subset of points in D that are labeled

with class ci :

Di = {xj ∈D | xj has class yj = ci}

Let the size of the dataset D be given as |D| = n, and let the size of each class-specific

subset Di be given as |Di | = ni . The prior probability for class ci can be estimated as

follows:

P̂ (ci)=
ni

n

18.1.2 Estimating the Likelihood

To estimate the likelihood P(x|ci), we have to estimate the joint probability of x across

all the d dimensions, that is, we have to estimate P
(
x= (x1,x2, . . . ,xd)|ci

)
.

Numeric Attributes

Assuming all dimensions are numeric, we can estimate the joint probability of x via

either a nonparametric or a parametric approach. We consider the non-parametric

approach in Section 18.3.

In the parametric approach we typically assume that each class ci is normally

distributed around some mean µi with a corresponding covariance matrix 6i , both

of which are estimated from Di . For class ci , the probability density at x is thus

given as

fi(x)= f (x|µi,6i)=
1

(
√

2π)d
√
|6i|

exp

{
− (x−µi)

T6−1
i (x−µi)

2

}
(18.3)

Because ci is characterized by a continuous distribution, the probability of any given

point must be zero, i.e., P(x|ci) = 0. However, we can compute the likelihood by

considering a small interval ǫ > 0 centered at x:

P(x|ci)= 2ǫ ·fi(x)
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The posterior probability is then given as

P(ci |x)= 2ǫ ·fi(x)P (ci)∑k

j=1 2ǫ ·fj (x)P (cj )
= fi(x)P (ci)∑k

j=1 fj (x)P (cj )
(18.4)

Further, because
∑k

j=1 fj (x)P (cj ) remains fixed for x, we can predict the class for x by

modifying Eq. (18.2) as follows:

ŷ = argmax
ci

{
fi(x)P (ci)

}

To classify a numeric test point x, the Bayes classifier estimates the parameters via

the sample mean and sample covariance matrix. The sample mean for the class ci can

be estimated as

µ̂i =
1

ni

∑

xj ∈Di

xj

and the sample covariance matrix for each class can be estimated using Eq. (2.30), as

follows

6̂i =
1

ni

ZT
i Zi

where Zi is the centered data matrix for class ci given as Zi =Di − 1 · µ̂T
i . These values

can be used to estimate the probability density in Eq. (18.3) as f̂ i(x)= f (x|µ̂i,6̂i).

Algorithm 18.1 shows the pseudo-code for the Bayes classifier. Given an input

dataset D, the method estimates the prior probability, mean and covariance matrix

for each class. For testing, given a test point x, it simply returns the class with the

maximum posterior probability. The cost of training is dominated by the covariance

matrix computation step which takes O(nd2) time.

ALGORITHM 18.1. Bayes Classifier

BAYESCLASSIFIER (D= {(xj ,yj )}nj=1):

for i = 1, . . . ,k do1

Di←
{
xj | yj = ci,j = 1, . . . ,n

}
// class-specific subsets2

ni← |Di| // cardinality3

P̂ (ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj ∈Di

xj // mean5

Zi←Di − 1ni
µ̂T

i // centered data6

6̂i← 1
ni

ZT
i Zi // covariance matrix7

return P̂ (ci),µ̂i,6̂i for all i = 1, . . . ,k8

TESTING (x and P̂ (ci), µ̂i , 6̂i , for all i ∈ [1,k]):

ŷ← argmax
ci

{
f (x|µ̂i,6̂i) ·P(ci)

}
9

return ŷ10
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Figure 18.1. Iris data: X1:sepal length versus X2:sepal width. The class means are show in black; the

density contours are also shown. The square represents a test point labeled x.

Example 18.1. Consider the 2-dimensional Iris data, with attributes sepal length

and sepal width, shown in Figure 18.1. Class c1, which corresponds to iris-setosa

(shown as circles), has n1 = 50 points, whereas the other class c2 (shown as triangles)

has n2 = 100 points. The prior probabilities for the two classes are

P̂ (c1)=
n1

n
= 50

150
= 0.33 P̂ (c2)=

n2

n
= 100

150
= 0.67

The means for c1 and c2 (shown as black circle and triangle) are given as

µ̂1 =
(

5.01

3.42

)
µ̂2 =

(
6.26

2.87

)

and the corresponding covariance matrices are as follows:

6̂1 =
(

0.122 0.098

0.098 0.142

)
6̂2 =

(
0.435 0.121

0.121 0.110

)

Figure 18.1 shows the contour or level curve (corresponding to 1% of the peak

density) for the multivariate normal distribution modeling the probability density

for both classes.

Let x = (6.75,4.25)T be a test point (shown as white square). The posterior

probabilities for c1 and c2 can be computed using Eq. (18.4):

P̂ (c1|x)∝ f̂ (x|µ̂1,6̂1)P̂ (c1)= (4.914× 10−7)× 0.33= 1.622× 10−7

P̂ (c2|x)∝ f̂ (x|µ̂2,6̂2)P̂ (c2)= (2.589× 10−5)× 0.67= 1.735× 10−5

Because P̂ (c2|x) > P̂ (c1|x) the class for x is predicted as ŷ = c2.
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Categorical Attributes

If the attributes are categorical, the likelihood can be computed using the categorical

data modeling approach presented in Chapter 3. Formally, let Xj be a categorical

attribute over the domain dom(Xj) = {aj1,aj2, . . . ,ajmj
}, that is, attribute Xj can take

on mj distinct categorical values. Each categorical attribute Xj is modeled as an

mj -dimensional multivariate Bernoulli random variable Xj that takes on mj distinct

vector values ej1,ej2, . . . ,ejmj
, where ejr is the rth standard basis vector in R

mj and

corresponds to the rth value or symbol ajr ∈ dom(Xj). The entire d-dimensional dataset

is modeled as the vector random variable X = (X1,X2, . . . ,Xd)
T. Let d ′ =

∑d

j=1 mj ;

a categorical point x = (x1,x2, . . . ,xd)
T is therefore represented as the d ′-dimensional

binary vector

v=




v1

...

vd


=




e1r1

...

edrd




where vj = ejrj
provided xj = ajrj

is the rj th value in the domain of Xj . The probability

of the categorical point x is obtained from the joint probability mass function (PMF)

for the vector random variable X:

P(x|ci)= f (v|ci)= f
(
X1 = e1r1

, . . . ,Xd = edrd
| ci

)
(18.5)

The above joint PMF can be estimated directly from the data Di for each class ci as

follows:

f̂ (v|ci)=
ni(v)

ni

where ni(v) is the number of times the value v occurs in class ci . Unfortunately, if

the probability mass at the point v is zero for one or both classes, it would lead to a

zero value for the posterior probability. To avoid zero probabilities, one approach is

to introduce a small prior probability for all the possible values of the vector random

variable X. One simple approach is to assume a pseudo-count of 1 for each value, that

is, to assume that each value of X occurs at least one time, and to augment this base

count of 1 with the actual number of occurrences of the observed value v in class ci .

The adjusted probability mass at v is then given as

f̂ (v|ci)=
ni(v)+ 1

ni +
∏d

j=1 mj

(18.6)

where
∏d

j=1 mj gives the number of possible values of X. Extending the code in

Algorithm 18.1 to incorporate categorical attributes is relatively straightforward; all

that is required is to compute the joint PMF for each class using Eq. (18.6).
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Table 18.1. Discretized sepal length and sepal width attributes

Bins Domain

[4.3,5.2] Very Short (a11)

(5.2,6.1] Short (a12)

(6.1,7.0] Long (a13)

(7.0,7.9] Very Long (a14)

(a) Discretized sepal length

Bins Domain

[2.0,2.8] Short (a21)

(2.8,3.6] Medium (a22)

(3.6,4.4] Long (a23)

(b) Discretized sepal width

Table 18.2. Class-specific empirical (joint) probability mass function

Class: c1

X2
f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 1/50 33/50 5/50 39/50

Short (e12) 0 3/50 8/50 13/50

Long (e13) 0 0 0 0

Very Long (e14) 0 0 0 0

f̂X2
1/50 36/50 13/50

Class: c2

X2
f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 6/100 0 0 6/100

Short (e12) 24/100 15/100 0 39/100

Long (e13) 13/100 30/100 0 43/100

Very Long (e14) 3/100 7/100 2/100 12/100

f̂X2
46/100 52/100 2/100

Example 18.2. Assume that the sepal length and sepal width attributes in

the Iris dataset have been discretized as shown in Table 18.1a and Table 18.1b,

respectively. We have |dom(X1)|=m1= 4 and |dom(X2)|=m2= 3. These intervals are

also illustrated in Figure 18.1: via the gray grid lines. Table 18.2 shows the empirical

joint PMF for both the classes. Also, as in Example 18.1, the prior probabilities of the

classes are given as P̂ (c1)= 0.33 and P̂ (c2)= 0.67.

Consider a test point x = (5.3,3.0)T corresponding to the categorical point

(Short, Medium), which is represented as v =
(
eT

12 eT
22

)T
. The likelihood and

posterior probability for each class is given as

P̂ (x|c1)= f̂ (v|c1)= 3/50= 0.06

P̂ (x|c2)= f̂ (v|c2)= 15/100= 0.15

P(c1|x)∝ 0.06× 0.33= 0.0198

P(c2|x)∝ 0.15× 0.67= 0.1005

In this case the predicted class is ŷ = c2.

On the other hand, the test point x = (6.75,4.25)T corresponding to the

categorical point (Long, Long) is represented as v =
(
eT

13 eT
23

)T
. Unfortunately the
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probability mass at v is zero for both classes. We adjust the PMF via pseudo-counts

[Eq. (18.6)]; note that the number of possible values are m1×m2 = 4× 3 = 12. The

likelihood and prior probability can then be computed as

P̂ (x|c1)= f̂ (v|c1)=
0+ 1

50+ 12
= 1.61× 10−2

P̂ (x|c2)= f̂ (v|c2)=
0+ 1

100+ 12
= 8.93× 10−3

P̂ (c1|x)∝ (1.61× 10−2)× 0.33= 5.32× 10−3

P̂ (c2|x)∝ (8.93× 10−3)× 0.67= 5.98× 10−3

Thus, the predicted class is ŷ = c2.

Challenges

The main problem with the Bayes classifier is the lack of enough data to reliably

estimate the joint probability density or mass function, especially for high-dimensional

data. For instance, for numeric attributes we have to estimate O(d2) covariances, and

as the dimensionality increases, this requires us to estimate too many parameters. For

categorical attributes we have to estimate the joint probability for all the possible

values of v, given as
∏

j |dom
(
Xj

)
|. Even if each categorical attribute has only two

values, we would need to estimate the probability for 2d values. However, because

there can be at most n distinct values for v, most of the counts will be zero. To address

some of these concerns we can use reduced set of parameters in practice, as described

next.

18.2 NAIVE BAYES CLASSIFIER

We saw earlier that the full Bayes approach is fraught with estimation related

problems, especially with large number of dimensions. The naive Bayes approach

makes the simple assumption that all the attributes are independent. This leads to a

much simpler, though surprisingly effective classifier in practice. The independence

assumption immediately implies that the likelihood can be decomposed into a product

of dimension-wise probabilities:

P(x|ci)= P(x1,x2, . . . ,xd |ci)=
d∏

j=1

P(xj |ci) (18.7)

Numeric Attributes

For numeric attributes we make the default assumption that each of them is normally

distributed for each class ci . Let µij and σ 2
ij denote the mean and variance for attribute

Xj , for class ci . The likelihood for class ci , for dimension Xj , is given as

P(xj |ci)∝ f (xj |µij ,σ
2
ij )=

1√
2πσij

exp

{
− (xj −µij )

2

2σ 2
ij

}
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Incidentally, the naive assumption corresponds to setting all the covariances to

zero in 6i , that is,

6i =




σ 2
i1 0 . . . 0

0 σ 2
i2 . . . 0

...
...

. . .

0 0 . . . σ 2
id




This yields

|6i| = det(6i)= σ 2
i1σ

2
i2 · · ·σ 2

id =
d∏

j=1

σ 2
ij

Also, we have

6−1
i =




1

σ2
i1

0 . . . 0

0 1

σ2
i2

. . . 0

...
...

. . .

0 0 . . . 1

σ2
id




assuming that σ 2
ij 6= 0 for all j . Finally,

(x−µi)
T6−1

i (x−µi)=
d∑

j=1

(xj −µij )
2

σ 2
ij

Plugging these into Eq. (18.3) gives us

P(x|ci)=
1

(
√

2π)d

√∏d

j=1 σ 2
ij

exp

{
−

d∑

j=1

(xj −µij )
2

2σ 2
ij

}

=
d∏

j=1

(
1√

2π σij

exp

{
− (xj −µij )

2

2σ 2
ij

})

=
d∏

j=1

P(xj |ci)

which is equivalent to Eq. (18.7). In other words, the joint probability has been

decomposed into a product of the probability along each dimension, as required by

the independence assumption.

The naive Bayes classifier uses the sample mean µ̂i = (µ̂i1, . . . , µ̂id )
T and a diagonal

sample covariance matrix 6̂i = diag(σ 2
i1, . . . ,σ

2
id) for each class ci . Thus, in total 2d

parameters have to be estimated, corresponding to the sample mean and sample

variance for each dimension Xj .

Algorithm 18.2 shows the pseudo-code for the naive Bayes classifier. Given an

input dataset D, the method estimates the prior probability and mean for each class.

Next, it computes the variance σ̂ 2
ij for each of the attributes Xj , with all the d variances

for class ci stored in the vector σ̂i . The variance for attribute Xj is obtained by first
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ALGORITHM 18.2. Naive Bayes Classifier

NAIVEBAYES (D= {(xj ,yj )}nj=1):

for i = 1, . . . ,k do1

Di←
{
xj | yj = ci,j = 1, . . . ,n

}
// class-specific subsets2

ni← |Di| // cardinality3

P̂ (ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj ∈Di

xj // mean5

Zi =Di − 1 · µ̂T
i // centered data for class ci6

for j = 1, ..,d do // class-specific variance for Xj7

σ̂ 2
ij ← 1

ni
ZT

ijZij // variance8

σ̂i =
(
σ̂ 2

i1, . . . , σ̂
2
id

)T
// class-specific attribute variances9

return P̂ (ci),µ̂i, σ̂i for all i = 1, . . . ,k10

TESTING (x and P̂ (ci), µ̂i , σ̂i , for all i ∈ [1,k]):

ŷ← argmax
ci

{
P̂ (ci)

d∏

j=1

f (xj |µ̂ij , σ̂
2
ij )

}

11

return ŷ12

centering the data for class Di via Zi =Di−1 · µ̂T
i . We denote by Zij the centered data

for class ci corresponding to attribute Xj . The variance is then given as σ̂ = 1
ni

ZT
ijZij .

Training the naive Bayes classifier is very fast, with O(nd) computational

complexity. For testing, given a test point x, it simply returns the class with the

maximum posterior probability obtained as a product of the likelihood for each

dimension and the class prior probability.

Example 18.3. Consider Example 18.1. In the naive Bayes approach the prior

probabilities P̂ (ci) and means µ̂i remain unchanged. The key difference is that the

covariance matrices are assumed to be diagonal, as follows:

6̂1 =
(

0.122 0

0 0.142

)
6̂2 =

(
0.435 0

0 0.110

)

Figure 18.2 shows the contour or level curve (corresponding to 1% of the peak

density) of the multivariate normal distribution for both classes. One can see that the

diagonal assumption leads to contours that are axis-parallel ellipses; contrast these

with the contours in Figure 18.1 for the full Bayes classifier.

For the test point x= (6.75,4.25)T, the posterior probabilities for c1 and c2 are as

follows:

P̂ (c1|x)∝ f̂ (x|µ̂1,6̂1)P̂ (c1)= (3.99× 10−7)× 0.33= 1.32× 10−7

P̂ (c2|x)∝ f̂ (x|µ̂2,6̂2)P̂ (c2)= (9.597× 10−5)× 0.67= 6.43× 10−5

Because P̂ (c2|x) > P̂ (c1|x) the class for x is predicted as ŷ = c2.
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Figure 18.2. Naive Bayes: X1:sepal length versus X2:sepal width. The class means are shown in black;

the density contours are also shown. The square represents a test point labeled x.

Categorical Attributes

The independence assumption leads to a simplification of the joint probability mass

function in Eq. (18.5), which can be rewritten as

P(x|ci)=
d∏

j=1

P(xj |ci)=
d∏

j=1

f
(
Xj = ejrj

| ci

)

where f (Xj = ejrj
|ci) is the probability mass function for Xj , which can be estimated

from Di as follows:

f̂ (vj |ci)=
ni(vj )

ni

where ni(vj) is the observed frequency of the value vj = ejrj corresponding to the rj th

categorical value ajrj
for the attribute Xj for class ci . As in the full Bayes case, if the

count is zero, we can use the pseudo-count method to obtain a prior probability. The

adjusted estimates with pseudo-counts are given as

f̂ (vj |ci)=
ni(vj )+ 1

ni +mj

where mj =|dom(Xj)|. Extending the code in Algorithm 18.2 to incorporate categorical

attributes is straightforward.

Example 18.4. Continuing Example 18.2, the class-specific PMF for each discretized

attribute is shown in Table 18.2. In particular, these correspond to the row and

column marginal probabilities f̂X1
and f̂X2

, respectively.
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The test point x= (6.75,4.25), corresponding to (Long, Long) or v= (e13,e23), is

classified as follows:

P̂ (v|c1)= P̂ (e13|c1) · P̂ (e23|c1)=
(

0+ 1

50+ 4

)
·
(

13

50

)
= 4.81× 10−3

P̂ (v|c2)= P̂ (e13|c2) · P̂ (e23|c2)=
(

43

100

)
·
(

2

100

)
= 8.60× 10−3

P̂ (c1|v)∝ (4.81× 10−3)× 0.33= 1.59× 10−3

P̂ (c2|v)∝ (8.6× 10−3)× 0.67= 5.76× 10−3

Thus, the predicted class is ŷ = c2.

18.3 K NEAREST NEIGHBORS CLASSIFIER

In the preceding sections we considered a parametric approach for estimating the

likelihood P(x|ci). In this section, we consider a non-parametric approach, which does

not make any assumptions about the underlying joint probability density function.

Instead, it directly uses the data sample to estimate the density, for example, using

the density estimation methods from Chapter 15. We illustrate the non-parametric

approach using nearest neighbors density estimation from Section 15.2.3, which leads

to the K nearest neighbors (KNN) classifier.

Let D be a training dataset comprising n points xi ∈ R
d , and let Di denote the

subset of points in D that are labeled with class ci , with ni = |Di|. Given a test point

x ∈Rd , and K, the number of neighbors to consider, let r denote the distance from x to

its Kth nearest neighbor in D.

Consider the d-dimensional hyperball of radius r around the test point x, defined as

Bd(x,r)=
{
xi ∈D | δ(x,xi)≤ r

}

Here δ(x,xi) is the distance between x and xi , which is usually assumed to be the

Euclidean distance, i.e., δ(x,xi) = ‖x− xi‖2. However, other distance metrics can also

be used. We assume that |Bd(x,r)| =K.

Let Ki denote the number of points among the K nearest neighbors of x that are

labeled with class ci , that is

Ki =
{
xj ∈Bd(x,r) | yj = ci

}

The class conditional probability density at x can be estimated as the fraction of

points from class ci that lie within the hyperball divided by its volume, that is

f̂ (x|ci)=
Ki/ni

V
= Ki

niV

where V= vol(Bd(x,r)) is the volume of the d-dimensional hyperball [Eq. (6.4)].

Using Eq. (18.4), the posterior probability P(ci |x) can be estimated as

P(ci |x)= f̂ (x|ci)P̂ (ci)∑k

j=1 f̂ (x|cj)P̂ (cj )
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However, because P̂ (ci)= ni

n
, we have

f̂ (x|ci)P̂ (ci)=
Ki

niV
· ni

n
= Ki

nV

Thus the posterior probability is given as

P(ci |x)=
Ki

nV∑k

j=1

Kj

nV

= Ki

K

Finally, the predicted class for x is

ŷ = argmax
ci

{P(ci |x)} = argmax
ci

{
Ki

K

}
= argmax

ci

{Ki}

Because K is fixed, the KNN classifier predicts the class of x as the majority class among

its K nearest neighbors.

Example 18.5. Consider the 2D Iris dataset shown in Figure 18.3. The two classes

are: c1 (circles) with n1 = 50 points and c2 (triangles) with n2 = 100 points.

Let us classify the test point x = (6.75,4.25)T using its K = 5 nearest neighbors.

The distance from x to its 5th nearest neighbor, namely (6.2,3.4)T, is given as r =√
1.025 = 1.012. The enclosing ball or circle of radius r is shown in the figure. It

encompasses K1 = 1 point from class c1 and K2 = 4 points from class c2. Therefore,

the predicted class for x is ŷ = c2.
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Figure 18.3. Iris Data: K Nearest Neighbors Classifier
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18.4 FURTHER READING
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appeared in Langley, Iba, and Thompson (1992); Domingos and Pazzani (1997); Zhang

(2005); Hand and Yu (2001) and Rish (2001). For the long history of naive Bayes in
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18.5 EXERCISES

Q1. Consider the dataset in Table 18.3. Classify the new point: (Age=23, Car=truck) via

the full and naive Bayes approach. You may assume that the domain of Car is given

as {sports, vintage, suv, truck}.

Table 18.3. Data for Q1

xi Age Car Class

x1 25 sports L

x2 20 vintage H

x3 25 sports L

x4 45 suv H

x5 20 sports H

x6 25 suv H

Q2. Given the dataset in Table 18.4, use the naive Bayes classifier to classify the new point

(T,F,1.0).
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Table 18.4. Data for Q2

xi a1 a2 a3 Class

x1 T T 5.0 Y

x2 T T 7.0 Y

x3 T F 8.0 N

x4 F F 3.0 Y

x5 F T 7.0 N

x6 F T 4.0 N

x7 F F 5.0 N

x8 T F 6.0 Y

x9 F T 1.0 N

Q3. Consider the class means and covariance matrices for classes c1 and c2:

µ1 = (1,3) µ2 = (5,5)

61 =
(

5 3

3 2

)
62 =

(
2 0

0 1

)

Classify the point (3,4)T via the (full) Bayesian approach, assuming normally

distributed classes, and P (c1) = P (c2) = 0.5. Show all steps. Recall that the inverse

of a 2× 2 matrix A=
(

a b

c d

)
is given as A−1 = 1

det(A)

(
d −b

−c a

)
.



CHAPTER 19 Decision Tree Classifier

Let the training dataset D = {xi,yi}ni=1 consist of n points in a d-dimensional space,

with yi being the class label for point xi . We assume that the dimensions or the

attributes Xj are numeric or categorical, and that there are k distinct classes, so

that yi ∈ {c1,c2, . . . ,ck}. A decision tree classifier is a recursive, partition-based tree

model that predicts the class ŷi for each point xi . Let R denote the data space that

encompasses the set of input points D. A decision tree uses an axis-parallel hyperplane

to split the data space R into two resulting half-spaces or regions, say R1 and R2,

which also induces a partition of the input points into D1 and D2, respectively. Each of

these regions is recursively split via axis-parallel hyperplanes until the points within an

induced partition are relatively pure in terms of their class labels, that is, most of the

points belong to the same class. The resulting hierarchy of split decisions constitutes

the decision tree model, with the leaf nodes labeled with the majority class among

points in those regions. To classify a new test point we have to recursively evaluate

which half-space it belongs to until we reach a leaf node in the decision tree, at which

point we predict its class as the label of the leaf.

Example 19.1. Consider the Iris dataset shown in Figure 19.1a, which plots the

attributes sepal length (X1) and sepal width (X2). The classification task is

to discriminate between c1, corresponding to iris-setosa (in circles), and c2,

corresponding to the other two types of Irises (in triangles). The input dataset

D has n = 150 points that lie in the data space which is given as the rectangle,

R= range(X1)× range(X2)= [4.3,7.9]× [2.0,4.4].

The recursive partitioning of the space R via axis-parallel hyperplanes is

illustrated in Figure 19.1a. In two dimensions a hyperplane is simply a line. The first

split corresponds to hyperplane h0 shown as a black line. The resulting left and right

half-spaces are further split via hyperplanes h2 and h3, respectively (shown as gray

lines). The bottom half-space for h2 is further split via h4, and the top half-space for

h3 is split via h5; these third level hyperplanes, h4 and h5, are shown as dashed lines.

The set of hyperplanes and the set of six leaf regions, namely R1, . . . ,R6, constitute

the decision tree model. Note also the induced partitioning of the input points into

these six regions.

481
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Figure 19.1. Decision trees: recursive partitioning via axis-parallel hyperplanes.

Consider the test point z= (6.75,4.25)T (shown as a white square). To predict its

class, the decision tree first checks which side of h0 it lies in. Because the point lies in

the right half-space, the decision tree next checks h3 to determine that z is in the top

half-space. Finally, we check and find that z is in the right half-space of h5, and we

reach the leaf region R6. The predicted class is c2, as that leaf region has all points

(three of them) with class c2 (triangles).
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19.1 DECISION TREES

A decision tree consists of internal nodes that represent the decisions corresponding

to the hyperplanes or split points (i.e., which half-space a given point lies in), and leaf

nodes that represent regions or partitions of the data space, which are labeled with the

majority class. A region is characterized by the subset of data points that lie in that

region.

Axis-Parallel Hyperplanes

A hyperplane h(x) is defined as the set of all points x that satisfy the following equation

h(x) : wTx+ b= 0 (19.1)

Here w∈Rd is a weight vector that is normal to the hyperplane, and b is the offset of the

hyperplane from the origin. A decision tree considers only axis-parallel hyperplanes,

that is, the weight vector must be parallel to one of the original dimensions or axes Xj .

Put differently, the weight vector w is restricted a priori to one of the standard basis

vectors {e1,e2, . . . ,ed}, where ei ∈ Rd has a 1 for the j th dimension, and 0 for all other

dimensions. If x= (x1,x2, . . . ,xd)
T and assuming w= ej , we can rewrite Eq. (19.1) as

h(x) : eT
j x+ b= 0, which implies that

h(x) : xj + b= 0

where the choice of the offset b yields different hyperplanes along dimension Xj .

Split Points

A hyperplane specifies a decision or split point because it splits the data space R into

two half-spaces. All points x such that h(x) ≤ 0 are on the hyperplane or to one side

of the hyperplane, whereas all points such that h(x) > 0 are on the other side. The

split point associated with an axis-parallel hyperplane can be written as h(x)≤ 0, which

implies that xi+b≤ 0, or xi ≤−b. Because xi is some value from dimension Xj and the

offset b can be chosen to be any value, the generic form of a split point for a numeric

attribute Xj is given as

Xj ≤ v

where v =−b is some value in the domain of attribute Xj . The decision or split point

Xj ≤ v thus splits the input data space R into two regions RY and RN, which denote

the set of all possible points that satisfy the decision and those that do not.

Data Partition

Each split of R into RY and RN also induces a binary partition of the corresponding

input data points D. That is, a split point of the form Xj ≤ v induces the data partition

DY = {x | x ∈D,xj ≤ v}
DN = {x | x ∈D,xj > v}

where DY is the subset of data points that lie in region RY and DN is the subset of input

points that line in RN.
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Purity

The purity of a region Rj is defined in terms of the mixture of classes for points in

the corresponding data partition Dj . Formally, purity is the fraction of points with the

majority label in Dj , that is,

purity(Dj )=max
i

{
nji

nj

}
(19.2)

where nj =|Dj | is the total number of data points in the regionRj , and nji is the number

of points in Dj with class label ci .

Example 19.2. Figure 19.1b shows the resulting decision tree that corresponds to

the recursive partitioning of the space via axis-parallel hyperplanes illustrated

in Figure 19.1a. The recursive splitting terminates when appropriate stopping

conditions are met, usually taking into account the size and purity of the regions.

In this example, we use a size threshold of 5 and a purity threshold of 0.95. That is,

a region will be split further only if the number of points is more than five and the

purity is less than 0.95.

The very first hyperplane to be considered is h1(x) : x1 − 5.45 = 0 which

corresponds to the decision

X1 ≤ 5.45

at the root of the decision tree. The two resulting half-spaces are recursively split into

smaller half-spaces.

For example, the region X1 ≤ 5.45 is further split using the hyperplane h2(x) :

x2− 2.8= 0 corresponding to the decision

X2 ≤ 2.8

which forms the left child of the root. Notice how this hyperplane is restricted only

to the region X1 ≤ 5.45. This is because each region is considered independently

after the split, as if it were a separate dataset. There are seven points that satisfy

the condition X2≤ 2.8, out of which one is from class c1 (circle) and six are from class

c2 (triangles). The purity of this region is therefore 6/7 = 0.857. Because the region

has more than five points, and its purity is less than 0.95, it is further split via the

hyperplane h4(x) : x1− 4.7= 0 yielding the left-most decision node

X1 ≤ 4.7

in the decision tree shown in Figure 19.1b.

Returning back to the right half-space corresponding to h2, namely the region

X2 > 2.8, it has 45 points, of which only one is a triangle. The size of the region is 45,

but the purity is 44/45= 0.98. Because the region exceeds the purity threshold it is

not split further. Instead, it becomes a leaf node in the decision tree, and the entire

region (R1) is labeled with the majority class c1. The frequency for each class is also

noted at a leaf node so that the potential error rate for that leaf can be computed.

For example, we can expect that the probability of misclassification in region R1 is

1/45= 0.022, which is the error rate for that leaf.
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Categorical Attributes

In addition to numeric attributes, a decision tree can also handle categorical data.

For a categorical attribute Xj , the split points or decisions are of the Xj ∈ V, where

V ⊂ dom(Xj), and dom(Xj) denotes the domain for Xj . Intuitively, this split can be

considered to be the categorical analog of a hyperplane. It results in two “half-spaces,”

one region RY consisting of points x that satisfy the condition xi ∈ V, and the other

region RN comprising points that satisfy the condition xi 6∈V.

Decision Rules

One of the advantages of decision trees is that they produce models that are relatively

easy to interpret. In particular, a tree can be read as set of decision rules, with each

rule’s antecedent comprising the decisions on the internal nodes along a path to a leaf,

and its consequent being the label of the leaf node. Further, because the regions are

all disjoint and cover the entire space, the set of rules can be interpreted as a set of

alternatives or disjunctions.

Example 19.3. Consider the decision tree in Figure 19.1b. It can be interpreted as the

following set of disjunctive rules, one per leaf region Ri

R3 : If X1 ≤ 5.45 and X2 ≤ 2.8 and X1 ≤ 4.7, then class is c1, or

R4 : If X1 ≤ 5.45 and X2 ≤ 2.8 and X1 > 4.7, then class is c2, or

R1 : If X1 ≤ 5.45 and X2 > 2.8, then class is c1, or

R2 : If X1 > 5.45 and X2 ≤ 3.45, then class is c2, or

R5 : If X1 > 5.45 and X2 > 3.45 and X1 ≤ 6.5, then class is c1, or

R6 : If X1 > 5.45 and X2 > 3.45 and X1 > 6.5, then class is c2

19.2 DECISION TREE ALGORITHM

The pseudo-code for decision tree model construction is shown in Algorithm 19.1. It

takes as input a training dataset D, and two parameters η and π , where η is the leaf size

and π the leaf purity threshold. Different split points are evaluated for each attribute

in D. Numeric decisions are of the form Xj ≤ v for some value v in the value range

for attribute Xj , and categorical decisions are of the form Xj ∈ V for some subset of

values in the domain of Xj . The best split point is chosen to partition the data into

two subsets, DY and DN, where DY corresponds to all points x ∈ D that satisfy the

split decision, and DN corresponds to all points that do not satisfy the split decision.

The decision tree method is then called recursively on DY and DN. A number of

stopping conditions can be used to stop the recursive partitioning process. The simplest

condition is based on the size of the partition D. If the number of points n in D drops

below the user-specified size threshold η, then we stop the partitioning process and

make D a leaf. This condition prevents over-fitting the model to the training set, by

avoiding to model very small subsets of the data. Size alone is not sufficient because if
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ALGORITHM 19.1. Decision Tree Algorithm

DECISIONTREE (D,η,π):

n← |D| // partition size1

ni←|{xj |xj ∈D,yj = ci}| // size of class ci2

purity(D)←maxi

{
ni

n

}
3

if n≤ η or purity(D)≥ π then // stopping condition4

c∗← argmaxci

{
ni

n

}
// majority class5

create leaf node, and label it with class c∗6

return7

(split point∗,score∗)← (∅,0) // initialize best split point8

foreach (attribute Xj ) do9

if (Xj is numeric) then10

(v,score)← EVALUATE-NUMERIC-ATTRIBUTE(D,Xj )11

if score > score∗ then (split point∗,score∗)← (Xj ≤ v,score)12

else if (Xj is categorical) then13

(V,score)← EVALUATE-CATEGORICAL-ATTRIBUTE(D,Xj )14

if score > score∗ then (split point∗,score∗)← (Xj ∈V,score)15

// partition D into DY and DN using split point∗, and call

recursively

DY←{x ∈D | x satisfies split point∗}16

DN←{x ∈D | x does not satisfy split point∗}17

create internal node split point∗, with two child nodes, DY and DN18

DECISIONTREE(DY); DECISIONTREE(DN)19

the partition is already pure then it does not make sense to split it further. Thus, the

recursive partitioning is also terminated if the purity of D is above the purity threshold

π . Details of how the split points are evaluated and chosen are given next.

19.2.1 Split Point Evaluation Measures

Given a split point of the form Xj ≤ v or Xj ∈V for a numeric or categorical attribute,

respectively, we need an objective criterion for scoring the split point. Intuitively, we

want to select a split point that gives the best separation or discrimination between the

different class labels.

Entropy

Entropy, in general, measures the amount of disorder or uncertainty in a system. In the

classification setting, a partition has lower entropy (or low disorder) if it is relatively

pure, that is, if most of the points have the same label. On the other hand, a partition

has higher entropy (or more disorder) if the class labels are mixed, and there is no

majority class as such.
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The entropy of a set of labeled points D is defined as follows:

H(D)=−
k∑

i=1

P(ci |D) log2 P(ci |D) (19.3)

where P(ci |D) is the probability of class ci in D, and k is the number of classes. If a

region is pure, that is, has points from the same class, then the entropy is zero. On the

other hand, if the classes are all mixed up, and each appears with equal probability

P(ci |D)= 1
k
, then the entropy has the highest value, H(D)= log2 k.

Assume that a split point partitions D into DY and DN. Define the split entropy as

the weighted entropy of each of the resulting partitions, given as

H(DY,DN)= nY

n
H(DY)+ nN

n
H(DN) (19.4)

where n = |D| is the number of points in D, and nY = |DY| and nN = |DN| are the

number of points in DY and DN.

To see if the split point results in a reduced overall entropy, we define the

information gain for a given split point as follows:

Gain(D,DY,DN)=H(D)−H(DY,DN) (19.5)

The higher the information gain, the more the reduction in entropy, and the better the

split point. Thus, given split points and their corresponding partitions, we can score

each split point and choose the one that gives the highest information gain.

Gini Index

Another common measure to gauge the purity of a split point is the Gini index, defined

as follows:

G(D)= 1−
k∑

i=1

P(ci |D)2 (19.6)

If the partition is pure, then the probability of the majority class is 1 and the probability

of all other classes is 0, and thus, the Gini index is 0. On the other hand, when each class

is equally represented, with probability P(ci |D)= 1
k
, then the Gini index has value k−1

k
.

Thus, higher values of the Gini index indicate more disorder, and lower values indicate

more order in terms of the class labels.

We can compute the weighted Gini index of a split point as follows:

G(DY,DN)= nY

n
G(DY)+ nN

n
G(DN)

where n, nY, and nN denote the number of points in regions D, DY, and DN,

respectively. The lower the Gini index value, the better the split point.

Other measures can also be used instead of entropy and Gini index to evaluate

the splits. For example, the Classification And Regression Trees (CART) measure is

given as

CART(DY,DN)= 2
nY

n

nN

n

k∑

i=1

∣∣∣P(ci |DY)−P(ci |DN)

∣∣∣ (19.7)
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This measure thus prefers a split point that maximizes the difference between the class

probability mass function for the two partitions; the higher the CART measure, the

better the split point.

19.2.2 Evaluating Split Points

All of the split point evaluation measures, such as entropy [Eq. (19.3)], Gini-index

[Eq. (19.6)], and CART [Eq. (19.7)], considered in the preceding section depend on

the class probability mass function (PMF) for D, namely, P(ci |D), and the class PMFs

for the resulting partitions DY and DN, namely P(ci |DY) and P(ci |DN). Note that we

have to compute the class PMFs for all possible split points; scoring each of them

independently would result in significant computational overhead. Instead, one can

incrementally compute the PMFs as described in the following paragraphs.

Numeric Attributes

If X is a numeric attribute, we have to evaluate split points of the form X≤ v. Even if we

restrict v to lie within the value range of attribute X, there are still an infinite number

of choices for v. One reasonable approach is to consider only the midpoints between

two successive distinct values for X in the sample D. This is because split points of the

form X ≤ v, for v ∈ [xa,xb), where xa and xb are two successive distinct values of X in

D, produce the same partitioning of D into DY and DN, and thus yield the same scores.

Because there can be at most n distinct values for X, there are at most n− 1 midpoint

values to consider.

Let {v1, . . . ,vm} denote the set of all such midpoints, such that v1 < v2 < · · · < vm.

For each split point X≤ v, we have to estimate the class PMFs:

P̂ (ci |DY)= P̂ (ci|X≤ v) (19.8)

P̂ (ci |DN)= P̂ (ci|X > v) (19.9)

Let I() be an indicator variable that takes on the value 1 only when its argument is true,

and is 0 otherwise. Using the Bayes theorem, we have

P̂ (ci|X≤ v)= P̂ (X≤ v|ci)P̂ (ci)

P̂ (X≤ v)
= P̂ (X≤ v|ci)P̂ (ci)∑k

j=1 P̂ (X≤ v|cj )P̂ (cj )
(19.10)

The prior probability for each class in D can be estimated as follows:

P̂ (ci)=
1

n

n∑

j=1

I(yj = ci)=
ni

n
(19.11)

where yj is the class for point xj , n = |D| is the total number of points, and ni is the

number of points in D with class ci . Define Nvi as the number of points xj ≤ v with

class ci , where xj is the value of data point xj for the attribute X, given as

Nvi =
n∑

j=1

I(xj ≤ v and yj = ci) (19.12)
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We can then estimate P(X≤ v|ci) as follows:

P̂ (X≤ v|ci)=
P̂ (X≤ v and ci)

P̂ (ci)
=
(

1

n

n∑

j=1

I(xj ≤ v and yj = ci)

)/(
ni/n

)

= Nvi

ni

(19.13)

Plugging Eqs. (19.11) and (19.13) into Eq. (19.10), and using Eq. (19.8), we have

P̂ (ci|DY)= P̂ (ci |X≤ v)= Nvi∑k

j=1 Nvj

(19.14)

We can estimate P̂ (X > v|ci) as follows:

P̂ (X > v|ci)= 1− P̂ (X≤ v|ci)= 1− Nvi

ni

= ni −Nvi

ni

(19.15)

Using Eqs. (19.11) and (19.15), the class PMF P̂ (ci|DN) is given as

P̂ (ci |DN)= P̂ (ci|X > v)= P̂ (X > v|ci)P̂ (ci)∑k

j=1 P̂ (X > v|cj )P̂ (cj )
= ni −Nvi∑k

j=1(nj −Nvj)
(19.16)

Algorithm 19.2 shows the split point evaluation method for numeric attributes.

The for loop on line 4 iterates through all the points and computes the midpoint

values v and the number of points Nvi from class ci such that xj ≤ v. The for loop

on line 12 enumerates all possible split points of the form X≤ v, one for each midpoint

v, and scores them using the gain criterion [Eq. (19.5)]; the best split point and score

are recorded and returned. Any of the other evaluation measures can also be used.

However, for Gini index and CART a lower score is better unlike for gain where a

higher score is better.

In terms of computational complexity, the initial sorting of values of X (line 1)

takes time O(n logn). The cost of computing the midpoints and the class-specific counts

Nvi takes time O(nk) (for loop on line 4). The cost of computing the score is also

bounded by O(nk), because the total number of midpoints v can be at most n (for loop

on line 12). The total cost of evaluating a numeric attribute is therefore O(n logn+nk).

Ignoring k, because it is usually a small constant, the total cost of numeric split point

evaluation is O(n logn).

Example 19.4 (Numeric Attributes). Consider the 2-dimensional Iris dataset shown

in Figure 19.1a. In the initial invocation of Algorithm 19.1, the entire dataset D with

n = 150 points is considered at the root of the decision tree. The task is to find the

best split point considering both the attributes, X1 (sepal length) and X2 (sepal

width). Because there are n1 = 50 points labeled c1 (iris-setosa), the other class c2

has n2 = 100 points. We thus have

P̂ (c1)= 50/150= 1/3

P̂ (c2)= 100/150= 2/3
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ALGORITHM 19.2. Evaluate Numeric Attribute (Using Gain)

EVALUATE-NUMERIC-ATTRIBUTE (D,X):

sort D on attribute X, so that xj ≤ xj+1,∀j = 1, . . . ,n− 11

M←∅ // set of midpoints2

for i = 1, . . . ,k do ni← 03

for j = 1, . . . ,n− 1 do4

if yj = ci then ni← ni + 1 // running count for class ci5

if xj+1 6= xj then6

v← xj+1 + xj

2
; M←M∪{v} // midpoints7

for i = 1, . . . ,k do8

Nvi← ni // Number of points such that xj ≤ v and yj = ci9

if yn = ci then ni← ni + 110

// evaluate split points of the form X≤ v

v∗←∅; score∗← 0 // initialize best split point11

forall v ∈M do12

for i = 1, . . . ,k do13

P̂ (ci|DY)← Nvi∑k
j=1 Nvj14

P̂ (ci|DN)← ni−Nvi∑k
j=1 nj−Nvj15

score(X≤ v)←Gain(D,DY,DN) // use Eq. (19.5)16

if score(X≤ v) > score∗ then17

v∗← v;score∗← score(X≤ v)18

return (v∗,score∗)19

The entropy [Eq. (19.3)] of the dataset D is therefore

H(D)=−
(

1

3
log2

1

3
+ 2

3
log2

2

3

)
= 0.918

Consider split points for attribute X1. To evaluate the splits we first compute

the frequencies Nvi using Eq. (19.12), which are plotted in Figure 19.2 for both the

classes. For example, consider the split point X1≤ 5.45. From Figure 19.2, we see that

Nv1 = 45 Nv2 = 7

Plugging in these values into Eq. (19.14) we get

P̂ (c1|DY)= Nv1

Nv1+Nv2

= 45

45+ 7
= 0.865

P̂ (c2|DY)= Nv2

Nv1+Nv2

= 7

45+ 7
= 0.135
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Figure 19.2. Iris: frequencies Nvi for classes c1 and c2 for attribute sepal length.

and using Eq. (19.16), we obtain

P̂ (c1|DN)= n1−Nv1

(n1−Nv1)+ (n2−Nv2)
= 50− 45

(50− 45)+ (100− 7)
= 0.051

P̂ (c2|DN)= n2−Nv2

(n1−Nv1)+ (n2−Nv2)
= (100− 7)

(50− 45)+ (100− 7)
= 0.949

We can now compute the entropy of the partitions DY and DN as follows:

H(DY)=−(0.865log2 0.865+ 0.135log2 0.135)= 0.571

H(DN)=−(0.051log2 0.051+ 0.949log2 0.949)= 0.291

The entropy of the split point X≤ 5.45 is given via Eq. (19.4)

H(DY,DN)= 52

150
H(DY)+ 98

150
H(DN)= 0.388

where nY = |DY| = 52 and nN = |DN| = 98. The information gain for the split point is

therefore

Gain=H(D)−H(DY,DN)= 0.918− 0.388= 0.53

In a similar manner, we can evaluate all of the split points for both attributes X1

and X2. Figure 19.3 plots the gain values for the different split points for the two

attributes. We can observe that X ≤ 5.45 is the best split point and it is thus chosen

as the root of the decision tree in Figure 19.1b.

The recursive tree growth process continues and yields the final decision tree and

the split points as shown in Figure 19.1b. In this example, we use a leaf size threshold

of 5 and a purity threshold of 0.95.
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Categorical Attributes

If X is a categorical attribute we evaluate split points of the form X ∈ V, where

V ⊂ dom(X) and V 6= ∅. In words, all distinct partitions of the set of values of X are

considered. Because the split point X ∈ V yields the same partition as X ∈ V, where

V = dom(X) \ V is the complement of V, the total number of distinct partitions is

given as

⌊m/2⌋∑

i=1

(
m

i

)
=O(2m−1) (19.17)

where m is the number of values in the domain of X, that is, m = |dom(X)|. The

number of possible split points to consider is therefore exponential in m, which can

pose problems if m is large. One simplification is to restrict V to be of size one, so that

there are only m split points of the form Xj ∈ {v}, where v ∈ dom(Xj).

To evaluate a given split point X ∈ V we have to compute the following class

probability mass functions:

P(ci |DY)= P(ci |X ∈V) P (ci |DN)= P(ci |X 6∈V)

Making use of the Bayes theorem, we have

P(ci |X ∈V)= P(X ∈V|ci)P (ci)

P (X ∈V)
= P(X ∈V|ci)P (ci)∑k

j=1 P(X ∈V|cj )P (cj )

However, note that a given point x can take on only one value in the domain of X, and

thus the values v ∈ dom(X) are mutually exclusive. Therefore, we have

P(X ∈V|ci)=
∑

v∈V

P(X= v|ci)
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and we can rewrite P(ci |DY) as

P(ci |DY)=
∑

v∈V P(X= v|ci)P (ci)∑k

j=1

∑
v∈V P(X= v|cj )P (cj )

(19.18)

Define nvi as the number of points xj ∈ D, with value xj = v for attribute X and

having class yj = ci :

nvi =
n∑

j=1

I(xj = v and yj = ci) (19.19)

The class conditional empirical PMF for X is then given as

P̂ (X= v|ci)=
P̂
(
X= v and ci

)

P̂ (ci)

=
(

1

n

n∑

j=1

I(xj = v and yj = ci)

)/(
ni/n

)

= nvi

ni

(19.20)

Note that the class prior probabilities can be estimated using Eq. (19.11) as discussed

earlier, that is, P̂ (ci)= ni/n. Thus, substituting Eq. (19.20) in Eq. (19.18), the class PMF

for the partition DY for the split point X ∈V is given as

P̂ (ci |DY)=
∑

v∈V P̂ (X= v|ci)P̂ (ci)∑k

j=1

∑
v∈V P̂ (X= v|cj )P̂ (cj )

=
∑

v∈V nvi∑k

j=1

∑
v∈V nvj

(19.21)

In a similar manner, the class PMF for the partition DN is given as

P̂ (ci|DN)= P̂ (ci |X 6∈V)=
∑

v 6∈V nvi

∑k

j=1

∑
v 6∈V nvj

(19.22)

Algorithm 19.3 shows the split point evaluation method for categorical attributes.

The for loop on line 4 iterates through all the points and computes nvi , that is,

the number of points having value v ∈ dom(X) and class ci . The for loop on line 7

enumerates all possible split points of the form X∈V for V⊂ dom(X), such that |V| ≤ l,

where l is a user specified parameter denoting the maximum cardinality of V. For

example, to control the number of split points, we can also restrict V to be a single

item, that is, l = 1, so that splits are of the form V ∈ {v}, with v ∈ dom(X). If l = ⌊m/2⌋,
we have to consider all possible distinct partitions V. Given a split point X ∈ V, the

method scores it using information gain [Eq. (19.5)], although any of the other scoring

criteria can also be used. The best split point and score are recorded and returned.

In terms of computational complexity the class-specific counts for each value nvi

takes O(n) time (for loop on line 4). With m = |dom(X)|, the maximum number of

partitions V is O(2m−1), and because each split point can be evaluated in time O(mk),

the for loop in line 7 takes time O(mk2m−1). The total cost for categorical attributes

is therefore O(n+mk2m−1). If we make the assumption that 2m−1 = O(n), that is, if

we bound the maximum size of V to l =O(logn), then the cost of categorical splits is

bounded as O(n logn), ignoring k.
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ALGORITHM 19.3. Evaluate Categorical Attribute (Using Gain)

EVALUATE-CATEGORICAL-ATTRIBUTE (D,X, l):

for i = 1, . . . ,k do1

ni← 02

forall v ∈ dom(X) do nvi← 03

for j = 1, . . . ,n do4

if xj = v and yj = ci then nvi← nvi + 1 // frequency statistics5

// evaluate split points of the form X ∈V

V∗←∅; score∗← 0 // initialize best split point6

forall V⊂ dom(X), such that 1≤ |V| ≤ l do7

for i = 1, . . . ,k do8

P̂ (ci|DY)←
∑

v∈V nvi∑k
j=1

∑
v∈V nvj9

P̂ (ci|DN)←
∑

v 6∈V nvi∑k
j=1

∑
v 6∈V nvj10

score(X ∈V)←Gain(D,DY,DN) // use Eq. (19.5)11

if score(X ∈V) > score∗ then12

V∗←V;score∗← score(X ∈V)13

return (V∗,score∗)14

Example 19.5 (Categorical Attributes). Consider the 2-dimensional Iris dataset

comprising the sepal length and sepal width attributes. Let us assume that sepal

length has been discretized as shown in Table 19.1. The class frequencies nvi are also

shown. For instance na12 = 6 denotes the fact that there are 6 points in D with value

v = a1 and class c2.

Consider the split point X1 ∈ {a1,a3}. From Table 19.1 we can compute the class

PMF for partition DY using Eq. (19.21)

P̂ (c1|DY)=
na11+na31

(na11+na31)+ (na12+na32)
= 39+ 0

(39+ 0)+ (6+ 43)
= 0.443

P̂ (c2|DY)= 1− P̂ (c1|DY)= 0.557

with the entropy given as

H(DY)=−(0.443log2 0.443+ 0.557log2 0.557)= 0.991

To compute the class PMF for DN [Eq. (19.22)], we sum up the frequencies over

values v 6∈V= {a1,a3}, that is, we sum over v = a2 and v = a4, as follows:

P̂ (c1|DN)= na21+na41

(na21+na41)+ (na22+na42)
= 11+ 0

(11+ 0)+ (39+ 12)
= 0.177

P̂ (c2|DN)= 1− P̂ (c1|DN)= 0.823
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Table 19.1. Discretized sepal length attribute: class frequencies

Bins v: values
Class frequencies (nvi)

c1:iris-setosa c2:other

[4.3,5.2] Very Short (a1) 39 6

(5.2,6.1] Short (a2) 11 39

(6.1,7.0] Long (a3) 0 43

(7.0,7.9] Very Long (a4) 0 12

Table 19.2. Categorical split points for sepal length

V Split entropy Info. gain

{a1} 0.509 0.410

{a2} 0.897 0.217

{a3} 0.711 0.207

{a4} 0.869 0.049

{a1,a2} 0.632 0.286

{a1,a3} 0.860 0.058

{a1,a4} 0.667 0.251

{a2,a3} 0.667 0.251

{a2,a4} 0.860 0.058

{a3,a4} 0.632 0.286

with the entropy given as

H(DN)=−(0.177log2 0.177+ 0.823log2 0.823)= 0.673

We can see from Table 19.1 that V ∈ {a1,a3} splits the input data D into partitions

of size |DY| = 39+ 6+ 43 = 88, and DN = 150− 88 = 62. The entropy of the split is

therefore given as

H(DY,DN)= 88

150
H(DY)+ 62

150
H(DN)= 0.86

As noted in Example 19.4, the entropy of the whole dataset D is H(D)= 0.918. The

gain is then given as

Gain=H(D)−H(DY,DN)= 0.918− 0.86= 0.058

The split entropy and gain values for all the categorical split points are given

in Table 19.2. We can see that X1 ∈ {a1} is the best split point on the discretized

attribute X1.

19.2.3 Computational Complexity

To analyze the computational complexity of the decision tree method in Algorithm 19.1,

we assume that the cost of evaluating all the split points for a numeric or categorical
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attribute is O(n logn), where n = |D| is the size of the dataset. Given D, the decision

tree algorithm evaluates all d attributes, with cost (dn logn). The total cost depends on

the depth of the decision tree. In the worst case, the tree can have depth n, and thus

the total cost is O(dn2 logn).

19.3 FURTHER READING

Among the earliest works on decision trees are Hunt, Marin, and Stone (1966);

Breiman et al. (1984); and Quinlan (1986). The description in this chapter is largely

based on the C4.5 method described in Quinlan (1993), which is an excellent reference

for further details, such as how to prune decision trees to prevent overfitting, how

to handle missing attribute values, and other implementation issues. A survey of

methods for simplifying decision trees appears in Breslow and Aha (1997). Scalable

implementation techniques are described in Mehta, Agrawal, and Rissanen (1996) and

Gehrke et al. (1999).

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and
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Hunt, E. B., Marin, J., and Stone, P. J. (1966). Experiments in Induction. New York:

Academic Press.

Mehta, M., Agrawal, R., and Rissanen, J. (1996). “SLIQ: A fast scalable classifier

for data mining.” In Proceedings of the International Conference on Extending

Database Technology (pp. 18–32). New York: Springer-Verlag.

Quinlan, J. R. (1986). “Induction of decision trees.” Machine Learning, 1 (1): 81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. New York: Morgan

Kaufmann.

19.4 EXERCISES

Q1. True or False:

(a) High entropy means that the partitions in classification are “pure.”

(b) Multiway split of a categorical attribute generally results in more pure partitions

than a binary split.

Q2. Given Table 19.3, construct a decision tree using a purity threshold of 100%. Use

information gain as the split point evaluation measure. Next, classify the point

(Age=27,Car=Vintage).

Q3. What is the maximum and minimum value of the CART measure [Eq. (19.7)] and

under what conditions?
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Table 19.3. Data for Q2: Age is numeric and Car is categorical. Risk gives the class

label for each point: high (H) or low (L)

Point Age Car Risk

x1 25 Sports L

x2 20 Vintage H

x3 25 Sports L

x4 45 SUV H

x5 20 Sports H

x6 25 SUV H

Q4. Given the dataset in Table 19.4. Answer the following questions:

Table 19.4. Data for Q4

Instance a1 a2 a3 Class

1 T T 5.0 Y

2 T T 7.0 Y

3 T F 8.0 N

4 F F 3.0 Y

5 F T 7.0 N

6 F T 4.0 N

7 F F 5.0 N

8 T F 6.0 Y

9 F T 1.0 N

(a) Show which decision will be chosen at the root of the decision tree using

information gain [Eq. (19.5)], Gini index [Eq. (19.6)], and CART [Eq. (19.7)]

measures. Show all split points for all attributes.

(b) What happens to the purity if we use Instance as another attribute? Do you think

this attribute should be used for a decision in the tree?

Q5. Consider Table 19.5. Let us make a nonlinear split instead of an axis parallel split,

given as follows: AB−B2 ≤ 0. Compute the information gain of this split based on

entropy (use log2, i.e., log to the base 2).

Table 19.5. Data for Q5

A B Class

x1 3.5 4 H

x2 2 4 H

x3 9.1 4.5 L

x4 2 6 H

x5 1.5 7 H

x6 7 6.5 H

x7 2.1 2.5 L

x8 8 4 L



CHAPTER 20 Linear Discriminant Analysis

Given labeled data consisting of d-dimensional points xi along with their classes yi ,

the goal of linear discriminant analysis (LDA) is to find a vector w that maximizes

the separation between the classes after projection onto w. Recall from Chapter 7

that the first principal component is the vector that maximizes the projected variance

of the points. The key difference between principal component analysis and LDA is

that the former deals with unlabeled data and tries to maximize variance, whereas the

latter deals with labeled data and tries to maximize the discrimination between the

classes.

20.1 OPTIMAL LINEAR DISCRIMINANT

Let us assume that the dataset D consists of n labeled points {xi,yi}, where xi ∈ R
d

and yi ∈ {c1,c2, . . . ,ck}. Let Di denote the subset of points labeled with class ci , i.e.,

Di = {xj |yj = ci}, and let |Di| = ni denote the number of points with class ci . We

assume that there are only k= 2 classes. Thus, the dataset D can be partitioned into D1

and D2.

Let w be a unit vector, that is, wTw = 1. By Eq. (1.7), the projection of any

d-dimensional point xi onto the vector w is given as

x′i =
(

wTxi

wTw

)
w=

(
wTxi

)
w= aiw

where ai specifies the offset or coordinate of x′i along the line w:

ai =wTxi

Thus, the set of n scalars {a1,a2, . . . ,an} represents the mapping from R
d to R, that is,

from the original d-dimensional space to a 1-dimensional space (along w).

Example 20.1. Consider Figure 20.1, which shows the 2-dimensional Iris dataset

with sepal length and sepal width as the attributes, and iris-setosa as class c1

(circles), and the other two Iris types as class c2 (triangles). There are n1= 50 points in

c1 and n2= 100 points in c2. One possible vector w is shown, along with the projection

498
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Figure 20.1. Projection onto w.

of all the points onto w. The projected means of the two classes are shown in black.

Here w has been translated so that it passes through the mean of the entire data. One

can observe that w is not very good in discriminating between the two classes because

the projection of the points onto w are all mixed up in terms of their class labels. The

optimal linear discriminant direction is shown in Figure 20.2.

Each point coordinate ai has associated with it the original class label yi , and thus

we can compute, for each of the two classes, the mean of the projected points as follows:

m1 =
1

n1

∑

xi∈D1

ai

= 1

n1

∑

xi∈D1

wTxi

=wT

(
1

n1

∑

xi∈D1

xi

)

=wTµ1

where µ1 is the mean of all point in D1. Likewise, we can obtain

m2 =wTµ2

In other words, the mean of the projected points is the same as the projection of the

mean.



500 Linear Discriminant Analysis

1.5

2.0

2.5

3.0

3.5

4.0

4.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

w

uT

utuT
ut

uT

ut

uT

ut

uT
ut

uT

ut

uTut uT

ut

uT

ut
uT

ut

uT

ut

uT

ut

uTut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut uT

ut

uT

ut

uT ut
uT

ut

uT
ut

uT

ut uT

ut

uT
ut

uT

ut

uT
ut

uT

ut
uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT
ut

uT

ut
uT

ut uT
ut

uT
ut

uT

ut

uT

ut

uT

ut

uT

ut

uTut uT

ut

uT

ut

bC

bc

bC

bcbC
bcbC
bc

bC

bc
bC

bc

bC

bc

bC

bc

bC

bc

bC

bc

bC

bc

bCbc

bC

bc

bC
bc

bC

bc

bC bc
bC

bc

bC

bc

bC
bcbC

bc

bC

bc

bC

bc
bC

bc

bC

bc
bC bc

bC

bc

bC

bc

bC

bc

bC

bc

bCbc

bC

bc

bC

bc

bC

bc

bC

bc

bC

bc
bC

bc
bC

bc

bC
bc

bC

bc

bC

bc
bC

bc

bC

bc

bC
bc

bCbc
bC

bc

bC

bc

bC bc

bC

bc

bC
bc

bC

bc

uTut
uT

ut

uT

ut

uT

ut

uT
ut

uT
ut

uT

ut

uT

ut
uT

ut

uT

ut

uT

ut
uT

ut

uT ut

uT
ut

uT
ut

uT

ut

uT

ut
uT

ut

uTut
uT

utuT
ut

uT

ut

uTut
uTut

uT

ut

uT

ut
uT

ut

uT

ut

uT
ut

uT
ut

uT

ut

uT

ut

uT

ut

uT

ut

uT

ut

uT
ut

uT

utuT

ut

uT

utuT
ut

uTut

uT

utuT ut
uT

ut uT

ut

uT
ut

uT

ut
uT

ut uT

utuT

ut

bC

uT

Figure 20.2. Linear discriminant direction w.

To maximize the separation between the classes, it seems reasonable to maximize

the difference between the projected means, |m1 −m2|. However, this is not enough.

For good separation, the variance of the projected points for each class should also

not be too large. A large variance would lead to possible overlaps among the points of

the two classes due to the large spread of the points, and thus we may fail to have a

good separation. LDA maximizes the separation by ensuring that the scatter s2
i for the

projected points within each class is small, where scatter is defined as

s2
i =

∑

xj∈Di

(aj −mi)
2

Scatter is the total squared deviation from the mean, as opposed to the variance, which

is the average deviation from mean. In other words

s2
i = niσ

2
i

where ni = |Di| is the size, and σ 2
i is the variance, for class ci .

We can incorporate the two LDA criteria, namely, maximizing the distance

between projected means and minimizing the sum of projected scatter, into a single

maximization criterion called the Fisher LDA objective:

max
w

J(w)= (m1−m2)
2

s2
1 + s2

2

(20.1)
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The goal of LDA is to find the vector w that maximizes J(w), that is, the direction

that maximizes the separation between the two means m1 and m2, and minimizes the

total scatter s2
1 + s2

2 of the two classes. The vector w is also called the optimal linear

discriminant (LD). The optimization objective [Eq. (20.1)] is in the projected space.

To solve it, we have to rewrite it in terms of the input data, as described next.

Note that we can rewrite (m1−m2)
2 as follows:

(m1−m2)
2 =

(
wT(µ1−µ2)

)2

=wT
(
(µ1−µ2)(µ1−µ2)

T
)
w

=wTBw (20.2)

where B= (µ1−µ2)(µ1−µ2)
T is a d×d rank-one matrix called the between-class scatter

matrix.

As for the projected scatter for class c1, we can compute it as follows:

s2
1 =

∑

xi∈D1

(ai −m1)
2

=
∑

xi∈D1

(wTxi −wTµ1)
2

=
∑

xi∈D1

(
wT(xi −µ1)

)2

=wT


∑

xi∈D1

(xi −µ1)(xi −µ1)
T


w

=wTS1w (20.3)

where S1 is the scatter matrix for D1. Likewise, we can obtain

s2
2 =wTS2w (20.4)

Notice again that the scatter matrix is essentially the same as the covariance matrix, but

instead of recording the average deviation from the mean, it records the total deviation,

that is,

Si = ni6i (20.5)

Combining Eqs. (20.3) and (20.4), the denominator in Eq. (20.1) can be rewrit-

ten as

s2
1 + s2

2 =wTS1w+wTS2w=wT(S1+S2)w=wTSw (20.6)

where S= S1+ S2 denotes the within-class scatter matrix for the pooled data. Because

both S1 and S2 are d × d symmetric positive semidefinite matrices, S has the same

properties.

Using Eqs. (20.2) and (20.6), we write the LDA objective function [Eq. (20.1)] as

follows:

max
w

J(w)= wTBw

wTSw
(20.7)
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To solve for the best direction w, we differentiate the objective function with

respect to w, and set the result to zero. We do not explicitly have to deal with the

constraint that wTw= 1 because in Eq. (20.7) the terms related to the magnitude of w

cancel out in the numerator and the denominator.

Recall that if f (x) and g(x) are two functions then we have

d

dx

(
f (x)

g(x)

)
= f ′(x)g(x)− g′(x)f (x)

g(x)2

where f ′(x) denotes the derivative of f (x). Taking the derivative of Eq. (20.7) with

respect to the vector w, and setting the result to the zero vector, gives us

d

dw
J(w)= 2Bw(wTSw)− 2Sw(wTBw)

(wTSw)2
= 0

which yields

B w(wTSw)= S w(wTBw)

B w= S w

(
wTBw

wTSw

)

B w= J(w)Sw

Bw= λSw (20.8)

where λ = J(w). Eq. (20.8) represents a generalized eigenvalue problem where λ is a

generalized eigenvalue of B and S; the eigenvalue λ satisfies the equation det(B−
λS) = 0. Because the goal is to maximize the objective [Eq. (20.7)], J(w) = λ should

be chosen to be the largest generalized eigenvalue, and w to be the corresponding

eigenvector. If S is nonsingular, that is, if S−1 exists, then Eq. (20.8) leads to the regular

eigenvalue–eigenvector equation, as

Bw=λSw

S−1Bw=λS−1Sw

(S−1B)w=λw (20.9)

Thus, if S−1 exists, then λ= J(w) is an eigenvalue, and w is an eigenvector of the matrix

S−1B. To maximize J(w) we look for the largest eigenvalue λ, and the corresponding

dominant eigenvector w specifies the best linear discriminant vector.

Algorithm 20.1 shows the pseudo-code for linear discriminant analysis. Here, we

assume that there are two classes, and that S is nonsingular (i.e., S−1 exists). The

vector 1ni
is the vector of all ones, with the appropriate dimension for each class, i.e.,

1ni
∈ R

ni for class i = 1,2. After dividing D into the two groups D1 and D2, LDA

proceeds to compute the between-class and within-class scatter matrices, B and S. The

optimal LD vector is obtained as the dominant eigenvector of S−1B. In terms of com-

putational complexity, computing S takes O(nd2) time, and computing the dominant

eigenvalue-eigenvector pair takes O(d3) time in the worst case. Thus, the total time is

O(d3+nd2).
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ALGORITHM 20.1. Linear Discriminant Analysis

LINEARDISCRIMINANT (D= {(xi,yi)}ni=1):

Di←
{
xj | yj = ci,j = 1, . . . ,n

}
, i = 1,2 // class-specific subsets1

µi←mean(Di), i = 1,2 // class means2

B← (µ1−µ2)(µ1−µ2)
T // between-class scatter matrix3

Zi←Di − 1ni
µT

i , i = 1,2 // center class matrices4

Si←ZT
i Zi, i = 1,2 // class scatter matrices5

S← S1+S2 // within-class scatter matrix6

λ1,w← eigen(S−1B) // compute dominant eigenvector7

Example 20.2 (Linear Discriminant Analysis). Consider the 2-dimensional Iris data

(with attributes sepal length and sepal width) shown in Example 20.1. Class c1,

corresponding to iris-setosa, has n1= 50 points, whereas the other class c2 has n2=
100 points. The means for the two classes c1 and c2, and their difference is given as

µ1 =
(

5.01

3.42

)T

µ2 =
(

6.26

2.87

)T

µ1−µ2 =
(
−1.256

0.546

)T

The between-class scatter matrix is

B= (µ1−µ2)(µ1−µ2)
T =

(
−1.256

0.546

)(
−1.256 0.546

)
=
(

1.587 −0.693

−0.693 0.303

)

and the within-class scatter matrix is

S1 =
(

6.09 4.91

4.91 7.11

)
S2 =

(
43.5 12.09

12.09 10.96

)
S= S1+S2 =

(
49.58 17.01

17.01 18.08

)

S is nonsingular, with its inverse given as

S−1 =
(

0.0298 −0.028

−0.028 0.0817

)

Therefore, we have

S−1B=
(

0.0298 −0.028

−0.028 0.0817

)(
1.587 −0.693

−0.693 0.303

)
=
(

0.066 −0.029

−0.100 0.044

)

The direction of most separation between c1 and c2 is the dominant eigenvector

corresponding to the largest eigenvalue of the matrix S−1B. The solution is

J(w)= λ1 = 0.11

w=
(

0.551

−0.834

)

Figure 20.2 plots the optimal linear discriminant direction w, translated to the mean

of the data. The projected means for the two classes are shown in black. We can



504 Linear Discriminant Analysis

clearly observe that along w the circles appear together as a group, and are quite

well separated from the triangles. Except for one outlying circle corresponding to

the point (4.5,2.3)T, all points in c1 are perfectly separated from points in c2.

For the two class scenario, if S is nonsingular, we can directly solve for w without

computing the eigenvalues and eigenvectors. Note that B = (µ1 − µ2)(µ1 − µ2)
T is a

d × d rank-one matrix, and thus Bw must point in the same direction as (µ1 − µ2)

because

Bw=
(
(µ1−µ2)(µ1−µ2)

T
)
w

=(µ1−µ2)
(
(µ1−µ2)

Tw
)

=b(µ1−µ2)

where b= (µ1−µ2)
Tw is just a scalar multiplier.

We can then rewrite Eq. (20.9) as

Bw=λSw

b(µ1−µ2)=λSw

w=b

λ
S−1(µ1−µ2)

Because b

λ
is just a scalar, we can solve for the best linear discriminant as

w=S−1(µ1−µ2) (20.10)

Once the direction w has been found we can normalize it to be a unit vector. Thus,

instead of solving for the eigenvalue/eigenvector, in the two class case, we immediately

obtain the direction w using Eq. (20.10). Intuitively, the direction that maximizes the

separation between the classes can be viewed as a linear transformation (by S−1) of the

vector joining the two class means (µ1−µ2).

Example 20.3. Continuing Example 20.2, we can directly compute w as follows:

w= S−1(µ1−µ2)

=
(

0.066 −0.029

−0.100 0.044

)(
−1.246

0.546

)
=
(
−0.0527

0.0798

)

After normalizing, we have

w= w

‖w‖ =
1

0.0956

(
−0.0527

0.0798

)
=
(
−0.551

0.834

)

Note that even though the sign is reversed for w, compared to that in Example 20.2,

they represent the same direction; only the scalar multiplier is different.



20.2 Kernel Discriminant Analysis 505

20.2 KERNEL DISCRIMINANT ANALYSIS

Kernel discriminant analysis, like linear discriminant analysis, tries to find a direction

that maximizes the separation between the classes. However, it does so in feature space

via the use of kernel functions.

Given a dataset D= {(xi,yi)}ni=1, where xi is a point in input space and yi ∈ {c1,c2}
is the class label, let Di = {xj |yj = ci} denote the data subset restricted to class ci , and

let ni = |Di|. Further, let φ(xi) denote the corresponding point in feature space, and let

K be a kernel function.

The goal of kernel LDA is to find the direction vector w in feature space that

maximizes

max
w

J(w)= (m1−m2)
2

s2
1 + s2

2

(20.11)

where m1 and m2 are the projected means, and s2
1 and s2

2 are projected scatter values

in feature space. We first show that w can be expressed as a linear combination of

the points in feature space, and then we transform the LDA objective in terms of the

kernel matrix.

Optimal LD: Linear Combination of Feature Points

The mean for class ci in feature space is given as

µ
φ

i =
1

ni

∑

xj∈Di

φ(xj ) (20.12)

and the covariance matrix for class ci in feature space is

6
φ

i =
1

ni

∑

xj∈Di

(
φ(xj )−µ

φ

i

)(
φ(xj )−µ

φ

i

)T

Using a derivation similar to Eq. (20.2) we obtain an expression for the between-class

scatter matrix in feature space

Bφ =
(
µ

φ

1 −µ
φ

2

)(
µ

φ

1 −µ
φ

2

)T

= dφdT
φ (20.13)

where dφ = µ
φ

1 −µ
φ

2 is the difference between the two class mean vectors. Likewise,

using Eqs. (20.5) and (20.6) the within-class scatter matrix in feature space is given as

Sφ = n16
φ

1 +n26
φ

2

Sφ is a d × d symmetric, positive semidefinite matrix, where d is the dimensionality of

the feature space. From Eq. (20.9), we conclude that the best linear discriminant vector

w in feature space is the dominant eigenvector, which satisfies the expression

(
S−1

φ Bφ

)
w= λw (20.14)

where we assume that Sφ is non-singular. Let δi denote the ith eigenvalue and ui the ith

eigenvector of Sφ , for i = 1, . . . ,d . The eigen-decomposition of Sφ yields Sφ =U1UT,
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with the inverse of Sφ given as S−1
φ =U1−1UT. Here U is the matrix whose columns are

the eigenvectors of Sφ and 1 is the diagonal matrix of eigenvalues of Sφ . The inverse

S−1
φ can thus be expressed as the spectral sum

S−1
φ =

d∑

r=1

1

δr

uru
T
r (20.15)

Plugging Eqs. (20.13) and (20.15) into Eq. (20.14), we obtain

λw=
( d∑

r=1

1

δr

uru
T
r

)
dφdT

φw=
d∑

r=1

1

δr

(
ur (u

T
r dφ)(d

T
φw)

)
=

d∑

r=1

brur

where br = 1
δr

(uT
r dφ)(d

T
φw) is a scalar value. Using a derivation similar to that in

Eq. (7.32), the rth eigenvector of Sφ can be expressed as a linear combination of the

feature points, say ur =
∑n

j=1 crjφ(xj ), where crj is a scalar coefficient. Thus, we can

rewrite w as

w= 1

λ

d∑

r=1

br

( n∑

j=1

crjφ(xj )

)

=
n∑

j=1

φ(xj )

( d∑

r=1

brcrj

λ

)

=
n∑

j=1

ajφ(xj )

where aj =
∑d

r=1 brcrj/λ is a scalar value for the feature point φ(xj ). Therefore, the

direction vector w can be expressed as a linear combination of the points in feature

space.

LDA Objective via Kernel Matrix

We now rewrite the kernel LDA objective [Eq. (20.11)] in terms of the kernel

matrix. Projecting the mean for class ci given in Eq. (20.12) onto the LD direction w,

we have

mi =wTµ
φ

i =




n∑

j=1

aj φ(xj )




T
 1

ni

∑

xk∈Di

φ(xk)




= 1

ni

n∑

j=1

∑

xk∈Di

aj φ(xj)
Tφ(xk)

= 1

ni

n∑

j=1

∑

xk∈Di

ajK(xj ,xk)

= aTmi (20.16)
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where a= (a1,a2, . . . ,an)
T is the weight vector, and

mi =
1

ni




∑
xk∈Di

K(x1,xk)∑
xk∈Di

K(x2,xk)

...∑
xk∈Di

K(xn,xk)



= 1

ni

Kci 1ni
(20.17)

where Kci is the n× ni subset of the kernel matrix, restricted to columns belonging to

points only in Di , and 1ni
is the ni-dimensional vector all of whose entries are one. The

n-length vector mi thus stores for each point in D its average kernel value with respect

to the points in Di .

We can rewrite the separation between the projected means in feature space as

follows:

(m1−m2)
2 =

(
wTµ

φ

1 −wTµ
φ

2

)2

=
(
aTm1− aTm2

)2

= aT(m1−m2)(m1−m2)
Ta

= aTMa (20.18)

where M= (m1−m2)(m1−m2)
T is the between-class scatter matrix.

We can also compute the projected scatter for each class, s2
1 and s2

2 , purely in terms

of the kernel function, as

s2
1 =

∑

xi∈D1

∥∥∥wTφ(xi)−wTµ
φ

1

∥∥∥
2

=
∑

xi∈D1

∥∥wTφ(xi)
∥∥2− 2

∑

xi∈D1

wTφ(xi) ·wTµ
φ

1 +
∑

xi∈D1

∥∥∥wTµ
φ

1

∥∥∥
2

=
(∑

xi∈D1

∥∥∥∥
n∑

j=1

ajφ(xj )
Tφ(xi)

∥∥∥∥
2)
− 2 ·n1 ·

∥∥∥wTµ
φ

1

∥∥∥
2

+n1 ·
∥∥∥wTµ

φ

1

∥∥∥
2

=
(∑

xi∈D1

aTKiK
T
i a

)
−n1 · aTm1m

T
1 a by using Eq. (20.16)

= aT

((∑

xi∈D1

KiK
T
i

)
−n1m1m

T
1

)
a

= aTN1a

where Ki is the ith column of the kernel matrix, and N1 is the class scatter matrix for c1.

Let K(xi,xj )=Kij . We can express N1 more compactly in matrix notation as follows:

N1 =
(∑

xi∈D1

KiK
T
i

)
−n1m1m

T
1

= (Kc1)
(
In1
− 1

n1

1n1×n1

)
(Kc1)T (20.19)
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where In1
is the n1 × n1 identity matrix and 1n1×n1

is the n1 × n1 matrix, all of whose

entries are 1’s.

In a similar manner we get s2
2 = aTN2a, where

N2 = (Kc2)
(
In2
− 1

n2

1n2×n2

)
(Kc2)T

where In2
is the n2 × n2 identity matrix and 1n2×n2

is the n2 × n2 matrix, all of whose

entries are 1’s.

The sum of projected scatter values is then given as

s2
1 + s2

2 = aT(N1+N2)a= aTNa (20.20)

where N is the n×n within-class scatter matrix.

Substituting Eqs. (20.18) and (20.20) in Eq. (20.11), we obtain the kernel LDA

maximization condition

max
w

J(w)=max
a

J(a)= aTMa

aTNa

Notice how all the terms in the expression above involve only kernel functions. The

weight vector a is the eigenvector corresponding to the largest eigenvalue of the

generalized eigenvalue problem:

Ma= λ1Na (20.21)

If N is nonsingular, a is the dominant eigenvector corresponding to the largest

eigenvalue for the system

(N−1M)a= λ1a

As in the case of linear discriminant analysis [Eq. (20.10)], when there are only two

classes we do not have to solve for the eigenvector because a can be obtained directly:

a=N−1(m1−m2)

Once a has been obtained, we can normalize w to be a unit vector by ensuring that

wTw= 1, which implies that

n∑

i=1

n∑

j=1

aiajφ(xi)
Tφ(xj )= 1, or

aTKa= 1

Put differently, we can ensure that w is a unit vector if we scale a by 1√
aTKa

.

Finally, we can project any point x onto the discriminant direction, as follows:

wTφ(x)=
n∑

j=1

ajφ(xj )
Tφ(x)=

n∑

j=1

ajK(xj ,x) (20.22)

Algorithm 20.2 shows the pseudo-code for kernel discriminant analysis. The

method proceeds by computing the n × n kernel matrix K, and the n × ni class
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ALGORITHM 20.2. Kernel Discriminant Analysis

KERNELDISCRIMINANT (D= {(xi,yi)}ni=1,K):

K←
{
K(xi,xj )

}
i,j=1,...,n

// compute n×n kernel matrix1

Kci ←
{
K(j,k) | yk = ci,1≤ j,k ≤ n

}
, i = 1,2 // class kernel matrix2

mi← 1
ni

Kci 1ni
, i = 1,2 // class means3

M← (m1−m2)(m1−m2)
T // between-class scatter matrix4

Ni←Kci (Ini
− 1

ni
1ni×ni

)(Kci )T, i = 1,2 // class scatter matrices5

N←N1+N2 // within-class scatter matrix6

λ1,a← eigen(N−1M) // compute weight vector7

a← a√
aTKa

// normalize w to be unit vector
8

specific kernel matrices Kci for each class ci . After computing the between-class and

within-class scatter matrices M and N, the weight vector a is obtained as the dominant

eigenvector of N−1M. The last step scales a so that w will be normalized to be unit

length. The complexity of kernel discriminant analysis is O(n3), with the dominant

steps being the computation of N and solving for the dominant eigenvector of N−1M,

both of which take O(n3) time.

Example 20.4 (Kernel Discriminant Analysis). Consider the 2-dimensional Iris

dataset comprising the sepal length and sepal width attributes. Figure 20.3a

shows the points projected onto the first two principal components. The points

have been divided into two classes: c1 (circles) corresponds to iris-virginica and c2

(triangles) corresponds to the other two Iris types. Here n1 = 50 and n2 = 100, with a

total of n= 150 points.

Because c1 is surrounded by points in c2 a good linear discriminant will not

be found. Instead, we apply kernel discriminant analysis using the homogeneous

quadratic kernel

K(xi,xj )= (xT
i xj)

2

Solving for a via Eq. (20.21) yields

λ1 = 0.0511

However, we do not show a because it lies in R
150. Figure 20.3a shows the contours

of constant projections onto the best kernel discriminant. The contours are obtained

by solving Eq. (20.22), that is, by solving wTφ(x) =
∑n

j=1 ajK(xj ,x) = c for different

values of the scalars c. The contours are hyperbolic, and thus form pairs starting

from the center. For instance, the first curve on the left and right of the origin (0,0)T

forms the same contour, that is, points along both the curves have the same value

when projected onto w. We can see that contours or pairs of curves starting with the

fourth curve (on the left and right) from the center all relate to class c2, whereas the

first three contours deal mainly with class c1, indicating good discrimination with the

homogeneous quadratic kernel.
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Figure 20.3. Kernel discriminant analysis: quadratic homogeneous kernel.

A better picture emerges when we plot the coordinates of all the points xi ∈ D

when projected onto w, as shown in Figure 20.3b. We can observe that w is able

to separate the two classes reasonably well; all the circles (c1) are concentrated on

the left, whereas the triangles (c2) are spread out on the right. The projected means

are shown in white. The scatters and means for both classes after projection are as

follows:

m1 = 0.338 m2 = 4.476

s2
1 = 13.862 s2

2 = 320.934

The value of J(w) is given as

J(w)= (m1−m2)
2

s2
1 + s2

2

= (0.338− 4.476)2

13.862+ 320.934
= 17.123

334.796
= 0.0511

which, as expected, matches λ1 = 0.0511 from above.

In general, it is not desirable or possible to obtain an explicit discriminant vector

w, since it lies in feature space. However, because each point x = (x1,x2)
T ∈ R

2 in
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Figure 20.4. Homogeneous quadratic kernel feature space.

input space is mapped to the point φ(x)= (
√

2x1x2,x
2
1 ,x

2
2 )

T ∈ R3 in feature space via

the homogeneous quadratic kernel, for our example it is possible to visualize the

feature space, as illustrated in Figure 20.4. The projection of each point φ(xi) onto

the discriminant vector w is also shown, where

w= 0.511x1x2+ 0.761x2
1− 0.4x2

2

The projections onto w are identical to those shown in Figure 20.3b.

20.3 FURTHER READING

Linear discriminant analysis was introduced in Fisher (1936). Its extension to kernel

discriminant analysis was proposed in Mika et al. (1999). The 2-class LDA approach

can be generalized to k > 2 classes by finding the optimal (k−1)-dimensional subspace

projection that best discriminates between the k classes; see Duda, Hart, and Stork

(2012) for details.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern Classification. New York:

Wiley-Interscience.

Fisher, R. A. (1936). “The use of multiple measurements in taxonomic problems.”

Annals of Eugenics, 7 (2): 179–188.
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Mika, S., Ratsch, G., Weston, J., Scholkopf, B., and Mullers, K. (1999). “Fisher

discriminant analysis with kernels.” In Proceedings of the IEEE Neural Networks

for Signal Processing Workshop, IEEE, pp. 41–48.

20.4 EXERCISES

Q1. Consider the data shown in Table 20.1. Answer the following questions:

(a) Compute µ+1 and µ−1, and SB, the between-class scatter matrix.

(b) Compute S+1 and S−1, and SW, the within-class scatter matrix.

(c) Find the best direction w that discriminates between the classes. Use the fact that

the inverse of the matrix A=
(

a b

c d

)
is given as A−1 = 1

det(A)

(
d −b

−c a

)
.

(d) Having found the direction w, find the point on w that best separates the two

classes.

Table 20.1. Dataset for Q1

i xi yi

x1 (4,2.9) 1

x2 (3.5,4) 1

x3 (2.5,1) −1

x4 (2,2.1) −1

Q2. Given the labeled points (from two classes) shown in Figure 20.5, and given that the

inverse of the within-class scatter matrix is
(

0.056 −0.029

−0.029 0.052

)

Find the best linear discriminant line w, and sketch it.
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Figure 20.5. Dataset for Q2.
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Q3. Maximize the objective in Eq. (20.7) by explicitly considering the constraint wTw= 1,

that is, by using a Lagrange multiplier for that constraint.

Q4. Prove the equality in Eq. (20.19). That is, show that

N1 =
( ∑

xi∈D1

KiK
T
i

)
−n1m1mT

1 = (Kc1) (In1 −
1

n1
1n1×n1) (Kc1)T



CHAPTER 21 Support Vector Machines

In this chapter we describe Support Vector Machines (SVMs), a classification method

based on maximum margin linear discriminants, that is, the goal is to find the optimal

hyperplane that maximizes the gap or margin between the classes. Further, we can use

the kernel trick to find the optimal nonlinear decision boundary between classes, which

corresponds to a hyperplane in some high-dimensional “nonlinear” space.

21.1 SUPPORT VECTORS AND MARGINS

Let D= {(xi,yi)}ni=1 be a classification dataset, with n points in a d-dimensional space.

Further, let us assume that there are only two class labels, that is, yi ∈ {+1,−1},
denoting the positive and negative classes.

Hyperplanes

A hyperplane in d dimensions is given as the set of all points x ∈ R
d that satisfy the

equation h(x)= 0, where h(x) is the hyperplane function, defined as follows:

h(x)=wTx+ b (21.1)

=w1x1+w2x2+ ·· ·+wdxd + b

Here, w is a d dimensional weight vector and b is a scalar, called the bias. For points

that lie on the hyperplane, we have

h(x)=wTx+ b= 0 (21.2)

The hyperplane is thus defined as the set of all points such that wTx =−b. To see the

role played by b, assuming that w1 6= 0, and setting xi = 0 for all i > 1, we can obtain

the offset where the hyperplane intersects the first axis, as by Eq. (21.2), we have

w1x1 =−b or x1 =
−b

w1

In other words, the point (−b

w1
,0, . . . ,0) lies on the hyperplane. In a similar manner, we

can obtain the offset where the hyperplane intersects each of the axes, which is given

as −b

wi
(provided wi 6= 0).

514
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Separating Hyperplane

A hyperplane splits the original d-dimensional space into two half-spaces. A dataset

is said to be linearly separable if each half-space has points only from a single class.

If the input dataset is linearly separable, then we can find a separating hyperplane

h(x)= 0, such that for all points labeled yi =−1, we have h(xi) < 0, and for all points

labeled yi = +1, we have h(xi) > 0. In fact, the hyperplane function h(x) serves as a

linear classifier or a linear discriminant, which predicts the class y for any given point

x, according to the decision rule:

y =
{
+1 if h(x) > 0

−1 if h(x) < 0
(21.3)

Let a1 and a2 be two arbitrary points that lie on the hyperplane. From Eq. (21.2)

we have

h(a1)=wTa1+ b= 0

h(a2)=wTa2+ b= 0

Subtracting one from the other we obtain

wT(a1− a2)= 0

This means that the weight vector w is orthogonal to the hyperplane because it is

orthogonal to any arbitrary vector (a1 − a2) on the hyperplane. In other words, the

weight vector w specifies the direction that is normal to the hyperplane, which fixes

the orientation of the hyperplane, whereas the bias b fixes the offset of the hyperplane

in the d-dimensional space. Because both w and −w are normal to the hyperplane,

we remove this ambiguity by requiring that h(xi) > 0 when yi = 1, and h(xi) < 0 when

yi =−1.

Distance of a Point to the Hyperplane

Consider a point x ∈ R
d , such that x does not lie on the hyperplane. Let xp be the

orthogonal projection of x on the hyperplane, and let r = x − xp, then as shown in

Figure 21.1 we can write x as

x= xp+ r

x= xp+ r
w

‖w‖ (21.4)

where r is the directed distance of the point x from xp, that is, r gives the offset of x

from xp in terms of the unit weight vector w
‖w‖ . The offset r is positive if r is in the same

direction as w, and r is negative if r is in a direction opposite to w.

Plugging Eq. (21.4) into the hyperplane function [Eq. (21.1)], we get

h(x)= h

(
xp+ r

w

‖w‖

)

=wT

(
xp+ r

w

‖w‖

)
+ b
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Figure 21.1. Geometry of a separating hyperplane in 2D. Points labeled +1 are shown as circles, and those

labeled−1 are shown as triangles. The hyperplane h(x)= 0 divides the space into two half-spaces. The shaded

region comprises all points x satisfying h(x) < 0, whereas the unshaded region consists of all points satisfying

h(x) > 0. The unit weight vector w
‖w‖ (in gray) is orthogonal to the hyperplane. The directed distance of the

origin to the hyperplane is b
‖w‖ .

=wTxp+ b︸ ︷︷ ︸
h(xp)

+r
wTw

‖w‖

= h(xp)︸ ︷︷ ︸
0

+r‖w‖

= r‖w‖

The last step follows from the fact that h(xp) = 0 because xp lies on the hyperplane.

Using the result above, we obtain an expression for the directed distance of a point to

the hyperplane:

r = h(x)

‖w‖

To obtain distance, which must be non-negative, we can conveniently multiply r by

the class label y of the point because when h(x) < 0, the class is −1, and when h(x) > 0

the class is +1. The distance of a point x from the hyperplane h(x)= 0 is thus given as

δ = y r = y h(x)

‖w‖ (21.5)
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In particular, for the origin x= 0, the directed distance is

r = h(0)

‖w‖ =
wT0+ b

‖w‖ =
b

‖w‖

as illustrated in Figure 21.1.

Example 21.1. Consider the example shown in Figure 21.1. In this 2-dimensional

example, the hyperplane is just a line, defined as the set of all points x = (x1,x2)
T

that satisfy the following equation:

h(x)=wTx+ b=w1x1+w2x2+ b= 0

Rearranging the terms we get

x2 =−
w1

w2

x1−
b

w2

where −w1
w2

is the slope of the line, and − b

w2
is the intercept along the second

dimension.

Consider any two points on the hyperplane, say p = (p1,p2) = (4,0), and

q= (q1,q2)= (2,5). The slope is given as

−w1

w2

= q2−p2

q1−p1

= 5− 0

2− 4
=−5

2

which implies that w1 = 5 and w2 = 2. Given any point on the hyperplane, say (4,0),

we can compute the offset b directly as follows:

b=−5x1− 2x2 =−5 · 4− 2 · 0=−20

Thus, w=
(

5

2

)
is the weight vector, and b =−20 is the bias, and the equation of the

hyperplane is given as

h(x)=wTx+ b=
(
5 2

)(x1

x2

)
− 20= 0

One can verify that the distance of the origin 0 from the hyperplane is given as

δ = y r =−1 r = −b

‖w‖ =
−(−20)√

29
= 3.71

Margin and Support Vectors of a Hyperplane

Given a training dataset of labeled points, D= {xi,yi}ni=1 with yi ∈ {+1,−1}, and given

a separating hyperplane h(x) = 0, for each point xi we can find its distance to the

hyperplane by Eq. (21.5):

δi =
yi h(xi)

‖w‖ =
yi(w

Txi + b)

‖w‖
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Over all the n points, we define the margin of the linear classifier as the minimum

distance of a point from the separating hyperplane, given as

δ∗ =min
xi

{
yi(w

Txi + b)

‖w‖

}
(21.6)

Note that δ∗ 6= 0, since h(x) is assumed to be a separating hyperplane, and Eq. (21.3)

must be satisfied.

All the points (or vectors) that achieve this minimum distance are called support

vectors for the hyperplane. In other words, a support vector x∗ is a point that lies

precisely on the margin of the classifier, and thus satisfies the condition

δ∗ = y∗(wTx∗+ b)

‖w‖

where y∗ is the class label for x∗. The numerator y∗(wTx∗ + b) gives the absolute

distance of the support vector to the hyperplane, whereas the denominator ‖w‖makes

it a relative distance in terms of w.

Canonical Hyperplane

Consider the equation of the hyperplane [Eq. (21.2)]. Multiplying on both sides by

some scalar s yields an equivalent hyperplane:

s h(x)= s wTx+ s b= (sw)Tx+ (sb)= 0

To obtain the unique or canonical hyperplane, we choose the scalar s such that the

absolute distance of a support vector from the hyperplane is 1. That is,

sy∗(wTx∗+ b)= 1

which implies

s = 1

y∗(wTx∗+ b)
= 1

y∗h(x∗)
(21.7)

Henceforth, we will assume that any separating hyperplane is canonical. That is, it

has already been suitably rescaled so that y∗h(x∗)= 1 for a support vector x∗, and the

margin is given as

δ∗ = y∗h(x∗)

‖w‖ =
1

‖w‖

For the canonical hyperplane, for each support vector x∗i (with label y∗i ), we

have y∗i h(x∗i ) = 1, and for any point that is not a support vector we have yih(xi) > 1,

because, by definition, it must be farther from the hyperplane than a support

vector. Over all the n points in the dataset D, we thus obtain the following set of

inequalities:

yi (wTxi + b)≥ 1, for all points xi ∈D (21.8)
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Figure 21.2. Margin of a separating hyperplane: 1
‖w‖ is the margin, and the shaded points are the support

vectors.

Example 21.2. Figure 21.2 gives an illustration of the support vectors and the margin

of a hyperplane. The equation of the separating hyperplane is

h(x)=
(

5

2

)T

x− 20= 0

Consider the support vector x∗ = (2,2)T, with class y∗ = −1. To find the canonical

hyperplane equation, we have to rescale the weight vector and bias by the scalar s,

obtained using Eq. (21.7):

s = 1

y∗h(x∗)
= 1

−1

((
5

2

)T(
2

2

)
− 20

) = 1

6

Thus, the rescaled weight vector is

w= 1

6

(
5

2

)
=
(

5/6

2/6

)

and the rescaled bias is

b = −20

6
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The canonical form of the hyperplane is therefore

h(x)=
(

5/6

2/6

)T

x− 20/6=
(

0.833

0.333

)T

x− 3.33

and the margin of the canonical hyperplane is

δ∗ = y∗ h(x∗)

‖w‖ = 1√(
5
6

)2+
(

2
6

)2
= 6√

29
= 1.114

In this example there are five support vectors (shown as shaded points), namely,

(2,2)T and (2.5,0.75)T with class y =−1 (shown as triangles), and (3.5,4.25)T, (4,3)T,

and (4.5,1.75)T with class y =+1 (shown as circles), as illustrated in Figure 21.2.

21.2 SVM: LINEAR AND SEPARABLE CASE

Given a dataset D = {xi,yi}ni=1 with xi ∈ R
d and yi ∈ {+1,−1}, let us assume for

the moment that the points are linearly separable, that is, there exists a separating

hyperplane that perfectly classifies each point. In other words, all points labeled

yi = +1 lie on one side (h(x) > 0) and all points labeled yi = −1 lie on the other side

(h(x) < 0) of the hyperplane. It is obvious that in the linearly separable case, there

are in fact an infinite number of such separating hyperplanes. Which one should we

choose?

Maximum Margin Hyperplane

The fundamental idea behind SVMs is to choose the canonical hyperplane, specified by

the weight vector w and the bias b, that yields the maximum margin among all possible

separating hyperplanes. If δ∗h represents the margin for hyperplane h(x) = 0, then the

goal is to find the optimal hyperplane h∗:

h∗ = argmax
h

{
δ∗h

}
= argmax

w,b

{
1

‖w‖

}

The SVM task is to find the hyperplane that maximizes the margin 1
‖w‖ , subject to the

n constraints given in Eq. (21.8), namely, yi (wTxi+b)≥ 1, for all points xi ∈D. Notice

that instead of maximizing the margin 1
‖w‖ , we can minimize ‖w‖. In fact, we can obtain

an equivalent minimization formulation given as follows:

Objective Function: min
w,b

{‖w‖2
2

}

Linear Constraints: yi (wTxi + b)≥ 1, ∀xi ∈D

We can directly solve the above primal convex minimization problem with the

n linear constraints using standard optimization algorithms, as outlined later in

Section 21.5. However, it is more common to solve the dual problem, which is obtained

via the use of Lagrange multipliers. The main idea is to introduce a Lagrange multiplier
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αi for each constraint, which satisfies the Karush–Kuhn–Tucker (KKT) conditions at

the optimal solution:

αi

(
yi(w

Txi + b)− 1
)
= 0

and αi ≥ 0

Incorporating all the n constraints, the new objective function, called the Lagrangian,

then becomes

min L= 1

2
‖w‖2−

n∑

i=1

αi

(
yi(w

Txi + b)− 1
)

(21.9)

L should be minimized with respect to w and b, and it should be maximized with respect

to αi .

Taking the derivative of L with respect to w and b, and setting those to zero, we

obtain

∂

∂w
L=w−

n∑

i=1

αiyixi = 0 or w=
n∑

i=1

αiyixi (21.10)

∂

∂b
L=

n∑

i=1

αiyi = 0 (21.11)

The above equations give important intuition about the optimal weight vector w. In

particular, Eq. (21.10) implies that w can be expressed as a linear combination of the

data points xi , with the signed Lagrange multipliers, αiyi , serving as the coefficients.

Further, Eq. (21.11) implies that the sum of the signed Lagrange multipliers, αiyi , must

be zero.

Plugging these into Eq. (21.9), we obtain the dual Lagrangian objective function,

which is specified purely in terms of the Lagrange multipliers:

Ldual =
1

2
wTw−wT

( n∑

i=1

αiyixi

︸ ︷︷ ︸
w

)
− b

n∑

i=1

αiyi

︸ ︷︷ ︸
0

+
n∑

i=1

αi

=−1

2
wTw+

n∑

i=1

αi

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjxT
i xj

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

Linear Constraints: αi ≥ 0, ∀i ∈D, and

n∑

i=1

αiyi = 0

(21.12)
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where α = (α1,α2, . . . ,αn)
T is the vector comprising the Lagrange multipliers. Ldual is

a convex quadratic programming problem (note the αiαj terms), which can be solved

using standard optimization techniques. See Section 21.5 for a gradient-based method

for solving the dual formulation.

Weight Vector and Bias

Once we have obtained the αi values for i = 1, . . . ,n, we can solve for the weight vector

w and the bias b. Note that according to the KKT conditions, we have

αi

(
yi(w

Txi + b)− 1
)
= 0

which gives rise to two cases:

(1) αi = 0, or

(2) yi(w
Txi + b)− 1= 0, which implies yi(w

Txi + b)= 1

This is a very important result because if αi > 0, then yi(w
Txi + b) = 1, and thus the

point xi must be a support vector. On the other hand if yi(w
Txi + b) > 1, then αi = 0,

that is, if a point is not a support vector, then αi = 0.

Once we know αi for all points, we can compute the weight vector w using

Eq. (21.10), but by taking the summation only for the support vectors:

w=
∑

i,αi>0

αiyixi (21.13)

In other words, w is obtained as a linear combination of the support vectors, with the

αiyi’s representing the weights. The rest of the points (with αi = 0) are not support

vectors and thus do not play a role in determining w.

To compute the bias b, we first compute one solution bi , per support vector, as

follows:

αi

(
yi(w

Txi + b)− 1
)
= 0

yi(w
Txi + b)= 1

bi =
1

yi

−wTxi = yi −wTxi (21.14)

We can take b as the average bias value over all the support vectors:

b= avgαi>0{bi} (21.15)

SVM Classifier

Given the optimal hyperplane function h(x)=wTx+b, for any new point z, we predict

its class as

ŷ = sign(h(z))= sign(wTz+ b) (21.16)

where the sign(·) function returns +1 if its argument is positive, and −1 if its argument

is negative.
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Table 21.1. Dataset corresponding to Figure 21.2

xi xi1 xi2 yi

x1 3.5 4.25 +1

x2 4 3 +1

x3 4 4 +1

x4 4.5 1.75 +1

x5 4.9 4.5 +1

x6 5 4 +1

x7 5.5 2.5 +1

x8 5.5 3.5 +1

x9 0.5 1.5 −1

x10 1 2.5 −1

x11 1.25 0.5 −1

x12 1.5 1.5 −1

x13 2 2 −1

x14 2.5 0.75 −1

Example 21.3. Let us continue with the example dataset shown in Figure 21.2. The

dataset has 14 points as shown in Table 21.1.

Solving the Ldual quadratic program yields the following nonzero values for the

Lagrangian multipliers, which determine the support vectors

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0437

x2 4 3 +1 0.2162

x4 4.5 1.75 +1 0.1427

x13 2 2 −1 0.3589

x14 2.5 0.75 −1 0.0437

All other points have αi=0 and therefore they are not support vectors. Using

Eq. (21.13), we can compute the weight vector for the hyperplane:

w=
∑

i,αi>0

αiyixi

= 0.0437

(
3.5

4.25

)
+ 0.2162

(
4

3

)
+ 0.1427

(
4.5

1.75

)
− 0.3589

(
2

2

)
− 0.0437

(
2.5

0.75

)

=
(

0.833

0.334

)

The final bias is the average of the bias obtained from each support vector using

Eq. (21.14):



524 Support Vector Machines

xi wTxi bi = yi −wTxi

x1 4.332 −3.332

x2 4.331 −3.331

x4 4.331 −3.331

x13 2.333 −3.333

x14 2.332 −3.332

b = avg{bi} −3.332

Thus, the optimal hyperplane is given as follows:

h(x)=
(

0.833

0.334

)T

x− 3.332= 0

which matches the canonical hyperplane in Example 21.2.

21.3 SOFT MARGIN SVM: LINEAR AND NONSEPARABLE CASE

So far we have assumed that the dataset is perfectly linearly separable. Here we

consider the case where the classes overlap to some extent so that a perfect separation

is not possible, as depicted in Figure 21.3.
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Figure 21.3. Soft margin hyperplane: the shaded points are the support vectors. The margin is 1/‖w‖ as

illustrated, and points with positive slack values are also shown (thin black line).
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Recall that when points are linearly separable we can find a separating hyperplane

so that all points satisfy the condition yi(w
Txi+b)≥ 1. SVMs can handle non-separable

points by introducing slack variables ξi in Eq. (21.8), as follows:

yi(w
Txi + b)≥ 1− ξi

where ξi ≥ 0 is the slack variable for point xi , which indicates how much the point

violates the separability condition, that is, the point may no longer be at least 1/‖w‖
away from the hyperplane. The slack values indicate three types of points. If ξi = 0,

then the corresponding point xi is at least 1
‖w‖ away from the hyperplane. If 0 < ξi < 1,

then the point is within the margin and still correctly classified, that is, it is on the

correct side of the hyperplane. However, if ξi ≥ 1 then the point is misclassified and

appears on the wrong side of the hyperplane.

In the nonseparable case, also called the soft margin case, the goal of SVM

classification is to find the hyperplane with maximum margin that also minimizes the

slack terms. The new objective function is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑

i=1

(ξi)
k

}

Linear Constraints: yi (wTxi + b)≥ 1− ξi, ∀xi ∈D

ξi ≥ 0 ∀xi ∈D

(21.17)

where C and k are constants that incorporate the cost of misclassification. The term∑n

i=1(ξi)
k gives the loss, that is, an estimate of the deviation from the separable case.

The scalar C, which is chosen empirically, is a regularization constant that controls

the trade-off between maximizing the margin (corresponding to minimizing ‖w‖2 /2)

or minimizing the loss (corresponding to minimizing the sum of the slack terms∑n

i=1(ξi)
k). For example, if C→ 0, then the loss component essentially disappears, and

the objective defaults to maximizing the margin. On the other hand, if C→∞, then

the margin ceases to have much effect, and the objective function tries to minimize the

loss. The constant k governs the form of the loss. Typically k is set to 1 or 2. When

k = 1, called hinge loss, the goal is to minimize the sum of the slack variables, whereas

when k = 2, called quadratic loss, the goal is to minimize the sum of the squared slack

variables.

21.3.1 Hinge Loss

Assuming k = 1, we can compute the Lagrangian for the optimization problem in

Eq. (21.17) by introducing Lagrange multipliers αi and βi that satisfy the following

KKT conditions at the optimal solution:

αi

(
yi(w

Txi + b)− 1+ ξi

)
= 0 with αi ≥ 0

βi(ξi − 0)= 0 with βi ≥ 0 (21.18)

The Lagrangian is then given as

L= 1

2
‖w‖2+C

n∑

i=1

ξi −
n∑

i=1

αi

(
yi(w

Txi + b)− 1+ ξi

)
−

n∑

i=1

βiξi (21.19)
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We turn this into a dual Lagrangian by taking its partial derivative with respect to

w, b and ξi , and setting those to zero:

∂

∂w
L=w−

n∑

i=1

αiyixi = 0 or w=
n∑

i=1

αiyixi

∂

∂b
L=

n∑

i=1

αiyi = 0

∂

∂ξi

L=C−αi −βi = 0 or βi =C−αi (21.20)

Plugging these values into Eq. (21.19), we get

Ldual =
1

2
wTw−wT

( n∑

i=1

αiyixi

︸ ︷︷ ︸
w

)
− b

n∑

i=1

αiyi

︸ ︷︷ ︸
0

+
n∑

i=1

αi +
n∑

i=1

(C−αi +βi)︸ ︷︷ ︸
0

ξi

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjxT
i xj

Linear Constraints: 0≤ αi ≤C, ∀i ∈D and

n∑

i=1

αiyi = 0

(21.21)

Notice that the objective is the same as the dual Lagrangian in the linearly separable

case [Eq. (21.12)]. However, the constraints on αi ’s are different because we now

require that αi+βi =C with αi ≥ 0 and βi ≥ 0, which implies that 0≤αi ≤C. Section 21.5

describes a gradient ascent approach for solving this dual objective function.

Weight Vector and Bias

Once we solve for αi , we have the same situation as before, namely, αi = 0 for points

that are not support vectors, and αi > 0 only for the support vectors, which comprise

all points xi for which we have

yi(w
Txi + b)= 1− ξi (21.22)

Notice that the support vectors now include all points that are on the margin, which

have zero slack (ξi = 0), as well as all points with positive slack (ξi > 0).
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We can obtain the weight vector from the support vectors as before:

w=
∑

i,αi>0

αiyixi (21.23)

We can also solve for the βi using Eq. (21.20):

βi =C−αi

Replacing βi in the KKT conditions [Eq. (21.18)] with the expression from above we

obtain

(C−αi)ξi = 0 (21.24)

Thus, for the support vectors with αi > 0, we have two cases to consider:

(1) ξi > 0, which implies that C−αi = 0, that is, αi =C, or

(2) C− αi > 0, that is αi < C. In this case, from Eq. (21.24) we must have ξi = 0. In

other words, these are precisely those support vectors that are on the margin.

Using those support vectors that are on the margin, that is, have 0 < αi < C and

ξi = 0, we can solve for bi :

αi

(
yi(w

Txi + bi)− 1
)
= 0

yi(w
Txi + bi)= 1

bi =
1

yi

−wTxi = yi −wTxi (21.25)

To obtain the final bias b, we can take the average over all the bi values. From

Eqs. (21.23) and (21.25), both the weight vector w and the bias term b can be computed

without explicitly computing the slack terms ξi for each point.

Once the optimal hyperplane plane has been determined, the SVM model predicts

the class for a new point z as follows:

ŷ = sign(h(z))= sign(wTz+ b)

Example 21.4. Let us consider the data points shown in Figure 21.3. There are

four new points in addition to the 14 points from Table 21.1 that we considered in

Example 21.3; these points are

xi xi1 xi2 yi

x15 4 2 +1

x16 2 3 +1

x17 3 2 −1

x18 5 3 −1

Let k = 1 and C = 1, then solving the Ldual yields the following support vectors and

Lagrangian values αi :
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xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0271

x2 4 3 +1 0.2162

x4 4.5 1.75 +1 0.9928

x13 2 2 −1 0.9928

x14 2.5 0.75 −1 0.2434

x15 4 2 +1 1

x16 2 3 +1 1

x17 3 2 −1 1

x18 5 3 −1 1

All other points are not support vectors, having αi = 0. Using Eq. (21.23) we compute

the weight vector for the hyperplane:

w=
∑

i,αi>0

αiyixi

= 0.0271

(
3.5

4.25

)
+ 0.2162

(
4

3

)
+ 0.9928

(
4.5

1.75

)
− 0.9928

(
2

2

)

− 0.2434

(
2.5

0.75

)
+
(

4

2

)
+
(

2

3

)
−
(

3

2

)
−
(

5

3

)

=
(

0.834

0.333

)

The final bias is the average of the biases obtained from each support vector using

Eq. (21.25). Note that we compute the per-point bias only for the support vectors that

lie precisely on the margin. These support vectors have ξi = 0 and have 0 < αi < C.

Put another way, we do not compute the bias for support vectors with αi = C = 1,

which include the points x15, x16, x17, and x18. From the remaining support vectors,

we get

xi wTxi bi = yi −wTxi

x1 4.334 −3.334

x2 4.334 −3.334

x4 4.334 −3.334

x13 2.334 −3.334

x14 2.334 −3.334

b = avg{bi} −3.334

Thus, the optimal hyperplane is given as follows:

h(x)=
(

0.834

0.333

)T

x− 3.334= 0
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One can see that this is essentially the same as the canonical hyperplane we found in

Example 21.3.

It is instructive to see what the slack variables are in this case. Note that ξi = 0 for

all points that are not support vectors, and also for those support vectors that are on

the margin. So the slack is positive only for the remaining support vectors, for whom

the slack can be computed directly from Eq. (21.22), as follows:

ξi = 1− yi(w
Txi + b)

Thus, for all support vectors not on the margin, we have

xi wTxi wTxi + b ξi = 1− yi(w
Txi + b)

x15 4.001 0.667 0.333

x16 2.667 −0.667 1.667

x17 3.167 −0.167 0.833

x18 5.168 1.834 2.834

As expected, the slack variable ξi > 1 for those points that are misclassified (i.e.,

are on the wrong side of the hyperplane), namely x16 = (3,3)T and x18 = (5,3)T. The

other two points are correctly classified, but lie within the margin, and thus satisfy

0 < ξi < 1. The total slack is given as

∑

i

ξi = ξ15+ ξ16+ ξ17+ ξ18 = 0.333+ 1.667+ 0.833+2.834= 5.667

21.3.2 Quadratic Loss

For quadratic loss, we have k = 2 in the objective function [Eq. (21.17)]. In this case

we can drop the positivity constraint ξi ≥ 0 due to the fact that (1) the sum of the

slack terms
∑n

i=1 ξ 2
i is always positive, and (2) a potential negative value of slack will

be ruled out during optimization because a choice of ξi = 0 leads to a smaller value of

the primary objective, and it still satisfies the constraint yi(w
Txi+b)≥ 1− ξi whenever

ξi < 0. In other words, the optimization process will replace any negative slack variables

by zero values. Thus, the SVM objective for quadratic loss is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑

i=1

ξ 2
i

}

Linear Constraints: yi (wTxi + b)≥ 1− ξi, ∀xi ∈D

The Lagrangian is then given as:

L= 1

2
‖w‖2+C

n∑

i=1

ξ 2
i −

n∑

i=1

αi

(
yi(w

Txi + b)− 1+ ξi

)
(21.26)
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Differentiating with respect to w, b, and ξi and setting them to zero results in the

following conditions, respectively:

w=
n∑

i=1

αiyixi

n∑

i=1

αiyi = 0

ξi =
1

2C
αi

Substituting these back into Eq. (21.26) yields the dual objective

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjxT
i xj −

1

4C

n∑

i=1

α2
i

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj

(
xT

i xj +
1

2C
δij

)

where δ is the Kronecker delta function, defined as δij = 1 if i = j , and δij = 0 otherwise.

Thus, the dual objective is given as

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj

(
xT

i xj +
1

2C
δij

)

subject to the constraints αi ≥ 0,∀i ∈D,and

n∑

i=1

αiyi = 0

(21.27)

Once we solve for αi using the methods from Section 21.5, we can recover the weight

vector and bias as follows:

w=
∑

i,αi>0

αiyixi

b = avgi,C>αi>0

{
yi −wTxi

}

21.4 KERNEL SVM: NONLINEAR CASE

The linear SVM approach can be used for datasets with a nonlinear decision boundary

via the kernel trick from Chapter 5. Conceptually, the idea is to map the original

d-dimensional points xi in the input space to points φ(xi) in a high-dimensional feature

space via some nonlinear transformation φ. Given the extra flexibility, it is more likely

that the points φ(xi) might be linearly separable in the feature space. Note, however,

that a linear decision surface in feature space actually corresponds to a nonlinear

decision surface in the input space. Further, the kernel trick allows us to carry out

all operations via the kernel function computed in input space, rather than having to

map the points into feature space.
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Figure 21.4. Nonlinear SVM: shaded points are the support vectors.

Example 21.5. Consider the set of points shown in Figure 21.4. There is no linear

classifier that can discriminate between the points. However, there exists a perfect

quadratic classifier that can separate the two classes. Given the input space over

the two dimensions X1 and X2, if we transform each point x = (x1,x2)
T into a

point in the feature space consisting of the dimensions (X1,X2,X2
1,X2

2,X1X2), via

the transformation φ(x) = (
√

2x1,
√

2x2,x
2
1 ,x

2
2 ,
√

2x1x2)
T, then it is possible to find a

separating hyperplane in feature space. For this dataset, it is possible to map the

hyperplane back to the input space, where it is seen as an ellipse (thick black line)

that separates the two classes (circles and triangles). The support vectors are those

points (shown in gray) that lie on the margin (dashed ellipses).

To apply the kernel trick for nonlinear SVM classification, we have to show that

all operations require only the kernel function:

K(xi,xj )= φ(xi)
Tφ(xj )

Let the original database be given as D= {xi,yi}ni=1. Applying φ to each point, we can

obtain the new dataset in the feature space Dφ = {φ(xi),yi}ni=1.

The SVM objective function [Eq. (21.17)] in feature space is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑

i=1

(ξi)
k

}

Linear Constraints: yi (wTφ(xi)+ b)≥ 1− ξi,and ξi ≥ 0, ∀xi ∈D

(21.28)

where w is the weight vector, b is the bias, and ξi are the slack variables, all in feature

space.
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Hinge Loss

For hinge loss, the dual Lagrangian [Eq. (21.21)] in feature space is given as

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjφ(xi)
Tφ(xj )

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj )

(21.29)

Subject to the constraints that 0 ≤ αi ≤ C, and
∑n

i=1 αiyi = 0. Notice that the dual

Lagrangian depends only on the dot product between two vectors in feature space

φ(xi)
Tφ(xj ) = K(xi,xj ), and thus we can solve the optimization problem using the

kernel matrix K= {K(xi,xj )}i,j=1,...,n. Section 21.5 describes a stochastic gradient-based

approach for solving the dual objective function.

Quadratic Loss

For quadratic loss, the dual Lagrangian [Eq. (21.27)] corresponds to a change of kernel.

Define a new kernel function Kq , as follows:

Kq(xi,xj )= xT
i xj +

1

2C
δij =K(xi,xj )+

1

2C
δij

which affects only the diagonal entries of the kernel matrix K, as δij = 1 iff i = j , and

zero otherwise. Thus, the dual Lagrangian is given as

max
α

Ldual =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjKq(xi,xj ) (21.30)

subject to the constraints that αi ≥ 0, and
∑n

i=1 αiyi = 0. The above optimization can be

solved using the same approach as for hinge loss, with a simple change of kernel.

Weight Vector and Bias

We can solve for w in feature space as follows:

w=
∑

αi>0

αiyiφ(xi) (21.31)

Because w uses φ(xi) directly, in general, we may not be able or willing to compute w

explicitly. However, as we shall see next, it is not necessary to explicitly compute w for

classifying the points.

Let us now see how to compute the bias via kernel operations. Using Eq. (21.25),

we compute b as the average over the support vectors that are on the margin, that is,

those with 0 < αi < C, and ξi = 0:

b= avgi, 0<αi<C

{
bi

}
= avgi, 0<αi<C

{
yi −wTφ(xi)

}
(21.32)
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Substituting w from Eq. (21.31), we obtain a new expression for bi as

bi = yi −
∑

αj >0

αjyjφ(xj)
Tφ(xi)

= yi −
∑

αj >0

αjyjK(xj ,xi) (21.33)

Notice that bi is a function of the dot product between two vectors in feature space and

therefore it can be computed via the kernel function in the input space.

Kernel SVM Classifier

We can predict the class for a new point z as follows:

ŷ = sign(wTφ(z)+ b)

= sign


∑

αi>0

αiyiφ(xi)
Tφ(z)+ b




= sign


∑

αi>0

αiyiK(xi,z)+ b




Once again we see that ŷ uses only dot products in feature space.

Based on the above derivations, we can see that, to train and test the SVM

classifier, the mapped points φ(xi) are never needed in isolation. Instead, all operations

can be carried out in terms of the kernel function K(xi,xj ) = φ(xi)
Tφ(xj ). Thus, any

nonlinear kernel function can be used to do nonlinear classification in the input space.

Examples of such nonlinear kernels include the polynomial kernel [Eq. (5.9)], and the

Gaussian kernel [Eq. (5.10)], among others.

Example 21.6. Let us consider the example dataset shown in Figure 21.4; it has 29

points in total. Although it is generally too expensive or infeasible (depending on

the choice of the kernel) to compute an explicit representation of the hyperplane in

feature space, and to map it back into input space, we will illustrate the application

of SVMs in both input and feature space to aid understanding.

We use an inhomogeneous polynomial kernel [Eq. (5.9)] of degree q = 2, that is,

we use the kernel:

K(xi,xj )= φ(xi)
Tφ(xj )= (1+ xT

i xj )
2

With C=4, solving the Ldual quadratic program [Eq. (21.30)] in input space

yields the following six support vectors, shown as the shaded (gray) points in

Figure 21.4.
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xi (xi1,xi2)
T φ(xi) yi αi

x1 (1,2)T (1,1.41,2.83,1,4,2.83)T +1 0.6198

x2 (4,1)T (1,5.66,1.41,16,1,5.66)T +1 2.069

x3 (6,4.5)T (1,8.49,6.36,36,20.25,38.18)T +1 3.803

x4 (7,2)T (1,9.90,2.83,49,4,19.80)T +1 0.3182

x5 (4,4)T (1,5.66,5.66,16,16,15.91)T −1 2.9598

x6 (6,3)T (1,8.49,4.24,36,9,25.46)T −1 3.8502

For the inhomogeneous quadratic kernel, the mapping φ maps an input point xi

into feature space as follows:

φ
(
x= (x1,x2)

T
)
=
(
1,
√

2x1,
√

2x2,x
2
1 ,x

2
2 ,
√

2x1x2

)T

The table above shows all the mapped points, which reside in feature space. For

example, x1 = (1,2)T is transformed into

φ(xi)=
(
1,
√

2 · 1,
√

2 · 2,12,22,
√

2 · 1 · 2
)T

= (1,1.41,2.83,1,2,2.83)T

We compute the weight vector for the hyperplane using Eq. (21.31):

w=
∑

i,αi>0

αiyiφ(xi)= (0,−1.413,−3.298,0.256,0.82,−0.018)T

and the bias is computed using Eq. (21.32), which yields

b=−8.841

For the quadratic polynomial kernel, the decision boundary in input space

corresponds to an ellipse. For our example, the center of the ellipse is given as

(4.046,2.907), and the semimajor axis length is 2.78 and the semiminor axis length

is 1.55. The resulting decision boundary is the ellipse shown in Figure 21.4. We

emphasize that in this example we explicitly transformed all the points into the

feature space just for illustration purposes. The kernel trick allows us to achieve the

same goal using only the kernel function.

21.5 SVM TRAINING ALGORITHMS

We now turn our attention to algorithms for solving the SVM optimization problems.

We will consider simple optimization approaches for solving the dual as well as the

primal formulations. It is important to note that these methods are not the most

efficient. However, since they are relatively simple, they can serve as a starting point

for more sophisticated methods.

For the SVM algorithms in this section, instead of dealing explicitly with the bias

b, we map each point xi ∈Rd to the point x′i ∈Rd+1 as follows:

x′i = (xi1, . . . ,xid,1)T (21.34)
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Furthermore, we also map the weight vector to R
d+1, with wd+1 = b, so that

w= (w1, . . . ,wd ,b)T (21.35)

The equation of the hyperplane [Eq. (21.1)] is then given as follows:

h(x′) : wTx′ = 0

h(x′) :
(
w1 · · · wd b

)




xi1

...

xid

1


= 0

h(x′) : w1xi1+ ·· ·+wdxid + b= 0

In the discussion below we assume that the bias term has been included in w, and

that each point has been mapped to R
d+1 as per Eqs. (21.34) and (21.35). Thus, the last

component of w yields the bias b. Another consequence of mapping the points to R
d+1

is that the constraint
∑n

i=1 αiyi = 0 does not apply in the SVM dual formulations given

in Eqs. (21.21), (21.27), (21.29), and (21.30), as there is no explicit bias term b for the

linear constraints in the SVM objective given in Eq. (21.17). The new set of constraints

is given as

yiw
Tx≥ 1− ξi

21.5.1 Dual Solution: Stochastic Gradient Ascent

We consider only the hinge loss case because quadratic loss can be handled by a change

of kernel, as shown in Eq. (21.30). The dual optimization objective for hinge loss

[Eq. (21.29)] is given as

max
α

J(α)=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi,xj )

subject to the constraints 0≤ αi ≤C for all i = 1, . . . ,n. Here α = (α1,α2, · · · ,αn)
T ∈Rn.

Let us consider the terms in J(α) that involve the Lagrange multiplier αk :

J(αk)= αk−
1

2
α2

ky
2
kK(xk,xk)−αkyk

n∑

i=1
i 6=k

αiyiK(xi,xk)

The gradient or the rate of change in the objective function at α is given as the

partial derivative of J(α) with respect to α, that is, with respect to each αk :

∇J(α)=
(

∂J(α)

∂α1

,
∂J(α)

∂α2

, . . . ,
∂J(α)

∂αn

)T

where the kth component of the gradient is obtained by differentiating J(αk) with

respect to αk:

∂J(α)

∂αk

= ∂J(αk)

∂αk

= 1− yk

(
n∑

i=1

αiyiK(xi,xk)

)
(21.36)
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Because we want to maximize the objective function J(α), we should move in the

direction of the gradient∇J(α). Starting from an initial α, the gradient ascent approach

successively updates it as follows:

αt+1 = αt + ηt∇J(αt)

where αt is the estimate at the tth step, and ηt is the step size.

Instead of updating the entire α vector in each step, in the stochastic gradient

ascent approach, we update each component αk independently and immediately use

the new value to update other components. This can result in faster convergence. The

update rule for the k-th component is given as

αk = αk+ ηk

∂J(α)

∂αk

= αk + ηk

(
1− yk

n∑

i=1

αiyiK(xi,xk)

)
(21.37)

where ηk is the step size. We also have to ensure that the constraints αk ∈ [0,C] are

satisfied. Thus, in the update step above, if αk < 0 we reset it to αk = 0, and if αk >

C we reset it to αk = C. The pseudo-code for stochastic gradient ascent is given in

Algorithm 21.1.

ALGORITHM 21.1. Dual SVM Algorithm: Stochastic Gradient Ascent

SVM-DUAL (D,K,C,ǫ):

foreach xi ∈D do xi←
(

xi

1

)
// map to R

d+1

1

if loss = hinge then2

K←{K(xi,xj )}i,j=1,...,n // kernel matrix, hinge loss3

else if loss = quadratic then4

K←{K(xi,xj )+ 1
2C

δij }i,j=1,...,n // kernel matrix, quadratic loss5

for k = 1, . . . ,n do ηk← 1
K(xk ,xk)

// set step size6

t← 07

α0← (0, . . . ,0)T
8

repeat9

α← αt10

for k = 1 to n do11

// update kth component of α

αk← αk+ ηk

(
1− yk

n∑

i=1

αiyiK(xi,xk)
)

12

if αk < 0 then αk← 013

if αk > C then αk←C14

αt+1 = α15

t← t + 116

until ‖αt −αt−1‖ ≤ ǫ17



21.5 SVM Training Algorithms 537

To determine the step size ηk , ideally, we would like to choose it so that the

gradient at αk goes to zero, which happens when

ηk =
1

K(xk,xk)
(21.38)

To see why, note that when only αk is updated, the other αi do not change. Thus,

the new α has a change only in αk , and from Eq. (21.36) we get

∂J(α)

∂αk

=
(

1− yk

∑

i 6=k

αiyiK(xi,xk)

)
− ykαkykK(xk,xk)

Plugging in the value of αk from Eq. (21.37), we have

∂J(α)

∂αk

=
(

1− yk

∑

i 6=k

αiyiK(xi,xk)

)
−
(
αk + ηk

(
1− yk

n∑

i=1

αiyiK(xi,xk)
))

K(xk,xk)

=
(

1− yk

n∑

i=1

αiyiK(xi,xk)

)
− ηkK(xk,xk)

(
1− yk

n∑

i=1

αiyiK(xi,xk)

)

=
(
1− ηkK(xk,xk)

)(
1− yk

n∑

i=1

αiyiK(xi,xk)

)

Substituting ηk from Eq. (21.38), we have

∂J(α)

∂ak

=
(

1− 1

K(xk,xk)
K(xk,xk)

)(
1− yk

n∑

i=1

αiyiK(xi,xk)

)
= 0

In Algorithm 21.1, for better convergence, we thus choose ηk according to Eq. (21.38).

The method successively updates α and stops when the change falls below a given

threshold ǫ. Since the above description assumes a general kernel function between any

two points, we can recover the linear, nonseparable case by simply setting K(xi,xj ) =
xT

i xj . The computational complexity of the method is O(n2) per iteration.

Note that once we obtain the final α, we classify a new point z ∈Rd+1 as follows:

ŷ = sign
(
h(φ(z))

)
= sign

(
wTφ(z)

)
= sign


∑

αi>0

αiyiK(xi,z)




Example 21.7 (Dual SVM: Linear Kernel). Figure 21.5 shows the n = 150 points

from the Iris dataset, using sepal length and sepal width as the two attributes.

The goal is to discriminate between Iris-setosa (shown as circles) and other types

of Iris flowers (shown as triangles). Algorithm 21.1 was used to train the SVM

classifier with a linear kernel K(xi,xj )= xT
i xj and convergence threshold ǫ = 0.0001,

with hinge loss. Two different values of C were used; hyperplane h10 is obtained by

using C= 10, whereas h1000 uses C= 1000; the hyperplanes are given as follows:

h10(x) : 2.74x1− 3.74x2− 3.09= 0

h1000(x) : 8.56x1− 7.14x2− 23.12= 0
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Figure 21.5. SVM dual algorithm with linear kernel.

The hyperplane h10 has a larger margin, but it has a larger slack; it misclassifies one

of the circles. On the other hand, the hyperplane h1000 has a smaller margin, but it

minimizes the slack; it is a separating hyperplane. This example illustrates the fact

that the higher the value of C the more the emphasis on minimizing the slack.

Example 21.8 (Dual SVM: Quadratic Kernel). Figure 21.6 shows the n= 150 points

from the Iris dataset projected on the first two principal components. The task is

to separate Iris-versicolor (in circles) from the other two types of Irises (in

triangles). The figure plots the decision boundaries obtained when using the linear

kernel K(xi,xj ) = xT
i xj , and the homogeneous quadratic kernel K(xi,xj ) = (xT

i xj )
2,

where xi ∈ Rd+1, as per Eq. (21.34). The optimal hyperplane in both cases was found

via the gradient ascent approach in Algorithm 21.1, with C= 10, ǫ = 0.0001 and using

hinge loss.

The optimal hyperplane hl (shown in gray) for the linear kernel is given as

hl(x) : 0.16x1+ 1.9x2+ 0.8= 0

As expected, hl is unable to separate the classes. On the other hand, the optimal

hyperplane hq (shown as clipped black ellipse) for the quadratic kernel is given as

hq(x) : wTφ(x)= 1.86x2
1 + 1.87x1x2+ 0.14x1+ 0.85x2

2 − 1.22x2− 3.25= 0

where x = (x1,x2)
T, w =

(
1.86,1.32,0.099,0.85,−0.87,−3.25

)T
and φ(x) =(

x2
1 ,
√

2x1x2,
√

2x1,x
2
2 ,
√

2x2,1
)T

.
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Figure 21.6. SVM dual algorithm with quadratic kernel.

The hyperplane hq is able to separate the two classes quite well. Here we explicitly

reconstructed w for illustration purposes; note that the last element of w gives the

bias term b=−3.25.

21.5.2 Primal Solution: Newton Optimization

The dual approach is the one most commonly used to train SVMs, but it is also possible

to train using the primal formulation.

Consider the primal optimization function for the linear, but nonseparable case

[Eq. (21.17)]. With w,xi ∈Rd+1 as discussed earlier, we have to minimize the objective

function:

min
w

J(w)= 1

2
‖w‖2+C

n∑

i=1

(ξi)
k (21.39)

subject to the linear constraints:

yi (wTxi)≥ 1− ξi and ξi ≥ 0 for all i = 1, . . . ,n

Rearranging the above, we obtain an expression for ξi

ξi ≥ 1− yi (wTxi) and ξi ≥ 0, which implies that

ξi =max
{
0,1− yi (wTxi)

}
(21.40)
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Plugging Eq. (21.40) into the objective function [Eq. (21.39)], we obtain

J(w)= 1

2
‖w‖2+C

n∑

i=1

max
{
0,1− yi (wTxi)

}k

= 1

2
‖w‖2+C

∑

yi(w
Txi )<1

(
1− yi(w

Txi)
)k

(21.41)

The last step follows from Eq. (21.40) because ξi > 0 if and only if 1− yi(w
Txi) > 0,

that is, yi(w
Txi) < 1. Unfortunately, the hinge loss formulation, with k = 1, is not

differentiable. One could use a differentiable approximation to the hinge loss, but here

we describe the quadratic loss formulation.

Quadratic Loss

For quadratic loss, we have k = 2, and the primal objective [Eq. (21.41)] can be

written as

J(w)= 1

2
‖w‖2+C

∑

yi (w
Txi )<1

(
1− yi(w

Txi)
)2

The gradient or the rate of change of the objective function at w is given as the partial

derivative of J(w) with respect to w:

∇w =
∂J(w)

∂w
=w− 2C

(∑

yi(w
Txi )<1

yixi

(
1− yi(w

Txi)
))

=w− 2C
(∑

yi(w
Txi )<1

yixi

)
+ 2C

(∑

yi(w
Txi )<1

xix
T
i

)
w

=w− 2Cv+ 2CSw

where the vector v and the matrix S are given as

v=
∑

yi (w
Txi )<1

yixi S=
∑

yi (w
Txi )<1

xix
T
i

Note that the matrix S is the scatter matrix, and the vector v is m times the mean of the,

say m, signed points yixi that satisfy the condition yih(xi) < 1.

The Hessian matrix is defined as the matrix of second-order partial derivatives of

J(w) with respect to w, which is given as

Hw =
∂∇w

∂w
= I+ 2CS

Because we want to minimize the objective function J(w), we should move in

the direction opposite to the gradient. The Newton optimization update rule for w is

given as

wt+1 =wt − ηtH
−1
wt
∇wt (21.42)

where ηt > 0 is a scalar value denoting the step size at iteration t . Normally one needs

to use a line search method to find the optimal step size ηt , but the default value of

ηt = 1 usually works for quadratic loss.
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ALGORITHM 21.2. Primal SVM Algorithm: Newton Optimization,

Quadratic Loss

SVM-PRIMAL (D,C,ǫ):

foreach xi ∈D do1

xi←
(

xi

1

)
// map to R

d+1

2

t← 03

w0← (0, . . . ,0)T // initialize wt ∈Rd+1
4

repeat5

v←
∑

yi (w
T
t xi )<1

yixi

6

S←
∑

yi (w
T
t xi )<1

xix
T
i

7

∇ ← (I+ 2CS)wt − 2Cv // gradient8

H← I+ 2CS // Hessian9

wt+1←wt − ηtH
−1∇ // Newton update rule [Eq. (21.42)]10

t← t + 111

until ‖wt −wt−1‖ ≤ ǫ12

The Newton optimization algorithm for training linear, nonseparable SVMs in the

primal is given in Algorithm 21.2. The step size ηt is set to 1 by default. After computing

the gradient and Hessian at wt (lines 6–9), the Newton update rule is used to obtain the

new weight vector wt+1 (line 10). The iterations continue until there is very little change

in the weight vector. Computing S requires O(nd2) steps; computing the gradient∇, the

Hessian matrix H and updating the weight vector wt+1 takes time O(d2); and inverting

the Hessian takes O(d3) operations, for a total computational complexity of O(nd2 +
d3) per iteration in the worst case.

Example 21.9 (Primal SVM). Figure 21.7 plots the hyperplanes obtained using the

dual and primal approaches for the 2-dimensional Iris dataset comprising the sepal

length versus sepal width attributes. We used C = 1000 and ǫ = 0.0001 with the

quadratic loss function. The dual solution hd (gray line) and the primal solution hp

(thick black line) are essentially identical; they are as follows:

hd(x) : 7.47x1− 6.34x2− 19.89= 0

hp(x) : 7.47x1− 6.34x2− 19.91= 0

Primal Kernel SVMs

In the preceding discussion we considered the linear, nonseparable case for primal

SVM learning. We now generalize the primal approach to learn kernel-based SVMs,

again for quadratic loss.
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Figure 21.7. SVM primal algorithm with linear kernel.

Let φ denote a mapping from the input space to the feature space; each input point

xi is mapped to the feature point φ(xi). Let K(xi,xj ) denote the kernel function, and let

w denote the weight vector in feature space. The hyperplane in feature space is then

given as

h(x) : wTφ(x)= 0

Using Eqs. (21.28) and (21.40), the primal objective function in feature space can

be written as

min
w

J(w)= 1

2
‖w‖2+C

n∑

i=1

L(yi,h(xi)) (21.43)

where L(yi,h(xi))=max{0,1− yih(xi)}k is the loss function.

The gradient at w is given as

∇w =w+C

n∑

i=1

∂L(yi,h(xi))

∂h(xi)
· ∂h(xi)

∂w

where

∂h(xi)

∂w
= ∂wTφ(xi)

∂w
= φ(xi)
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At the optimal solution, the gradient vanishes, that is, ∇w = 0, which yields

w=−C

n∑

i=1

∂L(yi,h(xi))

∂h(xi)
·φ(xi)

=
n∑

i=1

βiφ(xi) (21.44)

where βi is the coefficient of the point φ(xi) in feature space. In other words, the

optimal weight vector in feature space is expressed as a linear combination of the points

φ(xi) in feature space.

Using Eq. (21.44), the distance to the hyperplane in feature space can be

expressed as

yih(xi)= yiw
Tφ(xi)= yi

n∑

j=1

βjK(xj ,xi)= yiK
T
i β (21.45)

where K =
{
K(xi,xj )

}n

i,j=1
is the n× n kernel matrix, Ki is the ith column of K, and

β =
(
β1, . . . ,βn

)T
is the coefficient vector.

Plugging Eqs. (21.44) and (21.45) into Eq. (21.43), with quadratic loss (k= 2), yields

the primal kernel SVM formulation purely in terms of the kernel matrix:

min
β

J(β)= 1

2

n∑

i=1

n∑

j=1

βiβjK(xi,xj )+C

n∑

i=1

max
{
0,1− yiK

T
i β
}2

= 1

2
βTKβ+C

∑

yiK
T
i

β<1

(1− yiK
T
i β)2

The gradient of J(β) with respect to β is given as

∇β =
∂J(β)

∂β
=Kβ− 2C

∑

yiK
T
i

β<1

yiKi(1− yiK
T
i β)

=Kβ+ 2C
∑

yiK
T
i

β<1

(KiK
T
i ) β− 2C

∑

yiK
T
i

β<1

yiKi

= (K+ 2CS)β− 2Cv

where the vector v ∈Rn and the matrix S ∈Rn×n are given as

v=
∑

yiK
T
i

β<1

yiKi S=
∑

yiK
T
i

β<1

KiK
T
i

Furthermore, the Hessian matrix is given as

Hβ =
∂∇β

∂β
=K+ 2CS

We can now minimize J(β) by Newton optimization using the following update

rule:

βt+1 = βt − ηtH
−1
β ∇β
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ALGORITHM 21.3. Primal Kernel SVM Algorithm: Newton Optimization,

Quadratic Loss

SVM-PRIMAL-KERNEL (D,K,C,ǫ):

foreach xi ∈D do1

xi←
(

xi

1

)
// map to R

d+1

2

K←{K(xi,xj )}i,j=1,...,n // compute kernel matrix3

t← 04

β0← (0, . . . ,0)T // initialize βt ∈Rn
5

repeat6

v←
∑

yi (K
T
i
βt )<1

yiKi

7

S←
∑

yi (K
T
i

βt )<1

KiK
T
i

8

∇ ← (K+ 2CS)βt − 2Cv // gradient9

H←K+ 2CS // Hessian10

βt+1← βt − ηtH
−1∇ // Newton update rule11

t← t + 112

until ‖βt −βt−1‖ ≤ ǫ13

Note that if Hβ is singular, that is, if it does not have an inverse, then we add a small

ridge to the diagonal to regularize it. That is, we make H invertible as follows:

Hβ =Hβ +λI

where λ > 0 is some small positive ridge value.

Once β has been found, it is easy to classify any test point z as follows:

ŷ = sign
(
wTφ(z)

)
= sign

(
n∑

i=1

βiφ(xi)
Tφ(z)

)
= sign

(
n∑

i=1

βiK(xi,z)

)

The Newton optimization algorithm for kernel SVM in the primal is given in

Algorithm 21.3. The step size ηt is set to 1 by default, as in the linear case. In each

iteration, the method first computes the gradient and Hessian (lines 7–10). Next, the

Newton update rule is used to obtain the updated coefficient vector βt+1 (line 11). The

iterations continue until there is very little change in β. The computational complexity

of the method is O(n3) per iteration in the worst case.

Example 21.10 (Primal SVM: Quadratic Kernel). Figure 21.8 plots the hyperplanes

obtained using the dual and primal approaches on the Iris dataset projected onto

the first two principal components. The task is to separate iris versicolor from

the others, the same as in Example 21.8. Because a linear kernel is not suitable for

this task, we employ the quadratic kernel. We further set C= 10 and ǫ = 0.0001, with
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Figure 21.8. SVM quadratic kernel: dual and primal.

the quadratic loss function. The dual solution hd (black contours) and the primal

solution hp (gray contours) are given as follows:

hd(x) : 1.4x2
1 + 1.34x1x2− 0.05x1+ 0.66x2

2 − 0.96x2− 2.66= 0

hp(x) : 0.87x2
1+ 0.64x1x2− 0.5x1+ 0.43x2

2 − 1.04x2− 2.398= 0

Although the solutions are not identical, they are close, especially on the left decision

boundary.

21.6 FURTHER READING

The origins of support vector machines can be found in Vapnik (1982). In particular,

it introduced the generalized portrait approach for constructing an optimal separating

hyperplane. The use of the kernel trick for SVMs was introduced in Boser, Guyon,

and Vapnik (1992), and the soft margin SVM approach for nonseparable data was

proposed in Cortes and Vapnik (1995). For a good introduction to support vector

machines, including implementation techniques, see Cristianini and Shawe-Taylor

(2000) and Schölkopf and Smola (2002). The primal training approach described in

this chapter is from Chapelle (2007).
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21.7 EXERCISES

Q1. Consider the dataset in Figure 21.9, which has points from two classes c1 (triangles)

and c2 (circles). Answer the questions below.

(a) Find the equations for the two hyperplanes h1 and h2.

(b) Show all the support vectors for h1 and h2.

(c) Which of the two hyperplanes is better at separating the two classes based on the

margin computation?

(d) Find the equation of the best separating hyperplane for this dataset, and show

the corresponding support vectors. You can do this witout having to solve

the Lagrangian by considering the convex hull of each class and the possible

hyperplanes at the boundary of the two classes.
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Figure 21.9. Dataset for Q1.
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Table 21.2. Dataset for Q2

i xi1 xi2 yi αi

x1 4 2.9 1 0.414

x2 4 4 1 0

x3 1 2.5 −1 0

x4 2.5 1 −1 0.018

x5 4.9 4.5 1 0

x6 1.9 1.9 −1 0

x7 3.5 4 1 0.018

x8 0.5 1.5 −1 0

x9 2 2.1 −1 0.414

x10 4.5 2.5 1 0

Q2. Given the 10 points in Table 21.2, along with their classes and their Lagranian

multipliers (αi), answer the following questions:

(a) What is the equation of the SVM hyperplane h(x)?

(b) What is the distance of x6 from the hyperplane? Is it within the margin of the

classifier?

(c) Classify the point z= (3,3)T using h(x) from above.



CHAPTER 22 Classification Assessment

We have seen different classifiers in the preceding chapters, such as decision trees, full

and naive Bayes classifiers, nearest neighbors classifier, support vector machines, and

so on. In general, we may think of the classifier as a model or function M that predicts

the class label ŷ for a given input example x:

ŷ =M(x)

where x= (x1,x2, . . . ,xd)
T ∈Rd is a point in d-dimensional space and ŷ ∈ {c1,c2, . . . ,ck}

is its predicted class.

To build the classification model M we need a training set of points along with

their known classes. Different classifiers are obtained depending on the assumptions

used to build the model M. For instance, support vector machines use the maximum

margin hyperplane to construct M. On the other hand, the Bayes classifier directly

computes the posterior probability P(cj |x) for each class cj , and predicts the class

of x as the one with the maximum posterior probability, ŷ = argmaxcj

{
P(cj |x)

}
.

Once the model M has been trained, we assess its performance over a separate

testing set of points for which we know the true classes. Finally, the model can

be deployed to predict the class for future points whose class we typically do not

know.

In this chapter we look at methods to assess a classifier, and to compare multiple

classifiers. We start by defining metrics of classifier accuracy. We then discuss how

to determine bounds on the expected error. We finally discuss how to assess the

performance of classifiers and compare them.

22.1 CLASSIFICATION PERFORMANCE MEASURES

Let D be the testing set comprising n points in a d dimensional space, let {c1,c2, . . . ,ck}
denote the set of k class labels, and let M be a classifier. For xi ∈ D, let yi denote its

true class, and let ŷi =M(xi) denote its predicted class.

548
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Error Rate

The error rate is the fraction of incorrect predictions for the classifier over the testing

set, defined as

Error Rate= 1

n

n∑

i=1

I(yi 6= ŷi) (22.1)

where I is an indicator function that has the value 1 when its argument is true, and 0

otherwise. Error rate is an estimate of the probability of misclassification. The lower

the error rate the better the classifier.

Accuracy

The accuracy of a classifier is the fraction of correct predictions over the testing set:

Accuracy= 1

n

n∑

i=1

I(yi = ŷi)= 1−Error Rate (22.2)

Accuracy gives an estimate of the probability of a correct prediction; thus, the higher

the accuracy, the better the classifier.

Example 22.1. Figure 22.1 shows the 2-dimensional Iris dataset, with the two

attributes being sepal length and sepal width. It has 150 points, and has three

equal-sized classes: Iris-setosa (c1; circles), Iris-versicolor (c2; squares) and

Iris-virginica (c3; triangles). The dataset is partitioned into training and testing

sets, in the ratio 80:20. Thus, the training set has 120 points (shown in light gray), and
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Figure 22.1. Iris dataset: three classes.
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the testing set D has n = 30 points (shown in black). One can see that whereas c1 is

well separated from the other classes, c2 and c3 are not easy to separate. In fact, some

points are labeled as both c2 and c3 (e.g., the point (6,2.2)T appears twice, labeled as

c2 and c3).

We classify the test points using the full Bayes classifier (see Chapter 18). Each

class is modeled using a single normal distribution, whose mean (in white) and

density contours (corresponding to one and two standard deviations) are also plotted

in Figure 22.1. The classifier misclassifies 8 out of the 30 test cases. Thus, we have

Error Rate= 8/30= 0.267

Accuracy= 22/30= 0.733

22.1.1 Contingency Table–based Measures

The error rate (and, thus also the accuracy) is a global measure in that it does not

explicitly consider the classes that contribute to the error. More informative measures

can be obtained by tabulating the class specific agreement and disagreement between

the true and predicted labels over the testing set. Let D = {D1,D2, . . . ,Dk} denote a

partitioning of the testing points based on their true class labels, where

Dj = {xi ∈D |yi = cj }

Let ni = |Di| denote the size of true class ci .

Let R = {R1,R2, . . . ,Rk} denote a partitioning of the testing points based on the

predicted labels, that is,

Rj = {xi ∈D |ŷi = cj }
Let mj = |Rj | denote the size of the predicted class cj .

R and D induce a k×k contingency table N, also called a confusion matrix, defined

as follows:

N(i,j)= nij =
∣∣Ri ∩Dj

∣∣=
∣∣∣
{
xa ∈D |ŷa = ci and ya = cj

}∣∣∣

where 1 ≤ i,j ≤ k. The count nij denotes the number of points with predicted class ci

whose true label is cj . Thus, nii (for 1≤ i ≤ k) denotes the number of cases where the

classifier agrees on the true label ci . The remaining counts nij , with i 6= j , are cases

where the classifier and true labels disagree.

Accuracy/Precision

The class-specific accuracy or precision of the classifier M for class ci is given as the

fraction of correct predictions over all points predicted to be in class ci

acci = preci =
nii

mi

where mi is the number of examples predicted as ci by classifier M. The higher the

accuracy on class ci the better the classifier.
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The overall precision or accuracy of the classifier is the weighted average of the

class-specific accuracy:

Accuracy=Precision=
k∑

i=1

(mi

n

)
acci =

1

n

k∑

i=1

nii

This is identical to the expression in Eq. (22.2).

Coverage/Recall

The class-specific coverage or recall of M for class ci is the fraction of correct

predictions over all points in class ci :

coveragei = recalli =
nii

ni

where ni is the number of points in class ci . The higher the coverage the better the

classifier.

F-measure

Often there is a trade-off between the precision and recall of a classifier. For example,

it is easy to make recalli = 1, by predicting all testing points to be in class ci . However,

in this case preci will be low. On the other hand, we can make preci very high by

predicting only a few points as ci , for instance, for those predictions where M has

the most confidence, but in this case recalli will be low. Ideally, we would like both

precision and recall to be high.

The class-specific F-measure tries to balance the precision and recall values, by

computing their harmonic mean for class ci :

Fi =
2

1
preci
+ 1

recalli

= 2 ·preci · recalli

preci + recalli
= 2 nii

ni +mi

The higher the Fi value the better the classifier.

The overall F-measure for the classifier M is the mean of the class-specific values:

F = 1

k

r∑

i=1

Fi

For a perfect classifier, the maximum value of the F-measure is 1.

Example 22.2. Consider the 2-dimensional Iris dataset shown in Figure 22.1. In

Example 22.1 we saw that the error rate was 26.7%. However, the error rate measure

does not give much information about the classes or instances that are more difficult

to classify. From the class-specific normal distribution in the figure, it is clear that

the Bayes classifier should perform well for c1, but it is likely to have problems

discriminating some test cases that lie close to the decision boundary between c2

and c3. This information is better captured by the confusion matrix obtained on the

testing set, as shown in Table 22.1. We can observe that all 10 points in c1 are classified

correctly. However, only 7 out of the 10 for c2 and 5 out of the 10 for c3 are classified

correctly.
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Table 22.1. Contingency table for Iris dataset: testing set

True

Predicted Iris-setosa (c1) Iris-versicolor (c2) Iris-virginica(c3)

Iris-setosa (c1) 10 0 0 m1 = 10

Iris-versicolor (c2) 0 7 5 m2 = 12

Iris-virginica (c3) 0 3 5 m3 = 8

n1 = 10 n2 = 10 n3 = 10 n= 30

From the confusion matrix we can compute the class-specific precision (or

accuracy) values:

prec1 =
n11

m1

= 10/10= 1.0

prec2 =
n22

m2

= 7/12= 0.583

prec3 =
n33

m3

= 5/8= 0.625

The overall accuracy tallies with that reported in Example 22.1:

Accuracy= (n11+n22+n33)

n
= (10+ 7+ 5)

30
= 22/30= 0.733

The class-specific recall (or coverage) values are given as

recall1 =
n11

n1

= 10/10= 1.0

recall2 =
n22

n2

= 7/10= 0.7

recall3 =
n33

n3

= 5/10= 0.5

From these we can compute the class-specific F-measure values:

F1 =
2 ·n11

(n1+m1)
= 20/20= 1.0

F2 =
2 ·n22

(n2+m2)
= 14/22= 0.636

F3 =
2 ·n33

(n3+m3)
= 10/18= 0.556

Thus, the overall F-measure for the classifier is

F = 1

3
(1.0+ 0.636+ 0.556)= 2.192

3
= 0.731
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Table 22.2. Confusion matrix for two classes

True Class

Predicted Class Positive (c1) Negative (c2)

Positive (c1) True Positive (TP) False Positive (FP)

Negative (c2) False Negative (FN) True Negative (TN)

22.1.2 Binary Classification: Positive and Negative Class

When there are only k = 2 classes, we call class c1 the positive class and c2 the negative

class. The entries of the resulting 2×2 confusion matrix, shown in Table 22.2, are given

special names, as follows:

• True Positives (TP): The number of points that the classifier correctly predicts as

positive:

TP= n11 =
∣∣{xi |ŷi = yi = c1}

∣∣

• False Positives (FP): The number of points the classifier predicts to be positive, which

in fact belong to the negative class:

FP= n12 =
∣∣{xi |ŷi = c1 and yi = c2}

∣∣

• False Negatives (FN): The number of points the classifier predicts to be in the negative

class, which in fact belong to the positive class:

FN= n21 =
∣∣{xi |ŷi = c2 and yi = c1}

∣∣

• True Negatives (TN): The number of points that the classifier correctly predicts as

negative:

TN= n22 =
∣∣{xi |ŷi = yi = c2}

∣∣

Error Rate

The error rate [Eq. (22.1)] for the binary classification case is given as the fraction of

mistakes (or false predictions):

Error Rate= FP+FN

n

Accuracy

The accuracy [Eq. (22.2)] is the fraction of correct predictions:

Accuracy= TP+TN

n

The above are global measures of classifier performance. We can obtain class-specific

measures as follows.
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Class-specific Precision

The precision for the positive and negative class is given as

precP =
TP

TP+FP
= TP

m1

precN =
TN

TN+FN
= TN

m2

where mi = |Ri| is the number of points predicted by M as having class ci .

Sensitivity: True Positive Rate

The true positive rate, also called sensitivity, is the fraction of correct predictions with

respect to all points in the positive class, that is, it is simply the recall for the positive

class

TPR= recallP =
TP

TP+FN
= TP

n1

where n1 is the size of the positive class.

Specificity: True Negative Rate

The true negative rate, also called specificity, is simply the recall for the negative class:

TNR= specificity= recallN =
TN

FP+TN
= TN

n2

where n2 is the size of the negative class.

False Negative Rate

The false negative rate is defined as

FNR= FN

TP+FN
= FN

n1

= 1− sensitivity

False Positive Rate

The false positive rate is defined as

FPR= FP

FP+TN
= FP

n2

= 1− specificity

Example 22.3. Consider the Iris dataset projected onto its first two principal

components, as shown in Figure 22.2. The task is to separate Iris-versicolor (class

c1; in circles) from the other two Irises (class c2; in triangles). The points from class

c1 lie in-between the points from class c2, making this is a hard problem for (linear)

classification. The dataset has been randomly split into 80% training (in gray) and

20% testing points (in black). Thus, the training set has 120 points and the testing set

has n= 30 points.



22.1 Classification Performance Measures 555

−1.5

−1.0

−0.5

0

0.5

1.0

−4 −3 −2 −1 0 1 2 3

u1

u2

bC

bC

bC

bC

bC
bC

bC
bC

bC

bC
bC

bCbC bC

bC

bC
bCbC

bC bCbC

bC

bC
bC

bC

bCbC

bC

bC

bC

bC

bC

bC

bCbC

bC

bC

bC

bC

bCbC

bC

bC bC

bC
bC

bC

bCbC

bC

uT
uT

uT

uT

uT

uT

uT
uT

uT uT

uT uT uT

uT

uT

uT

uT

uT

uT

uT

uT
uT

uT

uT

uT

uT

uT

uT
uT

uT

uT

uT

uT

uT
uT

uT

uT

uT

uT

uT

uT

uT

uT
uT

uT

uT

uT
uT

uT

uT

uT

uT
uT

uT

uT uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT
uT

uT

uT
uT

uT

uT

uT

uTuT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

bC

bCbC

bC

bC

bC

bC

bC

bC
bC

uT

uT

uT

uT
uT

uTuT

uT

uT

uT

uT

uT
uT uT

uT

uT

uT

uT

uT

uT

bC

uT

Figure 22.2. Iris principal component dataset: training and testing sets.

Applying the naive Bayes classifier (with one normal per class) on the training set

yields the following estimates for the mean, covariance matrix and prior probability

for each class:

P̂ (c1)= 40/120= 0.33 P̂ (c2)= 80/120= 0.67

µ̂1 =
(
−0.641 −0.204

)T
µ̂2 =

(
0.27 0.14

)T

6̂1 =
(

0.29 0

0 0.18

)
6̂2 =

(
6.14 0

0 0.206

)

The mean (in white) and the contour plot of the normal distribution for each class are

also shown in the figure; the contours are shown for one and two standard deviations

along each axis.

For each of the 30 testing points, we classify them using the above parameter

estimates (see Chapter 18). The naive Bayes classifier misclassified 10 out of the 30

test instances, resulting in an error rate and accuracy of

Error Rate= 10/30= 0.33

Accuracy= 20/30= 0.67

The confusion matrix for this binary classification problem is shown in

Table 22.3. From this table, we can compute the various performance measures:

precP =
TP

TP+FP
= 7

14
= 0.5
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Table 22.3. Iris PC dataset: contingency table for binary classification

True

Predicted Positive (c1) Negative (c2)

Positive (c1) TP= 7 FP= 7 m1 = 14

Negative (c2) FN= 3 TN= 13 m2 = 16

n1 = 10 n2 = 20 n= 30

precN =
TN

TN+FN
= 13

16
= 0.8125

recallP = sensitivity=TPR= TP

TP+FN
= 7

10
= 0.7

recallN = specificity= TNR= TN

TN+FP
= 13

20
= 0.65

FNR= 1− sensitivity= 1− 0.7= 0.3

FPR= 1− specificity= 1− 0.65= 0.35

We can observe that the precision for the positive class is rather low. The true positive

rate is also low, and the false positive rate is relatively high. Thus, the naive Bayes

classifier is not particularly effective on this testing dataset.

22.1.3 ROC Analysis

Receiver Operating Characteristic (ROC) analysis is a popular strategy for assessing

the performance of classifiers when there are two classes. ROC analysis requires that

a classifier output a score value for the positive class for each point in the testing set.

These scores can then be used to order points in decreasing order. For instance, we

can use the posterior probability P(c1|xi) as the score, for example, for the Bayes

classifiers. For SVM classifiers, we can use the signed distance from the hyperplane

as the score because large positive distances are high confidence predictions for c1, and

large negative distances are very low confidence predictions for c1 (they are, in fact,

high confidence predictions for the negative class c2).

Typically, a binary classifier chooses some positive score threshold ρ, and classifies

all points with score above ρ as positive, with the remaining points classified as

negative. However, such a threshold is likely to be somewhat arbitrary. Instead,

ROC analysis plots the performance of the classifier over all possible values of the

threshold parameter ρ. In particular, for each value of ρ, it plots the false positive rate

(1-specificity) on the x-axis versus the true positive rate (sensitivity) on the y-axis. The

resulting plot is called the ROC curve or ROC plot for the classifier.

Let S(xi) denote the real-valued score for the positive class output by a classifier M

for the point xi . Let the maximum and minimum score thresholds observed on testing

dataset D be as follows:

ρmin =min
i
{S(xi)} ρmax =max

i
{S(xi)}
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Table 22.4. Different cases for 2×2 confusion matrix

True

Predicted Pos Neg

Pos 0 0

Neg FN TN

(a) Initial: all negative

True

Predicted Pos Neg

Pos TP FP

Neg 0 0

(b) Final: all positive

True

Predicted Pos Neg

Pos TP 0

Neg 0 TN

(c) Ideal classifier

Initially, we classify all points as negative. Both TP and FP are thus initially zero (as

shown in Table 22.4a), resulting in TPR and FPR rates of zero, which correspond to

the point (0,0) at the lower left corner in the ROC plot. Next, for each distinct value

of ρ in the range [ρmin,ρmax], we tabulate the set of positive points:

R1(ρ)= {xi ∈D : S(xi) > ρ}

and we compute the corresponding true and false positive rates, to obtain a new point

in the ROC plot. Finally, in the last step, we classify all points as positive. Both FN

and TN are thus zero (as shown in Table 22.4b), resulting in TPR and FPR values of 1.

This results in the point (1,1) at the top right-hand corner in the ROC plot. An ideal

classifier corresponds to the top left point (0,1), which corresponds to the case FPR= 0

and TPR= 1, that is, the classifier has no false positives, and identifies all true positives

(as a consequence, it also correctly predicts all the points in the negative class). This

case is shown in Table 22.4c. As such, a ROC curve indicates the extent to which the

classifier ranks positive instances higher than the negative instances. An ideal classifier

should score all positive points higher than any negative point. Thus, a classifier with a

curve closer to the ideal case, that is, closer to the upper left corner, is a better classifier.

Area Under ROC Curve

The area under the ROC curve, abbreviated AUC, can be used as a measure of

classifier performance. Because the total area of the plot is 1, the AUC lies in the

interval [0,1] – the higher the better. The AUC value is essentially the probability that

the classifier will rank a random positive test case higher than a random negative test

instance.

ROC/AUC Algorithm

Algorithm 22.1 shows the steps for plotting a ROC curve, and for computing the area

under the curve. It takes as input the testing set D, and the classifier M. The first step is

to predict the score S(xi) for the positive class (c1) for each test point xi ∈D. Next, we

sort the (S(xi),yi) pairs, that is, the score and the true class pairs, in decreasing order of

the scores (line 3). Initially, we set the positive score threshold ρ =∞ (line 7). The for

loop (line 8) examines each pair (S(xi),yi) in sorted order, and for each distinct value

of the score, it sets ρ = S(xi) and plots the point

(FPR,TPR)=
(

FP

n2

,
TP

n1

)
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ALGORITHM 22.1. ROC Curve and Area under the Curve

ROC-CURVE(D, M):

n1←
∣∣{xi ∈D |yi = c1}

∣∣ // size of positive class1

n2←
∣∣{xi ∈D |yi = c2}

∣∣ // size of negative class2

// classify, score, and sort all test points

L← sort the set {(S(xi),yi) : xi ∈D} by decreasing scores3

FP← TP← 04

FPprev← TPprev← 05

AUC← 06

ρ←∞7

foreach (S(xi),yi) ∈L do8

if ρ > S(xi) then9

plot point
(

FP
n2

, TP
n1

)
10

AUC←AUC+TRAPEZOID-AREA

((
FPprev

n2
,

TPprev

n1

)
,
(

FP
n2

, TP
n1

))
11

ρ← S(xi)12

FPprev← FP13

TPprev← TP14

if yi = c1 then TP← TP+ 115

else FP← FP+ 116

plot point
(

FP
n2

, TP
n1

)
17

AUC←AUC+TRAPEZOID-AREA

((
FPprev

n2
,

TPprev

n1

)
,
(

FP
n2

, TP
n1

))
18

TRAPEZOID-AREA((x1,y1),(x2,y2)):

b← |x2− x1| // base of trapezoid19

h← 1
2
(y2+ y1) // average height of trapezoid20

return (b ·h)21

As each test point is examined, the true and false positive values are adjusted based

on the true class yi for the test point xi . If y1 = c1, we increment the true positives,

otherwise, we increment the false positives (lines 15-16). At the end of the for loop we

plot the final point in the ROC curve (line 17).

The AUC value is computed as each new point is added to the ROC plot. The

algorithm maintains the previous values of the false and true positives, FPprev and

TPprev , for the previous score threshold ρ. Given the current FP and TP values, we

compute the area under the curve defined by the four points

(x1,y1)=
(

FPprev

n2

,
TPprev

n1

)
(x2,y2)=

(
FP

n2

,
TP

n1

)

(x1,0)=
(

FPprev

n2

,0

)
(x2,0)=

(
FP

n2

,0

)

These four points define a trapezoid, whenever x2 > x1 and y2 > y1, otherwise,

they define a rectangle (which may be degenerate, with zero area). The function
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Table 22.5. Sorted scores and true classes

S(xi) 0.93 0.82 0.80 0.77 0.74 0.71 0.69 0.67 0.66 0.61

yi c2 c1 c2 c1 c1 c1 c2 c1 c2 c2

S(xi) 0.59 0.55 0.55 0.53 0.47 0.30 0.26 0.11 0.04 2.97e-03

yi c2 c2 c1 c1 c1 c1 c1 c2 c2 c2

S(xi) 1.28e-03 2.55e-07 6.99e-08 3.11e-08 3.109e-08

yi c2 c2 c2 c2 c2

S(xi) 1.53e-08 9.76e-09 2.08e-09 1.95e-09 7.83e-10

yi c2 c2 c2 c2 c2

TRAPEZOID-AREA computes the area under the trapezoid, which is given as b · h,

where b = |x2− x1| is the length of the base of the trapezoid and h = 1
2
(y2+ y1) is the

average height of the trapezoid.

Example 22.4. Consider the binary classification problem from Example 22.3 for

the Iris principal components dataset. The test dataset D has n = 30 points,

with n1 = 10 points in the positive class and n2 = 20 points in the negative

class.

We use the naive Bayes classifier to compute the probability that each test point

belongs to the positive class (c1; iris-versicolor).The score of the classifier for test

point xi is therefore S(xi) = P(c1|xi). The sorted scores (in decreasing order) along

with the true class labels are shown in Table 22.5.

The ROC curve for the test dataset is shown in Figure 22.3. Consider the

positive score threshold ρ = 0.71. If we classify all points with a score above

this value as positive, then we have the following counts for the true and false

positives:

TP= 3 FP= 2

The false positive rate is therefore FP
n2
= 2/20= 0.1, and the true positive rate is TP

n1
=

3/10= 0.3. This corresponds to the point (0.1,0.3) in the ROC curve. Other points on

the ROC curve are obtained in a similar manner as shown in Figure 22.3. The total

area under the curve is 0.775.

Example 22.5 (AUC). To see why we need to account for trapezoids when comput-

ing the AUC, consider the following sorted scores, along with the true class, for some

testing dataset with n= 5, n1 = 3 and n2 = 2.

(0.9,c1),(0.8,c2),(0.8,c1),(0.8,c1),(0.1,c2)
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Figure 22.3. ROC plot for Iris principal components dataset. The ROC curves for the naive Bayes (black)

and random (gray) classifiers are shown.
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Figure 22.4. ROC plot and AUC: trapezoid region.

Algorithm 22.1 yields the following points that are added to the ROC plot, along with

the running AUC:

ρ FP TP (FPR,TPR) AUC

∞ 0 0 (0,0) 0
0.9 0 1 (0,0.333) 0
0.8 1 3 (0.5,1) 0.333
0.1 2 3 (1,1) 0.833
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Figure 22.4 shows the ROC plot, with the shaded region representing the AUC. We

can observe that a trapezoid is obtained whenever there is at least one positive and

one negative point with the same score. The total AUC is 0.833, obtained as the

sum of the trapezoidal region on the left (0.333) and the rectangular region on the

right (0.5).

Random Classifier

It is interesting to note that a random classifier corresponds to a diagonal line in

the ROC plot. To see this think of a classifier that randomly guesses the class of a

point as positive half the time, and negative the other half. We then expect that half

of the true positives and true negatives will be identified correctly, resulting in the

point (TPR,FPR) = (0.5,0.5) for the ROC plot. If, on the other hand, the classifier

guesses the class of a point as positive 90% of the time and as negative 10% of the

time, then we expect 90% of the true positives and 10% of the true negatives to be

labeled correctly, resulting in TPR= 0.9 and FPR= 1−TNR= 1−0.1= 0.9, that is, we

get the point (0.9,0.9) in the ROC plot. In general, any fixed probability of prediction,

say r , for the positive class, yields the point (r,r) in ROC space. The diagonal line

thus represents the performance of a random classifier, over all possible positive class

prediction thresholds r . If follows that if the ROC curve for any classifier is below

the diagonal, it indicates performance worse than random guessing. For such cases,

inverting the class assignment will produce a better classifier. As a consequence of

the diagonal ROC curve, the AUC value for a random classifier is 0.5. Thus, if any

classifier has an AUC value less than 0.5, that also indicates performance worse than

random.

Example 22.6. In addition to the ROC curve for the naive Bayes classifier,

Figure 22.3 also shows the ROC plot for the random classifier (the diagonal line

in gray). We can see that the ROC curve for the naive Bayes classifier is much better

than random. Its AUC value is 0.775, which is much better than the 0.5 AUC for

a random classifier. However, at the very beginning naive Bayes performs worse

than the random classifier because the highest scored point is from the negative

class. As such, the ROC curve should be considered as a discrete approximation

of a smooth curve that would be obtained for a very large (infinite) testing

dataset.

Class Imbalance

It is worth remarking that ROC curves are insensitive to class skew. This is because the

TPR, interpreted as the probability of predicting a positive point as positive, and the

FPR, interpreted as the probability of predicting a negative point as positive, do not

depend on the ratio of the positive to negative class size. This is a desirable property,

since the ROC curve will essentially remain the same whether the classes are balanced

(have relatively the same number of points) or skewed (when one class has many more

points than the other).
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22.2 CLASSIFIER EVALUATION

In this section we discuss how to evaluate a classifier M using some performance

measure θ . Typically, the input dataset D is randomly split into a disjoint training

set and testing set. The training set is used to learn the model M, and the testing

set is used to evaluate the measure θ . However, how confident can we be about

the classification performance? The results may be due to an artifact of the random

split, for example, by random chance the testing set may have particularly easy (or

hard) to classify points, leading to good (or poor) classifier performance. As such,

a fixed, pre-defined partitioning of the dataset is not a good strategy for evaluating

classifiers. Also note that, in general, D is itself a d-dimensional multivariate random

sample drawn from the true (unknown) joint probability density function f (x) that

represents the population of interest. Ideally, we would like to know the expected

value E[θ ] of the performance measure over all possible testing sets drawn from f .

However, because f is unknown, we have to estimate E[θ ] from D. Cross-validation

and resampling are two common approaches to compute the expected value and

variance of a given performance measure; we discuss these methods in the following

sections.

22.2.1 K-fold Cross-Validation

Cross-validation divides the dataset D into K equal-sized parts, called folds, namely

D1, D2, . . ., DK. Each fold Di is, in turn, treated as the testing set, with the remaining

folds comprising the training set D \Di =
⋃

j 6=i Dj . After training the model Mi on

D \Di , we assess its performance on the testing set Di to obtain the i-th estimate θi .

The expected value of the performance measure can then be estimated as

µ̂θ =E[θ ]= 1

K

K∑

i=1

θi (22.3)

and its variance as

σ̂ 2
θ =

1

K

K∑

i=1

(θi − µ̂θ )
2 (22.4)

Algorithm 22.2 shows the pseudo-code for K-fold cross-validation. After randomly

shuffling the dataset D, we partition it into K equal folds (except for possibly the

last one). Next, each fold Di is used as the testing set on which we assess the

performance θi of the classifier Mi trained on D\Di . The estimated mean and variance

of θ can then be reported. Note that the K-fold cross-validation can be repeated

multiple times; the initial random shuffling ensures that the folds are different each

time.
Usually K is chosen to be 5 or 10. The special case, when K = n, is called

leave-one-out cross-validation, where the testing set comprises a single point and the

remaining data is used for training purposes.
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ALGORITHM 22.2. K-fold Cross-Validation

CROSS-VALIDATION(K, D):

D← randomly shuffle D1

{D1,D2, . . . ,DK}← partition D in K equal parts2

foreach i ∈ [1,K] do3

Mi← train classifier on D \Di4

θi← assess Mi on Di5

µ̂θ = 1
K

∑K
i=1 θi6

σ̂ 2
θ = 1

K

∑K
i=1(θi − µ̂θ )

2
7

return µ̂θ , σ̂
2
θ8

Example 22.7. Consider the 2-dimensional Iris dataset from Example 22.1 with k= 3

classes. We assess the error rate of the full Bayes classifier via 5-fold cross-validation,

obtaining the following error rates when testing on each fold:

θ1 = 0.267 θ2 = 0.133 θ3 = 0.233 θ4 = 0.367 θ5 = 0.167

Using Eqs. (22.3) and (22.4), the mean and variance for the error rate are as follows:

µ̂θ =
1.167

5
= 0.233 σ̂ 2

θ = 0.00833

We can repeat the whole cross-validation approach multiple times, with a different

permutation of the input points, and then we can compute the mean of the average

error rate, and mean of the variance. Performing ten 5-fold cross-validation runs for

the Iris dataset results in the mean of the expected error rate as 0.232, and the mean of

the variance as 0.00521, with the variance in both these estimates being less than 10−3.

22.2.2 Bootstrap Resampling

Another approach to estimate the expected performance of a classifier is to use the

bootstrap resampling method. Instead of partitioning the input dataset D into disjoint

folds, the bootstrap method draws K random samples of size n with replacement from

D. Each sample Di is thus the same size as D, and has several repeated points. Consider

the probability that a point xj ∈D is not selected for the ith bootstrap sample Di . Due

to sampling with replacement, the probability that a given point is selected is given as

p = 1
n
, and thus the probability that it is not selected is

q = 1−p=
(

1− 1

n

)

Because Di has n points, the probability that xj is not selected even after n tries is

given as

P(xj 6∈Di)= qn =
(

1− 1

n

)n

≃ e−1 = 0.368
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ALGORITHM 22.3. Bootstrap Resampling Method

BOOTSTRAP-RESAMPLING(K, D):

for i ∈ [1,K] do1

Di← sample of size n with replacement from D2

Mi← train classifier on Di3

θi← assess Mi on D4

µ̂θ = 1
K

∑K
i=1 θi5

σ̂ 2
θ = 1

K

∑K
i=1(θi − µ̂θ )

2
6

return µ̂θ , σ̂
2
θ7

On the other hand, the probability that xj ∈D is given as

P(xj ∈Di)= 1−P(xj 6∈Di)= 1− 0.368= 0.632

This means that each bootstrap sample contains approximately 63.2% of the points

from D.

The bootstrap samples can be used to evaluate the classifier by training it on each

of samples Di and then using the full input dataset D as the testing set, as shown in

Algorithm 22.3. The expected value and variance of the performance measure θ can

be obtained using Eqs. (22.3) and (22.4). However, it should be borne in mind that the

estimates will be somewhat optimistic owing to the fairly large overlap between the

training and testing datasets (63.2%). The cross-validation approach does not suffer

from this limitation because it keeps the training and testing sets disjoint.

Example 22.8. We continue with the Iris dataset from Example 22.7. However, we

now apply bootstrap sampling to estimate the error rate for the full Bayes classifier,

using K= 50 samples. The sampling distribution of error rates is shown in Figure 22.5.
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Figure 22.5. Sampling distribution of error rates.
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The expected value and variance of the error rate are

µ̂θ = 0.213

σ̂ 2
θ = 4.815× 10−4

Due to the overlap between the training and testing sets, the estimates are

more optimistic (i.e., lower) compared to those obtained via cross-validation in

Example 22.7, where we had µ̂θ = 0.233 and σ̂ 2
θ = 0.00833.

22.2.3 Confidence Intervals

Having estimated the expected value and variance for a chosen performance measure,

we would like to derive confidence bounds on how much the estimate may deviate

from the true value.

To answer this question we make use of the central limit theorem, which states that

the sum of a large number of independent and identically distributed (IID) random

variables has approximately a normal distribution, regardless of the distribution of

the individual random variables. More formally, let θ1,θ2, . . . ,θK be a sequence of IID

random variables, representing, for example, the error rate or some other performance

measure over the K-folds in cross-validation or K bootstrap samples. Assume that each

θi has a finite mean E[θi]= µ and finite variance var(θi)= σ 2.

Let µ̂ denote the sample mean:

µ̂= 1

K
(θ1+ θ2+ ·· ·+ θK)

By linearity of expectation, we have

E[µ̂]=E

[
1

K
(θ1+ θ2+ ·· ·+ θK)

]
= 1

K

K∑

i=1

E[θi]=
1

K
(Kµ)= µ

Utilizing the linearity of variance for independent random variables, and noting that

var(aX)= a2 · var(X) for a ∈R, the variance of µ̂ is given as

var(µ̂)= var

(
1

K
(θ1+ θ2+ ·· ·+ θK)

)
= 1

K2

K∑

i=1

var(θi)=
1

K2

(
Kσ 2

)
= σ 2

K

Thus, the standard deviation of µ̂ is given as

std(µ̂)=
√

var(µ̂)= σ√
K

We are interested in the distribution of the z-score of µ̂, which is itself a random

variable

ZK =
µ̂−E[µ̂]

std(µ̂)
= µ̂−µ

σ√
K

=
√

K

(
µ̂−µ

σ

)

ZK specifies the deviation of the estimated mean from the true mean in terms of its

standard deviation. The central limit theorem states that as the sample size increases,
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the random variable ZK converges in distribution to the standard normal distribution

(which has mean 0 and variance 1). That is, as K→∞, for any x ∈R, we have

lim
K→∞

P(ZK ≤ x)=8(x)

where 8(x) is the cumulative distribution function for the standard normal density

function f (x|0,1). Let zα/2 denote the z-score value that encompasses α/2 of the

probability mass for a standard normal distribution, that is,

P(0≤ZK ≤ zα/2)=8(zα/2)−8(0)= α/2

then, because the normal distribution is symmetric about the mean, we have

lim
K→∞

P(−zα/2 ≤ZK ≤ zα/2)= 2 ·P(0≤ZK ≤ zα/2)= α (22.5)

Note that

−zα/2 ≤ZK ≤ zα/2 =⇒ −zα/2 ≤
√

K

(
µ̂−µ

σ

)
≤ zα/2

=⇒ −zα/2

σ√
K
≤ µ̂−µ≤ zα/2

σ√
K

=⇒
(

µ̂− zα/2

σ√
K

)
≤ µ≤

(
µ̂+ zα/2

σ√
K

)

Substituting the above into Eq. (22.5) we obtain bounds on the value of the true mean

µ in terms of the estimated value µ̂, that is,

lim
K→∞

P

(
µ̂− zα/2

σ√
K
≤ µ≤ µ̂+ zα/2

σ√
K

)
= α (22.6)

Thus, for any given level of confidence α, we can compute the probability that the

true mean µ lies in the α% confidence interval
(
µ̂− zα/2

σ√
K
, µ̂+ zα/2

σ√
K

)
. In other

words, even though we do not know the true mean µ, we can obtain a high-confidence

estimate of the interval within which it must lie (e.g., by setting α = 0.95 or α = 0.99).

Unknown Variance

The analysis above assumes that we know the true variance σ 2, which is generally not

the case. However, we can replace σ 2 by the sample variance

σ̂ 2 = 1

K

K∑

i=1

(θi − µ̂)2 (22.7)

because σ̂ 2 is a consistent estimator for σ 2, that is, as K → ∞, σ̂ 2 converges with

probability 1, also called converges almost surely, to σ 2. The central limit theorem

then states that the random variable Z∗K defined below converges in distribution to

the standard normal distribution:

Z∗K =
√

K

(
µ̂−µ

σ̂

)
(22.8)
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and thus, we have

lim
K→∞

P

(
µ̂− zα/2

σ̂√
K
≤µ≤ µ̂+ zα/2

σ̂√
K

)
= α (22.9)

In other words, we say that
(
µ̂− zα/2

σ̂√
K
, µ̂+ zα/2

σ̂√
K

)
is the α% confidence interval

for µ.

Example 22.9. Consider Example 22.7, where we applied 5-fold cross-validation

(K = 5) to assess the error rate of the full Bayes classifier. The estimated expected

value and variance for the error rate were as follows:

µ̂θ = 0.233 σ̂ 2
θ = 0.00833 σ̂θ =

√
0.00833= 0.0913

Let α = 0.95 be the confidence value. It is known that the standard normal

distribution has 95% of the probability density within zα/2 = 1.96 standard deviations

from the mean. Thus, in the limit of large sample size, we have

P

(
µ ∈

(
µ̂θ − zα/2

σ̂θ√
K

, µ̂θ + zα/2

σ̂θ√
K

))
= 0.95

Because zα/2
σ̂θ√

K
= 1.96×0.0913√

5
= 0.08, we have

P
(
µ ∈ (0.233− 0.08,0.233+ 0.08)

)
= P

(
µ ∈ (0.153,0.313)

)
= 0.95

Put differently, with 95% confidence, the true expected error rate lies in the interval

(0.153,0.313).

If we want greater confidence, for example, for α = 0.99, then the corresponding

z-score value is zα/2 = 2.58, and thus zα/2
σ̂θ√

K
= 2.58×0.0913√

5
= 0.105. The 99% confidence

interval for µ is therefore wider (0.128,0.338).

Nevertheless, K = 5 is not a large sample size, and thus the above confidence

intervals are not that reliable.

Small Sample Size

The confidence interval in Eq. (22.9) applies only when the sample size K→∞. We

would like to obtain more precise confidence intervals for small samples. Consider the

random variables Vi , for i = 1, . . . ,K, defined as

Vi =
θi − µ̂

σ

Further, consider the sum of their squares:

S=
K∑

i=1

V2
i =

K∑

i=1

(
θi − µ̂

σ

)2

= 1

σ 2

K∑

i=1

(θi − µ̂)2 = Kσ̂ 2

σ 2
(22.10)

The last step follows from the definition of sample variance in Eq. (22.7).

If we assume that the Vi ’s are IID with the standard normal distribution, then

the sum S follows a chi-squared distribution with K− 1 degrees of freedom, denoted
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χ2(K− 1), since S is the sum of the squares of K random variables Vi . There are only

K−1 degrees of freedom because each Vi depends on µ̂ and the sum of the θi’s is thus

fixed.

Consider the random variable Z∗K in Eq. (22.8). We have,

Z∗K =
√

K

(
µ̂−µ

σ̂

)
=
(

µ̂−µ

σ̂/
√

K

)

Dividing the numerator and denominator in the expression above by σ/
√

K, we get

Z∗K =
(

µ̂−µ

σ/
√

K

/
σ̂ /
√

K

σ/
√

K

)
=




µ̂−µ

σ/
√

K

σ̂ /σ


= ZK√

S/K
(22.11)

The last step follows from Eq. (22.10) because

S= Kσ̂ 2

σ 2
implies that

σ̂

σ
=
√

S/K

Assuming that ZK follows a standard normal distribution, and noting that S follows

a chi-squared distribution with K−1 degrees of freedom, then the distribution of Z∗K is

precisely the Student’s t distribution with K−1 degrees of freedom. Thus, in the small

sample case, instead of using the standard normal density to derive the confidence

interval, we use the t distribution. In particular, we choose the value tα/2,K−1 such that

the cumulative t distribution function with K−1 degrees of freedom encompasses α/2

of the probability mass, that is,

P(0≤Z∗K ≤ tα/2,K−1)= TK−1(tα/2)−TK−1(0)= α/2

where TK−1 is the cumulative distribution function for the Student’s t distribution with

K− 1 degrees of freedom. Because the t distribution is symmetric about the mean, we

have

P

(
µ̂− tα/2,K−1

σ̂√
K
≤ µ≤ µ̂+ tα/2,K−1

σ̂√
K

)
= α (22.12)

The α% confidence interval for the true mean µ is thus

(
µ̂− tα/2,K−1

σ̂√
K
≤µ≤ µ̂+ tα/2,K−1

σ̂√
K

)

Note the dependence of the interval on both α and the sample size K.

Figure 22.6 shows the t distribution density function for different values of K.

It also shows the standard normal density function. We can observe that the t

distribution has more probability concentrated in its tails compared to the standard

normal distribution. Further, as K increases, the t distribution very rapidly converges

in distribution to the standard normal distribution, consistent with the large sample

case. Thus, for large samples, we may use the usual zα/2 threshold.
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Figure 22.6. Student’s t distribution: K degrees of freedom. The thick solid line is standard normal

distribution.

Example 22.10. Consider Example 22.9. For 5-fold cross-validation, the estimated

mean error rate is µ̂θ = 0.233, and the estimated variance is σ̂θ = 0.0913.

Due to the small sample size (K= 5), we can get a better confidence interval by

using the t distribution. For K− 1 = 4 degrees of freedom, for α = 0.95, we use the

quantile function for the Student’s t-distribution to obtain tα/2,K−1 = 2.776. Thus,

tα/2,K−1

σ̂θ√
K
= 2.776× 0.0913√

5
= 0.113

The 95% confidence interval is therefore

(0.233− 0.113,0.233+ 0.113)= (0.12,0.346)

which is much wider than the overly optimistic confidence interval (0.153,0.313)

obtained for the large sample case in Example 22.9.

For α = 0.99, we have tα/2,K−1 = 4.604, and thus

tα/2,K−1

σ̂θ√
K
= 4.604× 0.0913√

5
= 0.188

and the 99% confidence interval is

(0.233− 0.188,0.233+0.188)= (0.045,0.421)

This is also much wider than the 99% confidence interval (0.128,0.338) obtained for

the large sample case in Example 22.9.

22.2.4 Comparing Classifiers: Paired t-Test

In this section we look at a method that allows us to test for a significant difference in

the classification performance of two alternative classifiers, MA and MB. We want to

assess which of them has a superior classification performance on a given dataset D.
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Following the evaluation methodology above, we can apply K-fold cross-validation (or

bootstrap resampling) and tabulate their performance over each of the K folds, with

identical folds for both classifiers. That is, we perform a paired test, with both classifiers

trained and tested on the same data. Let θA
1 ,θA

2 , . . . ,θA
K and θB

1 ,θB
2 , . . . ,θB

K denote the

performance values for MA and MB, respectively. To determine if the two classifiers

have different or similar performance, define the random variable δi as the difference

in their performance on the ith dataset:

δi = θA
i − θB

i

Now consider the estimates for the expected difference and the variance of the

differences:

µ̂δ =
1

K

K∑

i=1

δi σ̂ 2
δ =

1

K

K∑

i=1

(δi − µ̂δ)
2

We can set up a hypothesis testing framework to determine if there is a statistically

significant difference between the performance of MA and MB. The null hypothesis

H0 is that their performance is the same, that is, the true expected difference is zero,

whereas the alternative hypothesis Ha is that they are not the same, that is, the true

expected difference µδ is not zero:

H0 : µδ = 0 Ha : µδ 6= 0

Let us define the z-score random variable for the estimated expected difference as

Z∗δ =
√

K

(
µ̂δ−µδ

σ̂δ

)

Following a similar argument as in Eq. (22.11), Z∗δ follows a t distribution with K− 1

degrees of freedom. However, under the null hypothesis we have µδ = 0, and thus

Z∗δ =
√

Kµ̂δ

σ̂δ

∼ tK−1

where the notation Z∗δ ∼ tK−1 means that Z∗δ follows the t distribution with K−1 degrees

of freedom.

Given a desired confidence level α, we conclude that

P
(
−tα/2,K−1 ≤Z∗δ ≤ tα/2,K−1

)
= α

Put another way, if Z∗δ 6∈
(
−tα/2,K−1, tα/2,K−1

)
, then we may reject the null hypothesis

with α% confidence. In this case, we conclude that there is a significant difference

between the performance of MA and MB. On the other hand, if Z∗δ does lie in the

above confidence interval, then we accept the null hypothesis that both MA and MB

have essentially the same performance. The pseudo-code for the paired t-test is shown

in Algorithm 22.4.
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ALGORITHM 22.4. Paired t-Test via Cross-Validation

PAIRED t-TEST(α, K, D):

D← randomly shuffle D1

{D1,D2, . . . ,DK}← partition D in K equal parts2

foreach i ∈ [1,K] do3

MA
i ,MB

i ← train the two different classifiers on D \Di4

θA
i ,θB

i ← assess MA
i and MB

i on Di5

δi = θA
i − θB

i6

µ̂δ = 1
K

∑K
i=1 δi7

σ̂ 2
δ = 1

K

∑K
i=1(δi − µ̂δ)

2
8

Z∗δ =
√

Kµ̂δ

σ̂δ
9

if Z∗δ ∈
(
−tα/2,K−1, tα/2,K−1

)
then10

Accept H0; both classifiers have similar performance11

else12

Reject H0; classifiers have significantly different performance13

Example 22.11. Consider the 2-dimensional Iris dataset from Example 22.1, with

k = 3 classes. We compare the naive Bayes (MA) with the full Bayes (MB) classifier

via cross-validation using K= 5 folds. Using error rate as the performance measure,

we obtain the following values for the error rates and their difference over each of

the K folds:




i 1 2 3 4 5

θA
i 0.233 0.267 0.1 0.4 0.3

θB
i 0.2 0.2 0.167 0.333 0.233

δi 0.033 0.067 −0.067 0.067 0.067




The estimated expected difference and variance of the differences are

µ̂δ =
0.167

5
= 0.033 σ̂ 2

δ = 0.00333 σ̂δ =
√

0.00333= 0.0577

The z-score value is given as

Z∗δ =
√

Kµ̂δ

σ̂δ

=
√

5× 0.033

0.0577
= 1.28

From Example 22.10, for α = 0.95 and K− 1 = 4 degrees of freedom, we have

tα/2,K−1 = 2.776. Because

Z∗δ = 1.28 ∈ (−2.776,2.776)=
(
−tα/2,K−1, tα/2,K−1

)

we cannot reject the null hypothesis. Instead, we accept the null hypothesis that

µδ = 0, that is, there is no significant difference between the naive and full Bayes

classifier for this dataset.
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22.3 BIAS-VARIANCE DECOMPOSITION

Given a training set D= {xi,yi}ni=1, comprising n points xi ∈Rd , with their correspond-

ing classes yi , a learned classification model M predicts the class for a given test point

x. The various performance measures we described above mainly focus on minimizing

the prediction error by tabulating the fraction of misclassified points. However, in

many applications, there may be costs associated with making wrong predictions. A

loss function specifies the cost or penalty of predicting the class to be ŷ =M(x), when

the true class is y. A commonly used loss function for classification is the zero-one loss,

defined as

L(y,M(x))= I(M(x) 6= y)=
{

0 if M(x)= y

1 if M(x) 6= y

Thus, zero-one loss assigns a cost of zero if the prediction is correct, and one otherwise.

Another commonly used loss function is the squared loss, defined as

L(y,M(x))= (y−M(x))2

where we assume that the classes are discrete valued, and not categorical.

Expected Loss

An ideal or optimal classifier is the one that minimizes the loss function. Because the

true class is not known for a test case x, the goal of learning a classification model can

be cast as minimizing the expected loss:

Ey[L(y,M(x)) |x]=
∑

y

L(y,M(x)) ·P(y|x) (22.13)

where P(y|x) is the conditional probability of class y given test point x, and Ey denotes

that the expectation is taken over the different class values y.

Minimizing the expected zero–one loss corresponds to minimizing the error rate.

This can be seen by expanding Eq. (22.13) with zero–one loss. Let M(x)= ci , then we

have

Ey[L(y,M(x)) |x]=Ey[I(y 6=M(x)) |x]

=
∑

y

I(y 6= ci) ·P(y|x)

=
∑

y 6=ci

P(y|x)

= 1−P(ci |x)

Thus, to minimize the expected loss we should choose ci as the class that maximizes the

posterior probability, that is, ci = argmaxy P(y|x). Because by definition [Eq. (22.1)],

the error rate is simply an estimate of the expected zero–one loss, this choice also

minimizes the error rate.
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Bias and Variance

The expected loss for the squared loss function offers important insight into the

classification problem because it can be decomposed into bias and variance terms.

Intuitively, the bias of a classifier refers to the systematic deviation of its predicted

decision boundary from the true decision boundary, whereas the variance of a classifier

refers to the deviation among the learned decision boundaries over different training

sets. More formally, because M depends on the training set, given a test point x, we

denote its predicted value as M(x,D). Consider the expected square loss:

Ey

[
L
(
y,M(x,D)

) ∣∣x,D
]

=Ey

[(
y−M(x,D)

)2∣∣x,D
]

=Ey

[(
y−Ey[y|x]+Ey[y|x]︸ ︷︷ ︸

add and subtract same term

−M(x,D)
)2 ∣∣x,D

]

=Ey

[(
y−Ey[y|x]

)2 ∣∣x,D
]
+Ey

[(
M(x,D)−Ey[y|x]

)2 ∣∣x,D
]

+Ey

[
2
(
y−Ey[y|x]

)
·
(
Ey[y|x]−M(x,D)

) ∣∣x,D
]

=Ey

[(
y−Ey[y|x]

)2 ∣∣x,D
]
+
(
M(x,D)−Ey[y|x]

)2

+ 2
(
Ey[y|x]−M(x,D)

)
·
(
Ey[y|x]−Ey[y|x]

)
︸ ︷︷ ︸

0

=Ey

[(
y−Ey[y|x]

)2 ∣∣x,D
]

︸ ︷︷ ︸
var(y|x)

+
(
M(x,D)−Ey[y|x]

)2

︸ ︷︷ ︸
squared-error

(22.14)

Above, we made use of the fact that for any random variables X and Y, and for any

constant a, we have E[X+Y]= E[X]+E[Y], E[aX]= aE[X], and E[a]= a. The first

term in Eq. (22.14) is simply the variance of y given x. The second term is the squared

error between the predicted value M(x,D) and the expected value Ey[y|x]. Because

this term depends on the training set, we can eliminate this dependence by averaging

over all possible training tests of size n. The average or expected squared error for a

given test point x over all training sets is then given as

ED

[(
M(x,D)−Ey[y|x]

)2]

=ED

[(
M(x,D)−ED[M(x,D)]+ED[M(x,D)]︸ ︷︷ ︸

add and subtract same term

−Ey[y|x]
)2
]

=ED

[(
M(x,D)−ED[M(x,D)]

)2
]
+ED

[(
ED[M(x,D)]−Ey[y|x]

)2]

+ 2
(
ED[M(x,D)]−Ey[y|x]

)
·
(
ED[M(x,D)]−ED[M(x,D)]

)
︸ ︷︷ ︸

0

=ED

[(
M(x,D)−ED[M(x,D)]

)2
]

︸ ︷︷ ︸
variance

+
(
ED[M(x,D)]−Ey[y|x]

)2

︸ ︷︷ ︸
bias

(22.15)
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This means that the expected squared error for a given test point can be decomposed

into bias and variance terms. Combining Eqs. (22.14) and (22.15) the expected squared

loss over all test points x and over all training sets D of size n yields the following

decomposition into noise, variance and bias terms:

Ex,D,y

[(
y−M(x,D)

)2
]

=Ex,D,y

[(
y−Ey[y|x]

)2 ∣∣x,D
]
+Ex,D

[(
M(x,D)−Ey[y|x]

)2]

=Ex,y

[(
y−Ey[y|x]

)2]

︸ ︷︷ ︸
noise

+Ex,D

[(
M(x,D)−ED[M(x,D)]

)2]

︸ ︷︷ ︸
average variance

+Ex

[(
ED[M(x,D)]−Ey[y|x]

)2]

︸ ︷︷ ︸
average bias

(22.16)

Thus, the expected square loss over all test points and training sets can be decomposed

into three terms: noise, average bias, and average variance. The noise term is the

average variance var(y|x) over all test points x. It contributes a fixed cost to the

loss independent of the model, and can thus be ignored when comparing different

classifiers. The classifier specific loss can then be attributed to the variance and bias

terms. In general, bias indicates whether the model M is correct or incorrect. It also

reflects our assumptions about the domain in terms of the decision boundary. For

example, if the decision boundary is nonlinear, and we use a linear classifier, then

it is likely to have high bias, that is, it will be consistently incorrect over different

training sets. On the other hand, a nonlinear (or a more complex) classifier is more

likely to capture the correct decision boundary, and is thus likely to have a low

bias. Nevertheless, this does not necessarily mean that a complex classifier will be

a better one, since we also have to consider the variance term, which measures the

inconsistency of the classifier decisions. A complex classifier induces a more complex

decision boundary and thus may be prone to overfitting, that is, it may try to model all

the small nuances in the training data, and thus may be susceptible to small changes in

training set, which may result in high variance.

In general, the expected loss can be attributed to high bias or high variance, with

typically a trade-off between these two terms. Ideally, we seek a balance between these

opposing trends, that is, we prefer a classifier with an acceptable bias (reflecting domain

or dataset specific assumptions) and as low a variance as possible.

Example 22.12. Figure 22.7 illustrates the trade-off between bias and variance, using

the Iris principal components dataset, which has n= 150 points and k= 2 classes (c1=
+1, and c2 =−1). We construct K= 10 training datasets via bootstrap sampling, and

use them to train SVM classifiers using a quadratic (homogeneous) kernel, varying

the regularization constant C from 10−2 to 102.

Recall that C controls the weight placed on the slack variables, as opposed to

the margin of the hyperplane (see Section 21.3). A small value of C emphasizes

the margin, whereas a large value of C tries to minimize the slack terms.

Figures 22.7a, 22.7b, and 22.7c show that the variance of the SVM model increases
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Figure 22.7. Bias-variance decomposition: SVM quadratic kernels. Decision boundaries plotted for K= 10

bootstrap samples.

as we increase C, as seen from the varying decision boundaries. Figure 22.7d plots

the average variance and average bias for different values of C, as well as the

expected loss. The bias-variance tradeoff is clearly visible, since as the bias reduces,

the variance increases. The lowest expected loss is obtained when C= 1.

22.3.1 Ensemble Classifiers

A classifier is called unstable if small perturbations in the training set result in large

changes in the prediction or decision boundary. High variance classifiers are inherently

unstable, since they tend to overfit the data. On the other hand, high bias methods

typically underfit the data, and usually have low variance. In either case, the aim

of learning is to reduce classification error by reducing the variance or bias, ideally
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both. Ensemble methods create a combined classifier using the output of multiple base

classifiers, which are trained on different data subsets. Depending on how the training

sets are selected, and on the stability of the base classifiers, ensemble classifiers can

help reduce the variance and the bias, leading to a better overall performance.

Bagging

Bagging, which stands for Bootstrap Aggregation, is an ensemble classification method

that employs multiple bootstrap samples (with replacement) from the input training

data D to create slightly different training sets Di , i = 1,2, . . . ,K. Different base

classifiers Mi are learned, with Mi trained on Di . Given any test point x, it is first

classified using each of the K base classifiers, Mi . Let the number of classifiers that

predict the class of x as cj be given as

vj (x)=
∣∣∣
{
Mi(x)= cj

∣∣i = 1, . . . ,K
}∣∣∣

The combined classifier, denoted MK, predicts the class of a test point x by majority

voting among the k classes:

MK(x)= argmax
cj

{
vj (x)

∣∣j = 1, . . . ,k
}

For binary classification, assuming that the classes are given as {+1,−1}, the combined

classifier MK can be expressed more simply as

MK(x)= sign

(
K∑

i=1

Mi(x)

)

Bagging can help reduce the variance, especially if the base classifiers are unstable,

due to the averaging effect of majority voting. It does not, in general, have much effect

on the bias.

Example 22.13. Figure 22.8a shows the averaging effect of bagging for the Iris

principal components dataset from Example 22.12. The figure shows the SVM

decision boundaries for the quadratic kernel using C = 1. The base SVM classifiers

are trained on K= 10 bootstrap samples. The combined (average) classifier is shown

in bold.

Figure 22.8b shows the combined classifiers obtained for different values of K,

keeping C = 1. The zero–one and squared loss for selected values of K are shown

below

K Zero–one loss Squared loss

3 0.047 0.187

5 0.04 0.16

8 0.02 0.10

10 0.027 0.113

15 0.027 0.107

The worst training performance is obtained for K= 3 (in thick gray) and the best for

K= 8 (in thick black).
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(b) Effect of K

Figure 22.8. Bagging: combined classifiers. (a) uses K = 10 bootstrap samples. (b) shows average decision

boundary for different values of K.

Boosting

Boosting is another ensemble technique that trains the base classifiers on different

samples. However, the main idea is to carefully select the samples to boost the

performance on hard to classify instances. Starting from an initial training sample D1,

we train the base classifier M1, and obtain its training error rate. To construct the

next sample D2, we select the misclassified instances with higher probability, and after

training M2, we obtain its training error rate. To construct D3, those instances that are

hard to classify by M1 or M2, have a higher probability of being selected. This process is

repeated for K iterations. Thus, unlike bagging that uses independent random samples

from the input dataset, boosting employs weighted or biased samples to construct the

different training sets, with the current sample depending on the previous ones. Finally,

the combined classifier is obtained via weighted voting over the output of the K base

classifiers M1,M2, . . . ,MK.

Boosting is most beneficial when the base classifiers are weak, that is, have an error

rate that is slightly less than that for a random classifier. The idea is that whereas M1

may not be particularly good on all test instances, by design M2 may help classify some

cases where M1 fails, and M3 may help classify instances where M1 and M2 fail, and

so on. Thus, boosting has more of a bias reducing effect. Each of the weak learners is

likely to have high bias (it is only slightly better than random guessing), but the final

combined classifier can have much lower bias, since different weak learners learn to

classify instances in different regions of the input space. Several variants of boosting

can be obtained based on how the instance weights are computed for sampling, how the

base classifiers are combined, and so on. We discuss Adaptive Boosting (AdaBoost),

which is one of the most popular variants.

Adaptive Boosting: AdaBoost Let D be the input training set, comprising n points

xi ∈ Rd . The boosting process will be repeated K times. Let t denote the iteration and

let αt denote the weight for the tth classifier Mt . Let wt
i denote the weight for xi , with

wt = (wt
1,w

t
2, . . . ,w

t
n)

T being the weight vector over all the points for the tth iteration.
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ALGORITHM 22.5. Adaptive Boosting Algorithm: AdaBoost

ADABOOST(K, D):

w0←
(

1
n

)
· 1 ∈Rn

1

t← 12

while t ≤K do3

Dt← weighted resampling with replacement from D using wt−1
55

Mt← train classifier on Dt6

ǫt←
∑n

i=1 wt−1
i · I

(
Mt (xi) 6= yi

)
// weighted error rate on D7

if ǫt = 0 then break8

else if ǫt < 0.5 then9

αt = ln
(

1−ǫt
ǫt

)
// classifier weight10

foreach i ∈ [1,n] do11

// update point weights

wt
i =





wt−1
i if Mt (xi)= yi

wt−1
i

(
1−ǫt
ǫt

)
if Mt (xi) 6= yi12

wt = wt

1Twt // normalize weights1414

t← t + 115

return {M1,M2, . . . ,MK}16

In fact, w is a probability vector, whose elements sum to one. Initially all points have

equal weights, that is,

w0 =
(

1

n
,

1

n
,. . . ,

1

n

)T

= 1

n
1

where 1 ∈Rn is the n-dimensional vector of all 1’s.

The pseudo-code for AdaBoost is shown in Algorithm 22.5. During iteration t ,

the training sample Dt is obtained via weighted resampling using the distribution wt−1,

that is, we draw a sample of size n with replacement, such that the ith point is chosen

according to its probability wt−1
i . Next, we train the classifier Mt using Dt , and compute

its weighted error rate ǫt on the entire input dataset D:

ǫt =
n∑

i=1

wt−1
i · I

(
Mt (xi) 6= yi

)

where I is an indicator function that is 1 when its argument is true, that is, when Mt

misclassifies xi , and is 0 otherwise.

The weight for the tth classifier is then set as

αt = ln

(
1− ǫt

ǫt

)
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and the weight for each point xi ∈ D is updated based on whether the point is

misclassified or not

wt
i =wt−1

i · exp
{
αt · I

(
Mt (xi) 6= yi

)}

Thus, if the predicted class matches the true class, that is, if Mt (xi)= yi , then I(Mt (xi) 6=
yi)= 0, and the weight for point xi remains unchanged. On the other hand, if the point

is misclassified, that is, Mt (xi) 6= yi , then we have I(Mt (xi) 6= yi)= 1, and

wt
i =wt−1

i · exp
{
αt

}
=wt−1

i exp

{
ln

(
1− ǫt

ǫt

)}
=wt−1

i

(
1

ǫt

− 1

)

We can observe that if the error rate ǫt is small, then there is a greater weight increment

for xi . The intuition is that a point that is misclassified by a good classifier (with a low

error rate) should be more likely to be selected for the next training dataset. On the

other hand, if the error rate of the base classifier is close to 0.5, then there is only a

small change in the weight, since a bad classifier (with a high error rate) is expected

to misclassify many instances. Note that for a binary class problem, an error rate of

0.5 corresponds to a random classifier, that is, one that makes a random guess. Thus,

we require that a base classifier has an error rate at least slightly better than random

guessing, that is, ǫt < 0.5. If the error rate ǫt ≥ 0.5, then the boosting method discards

the classifier, and returns to line 5 to try another data sample. Alternatively, one can

simply invert the predictions for binary classification. It is worth emphasizing that for a

multi-class problem (with k > 2), the requirement that ǫt < 0.5 is a significantly stronger

requirement than for the binary (k = 2) class problem because in the multiclass case a

random classifier is expected to have an error rate of k−1
k

. Note also that if the error

rate of the base classifier ǫt = 0, then we can stop the boosting iterations.

Once the point weights have been updated, we re-normalize the weights so that wt

is a probability vector (line 14):

wt = wt

1Twt
= 1∑n

j=1 wt
j

(
wt

1,w
t
2, . . . ,w

t
n

)T

Combined Classifier Given the set of boosted classifiers, M1,M2, . . . ,MK, along with

their weights α1,α2, . . . ,αK, the class for a test case x is obtained via weighted majority

voting. Let vj (x) denote the weighted vote for class cj over the K classifiers, given as

vj (x)=
K∑

t=1

αt · I
(
Mt (x)= cj

)

Because I(Mt (x)= cj) is 1 only when Mt (x)= cj , the variable vj (x) simply obtains the

tally for class cj among the K base classifiers, taking into account the classifier weights.

The combined classifier, denoted MK, then predicts the class for x as follows:

MK(x)= argmax
cj

{
vj (x)

∣∣j = 1, ..,k
}
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In the case of binary classification, with classes {+1,−1}, the combined classifier MK

can be expressed more simply as

MK(x)= sign

(
K∑

t=1

αtMt (x)

)

Example 22.14. Figure 22.9a illustrates the boosting approach on the Iris principal

components dataset, using linear SVMs as the base classifiers. The regularization

constant was set to C= 1. The hyperplane learned in iteration t is denoted ht , thus,

the classifier model is given as Mt (x) = sign(ht (x)). As such, no individual linear

hyperplane can discriminate between the classes very well, as seen from their error

rates on the training set:

Mt h1 h2 h3 h4

ǫt 0.280 0.305 0.174 0.282

αt 0.944 0.826 1.559 0.935

However, when we combine the decisions from successive hyperplanes weighted by

αt , we observe a marked drop in the error rate for the combined classifier MK(x) as

K increases:

combined model M1 M2 M3 M4

training error rate 0.280 0.253 0.073 0.047

We can see, for example, that the combined classifier M3, comprising h1, h2 and

h3, has already captured the essential features of the nonlinear decision boundary

between the two classes, yielding an error rate of 7.3%. Further reduction in the

training error is obtained by increasing the number of boosting steps.

To assess the performance of the combined classifier on independent testing

data, we employ 5-fold cross-validation, and plot the average testing and training

error rates as a function of K in Figure 22.9b. We can see that as the number of base
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Figure 22.9. (a) Boosting SVMs with linear kernel. (b) Average testing and training error: 5-fold

cross-validation.
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classifiers K increases, both the training and testing error rates reduce. However,

while the training error essentially goes to 0, the testing error does not reduce beyond

0.02, which happens at K= 110. This example illustrates the effectiveness of boosting

in reducing the bias.

Bagging as a Special Case of AdaBoost: Bagging can be considered as a special case

of AdaBoost, where wt = 1
n
1, and αt = 1 for all K iterations. In this case, the weighted

resampling defaults to regular resampling with replacement, and the predicted class

for a test case also defaults to simple majority voting.

22.4 FURTHER READING

The application of ROC analysis to classifier performance was introduced in Provost

and Fawcett (1997), with an excellent introduction to ROC analysis given in Fawcett

(2006). For an in-depth description of the bootstrap, cross-validation, and other

methods for assessing classification accuracy see Efron and Tibshirani (1993). For

many datasets simple rules, like one-level decision trees, can yield good classification

performance; see Holte (1993) for details. For a recent review and comparison of

classifiers over multiple datasets see Demšar (2006). A discussion of bias, variance,

and zero–one loss for classification appears in Friedman (1997), with a unified

decomposition of bias and variance for both squared and zero–one loss given in

Domingos (2000). The concept of bagging was proposed in Breiman (1996), and that

of adaptive boosting in Freund and Schapire (1997). Random forests is a tree-based

ensemble approach that can be very effective; see Breiman (2001) for details. For a

comprehensive overview on the evaluation of classification algorithms see Japkowicz

and Shah (2011).
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22.5 EXERCISES

Q1. True or False:

(a) A classification model must have 100% accuracy (overall) on the training dataset.

(b) A classification model must have 100% coverage (overall) on the training

dataset.

Q2. Given the training database in Table 22.6a and the testing data in Table 22.6b, answer

the following questions:

(a) Build the complete decision tree using binary splits and Gini index as the

evaluation measure (see Chapter 19).

(b) Compute the accuracy of the classifier on the test data. Also show the per class

accuracy and coverage.

Table 22.6. Data for Q2

X Y Z Class

15 1 A 1

20 3 B 2

25 2 A 1

30 4 A 1

35 2 B 2

25 4 A 1

15 2 B 2

20 3 B 2

(a) Training

X Y Z Class

10 2 A 2

20 1 B 1

30 3 A 2

40 2 B 2

15 1 B 1

(b) Testing

Q3. Show that for binary classification the majority voting for the combined classifier

decision in boosting can be expressed as

MK(x)= sign

(
K∑

t=1

αtMt (x)

)

Q4. Consider the 2-dimensional dataset shown in Figure 22.10, with the labeled points

belonging to two classes: c1 (triangles) and c2 (circles). Assume that the six

hyperplanes were learned from different bootstrap samples. Find the error rate for

each of the six hyperplanes on the entire dataset. Then, compute the 95% confidence
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Figure 22.10. For Q4.

Table 22.7. Critical values for t-test

dof 1 2 3 4 5 6

tα/2 12.7065 4.3026 3.1824 2.7764 2.5706 2.4469

interval for the expected error rate, using the t-distribution critical values for different

degrees of freedom (dof) given in Table 22.7.

Q5. Consider the probabilities P (+1|xi) for the positive class obtained for some classifier,

and given the true class labels yi

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

yi +1 −1 +1 +1 −1 +1 −1 +1 −1 −1

P (+1|xi) 0.53 0.86 0.25 0.95 0.87 0.86 0.76 0.94 0.44 0.86

Plot the ROC curve for this classifier.





Index

accuracy, 549

Apriori algorithm, 223

association rule, 220, 301

antecedent, 301

assessment measures, 301

Bonferroni correction, 320

bootstrap sampling, 325

confidence, 220, 302

confidence interval, 325

consequent, 301

conviction, 306

Fisher exact test, 316

general, 315

improvement, 315

Jaccard coefficient, 305

leverage, 304

lift, 303

mining algorithm, 234

multiple hypothesis testing, 320

nonredundant, 315

odds ratio, 306

permutation test, 320

swap randomization, 321

productive, 315

randomization test, 320

redundant, 315

relative support, 220

significance, 320

specific, 315

support, 220, 302

relative, 302

swap randomization, 321

unproductive, 315

association rule mining, 234

attribute

binary, 3

categorical, 3

nominal, 3

ordinal, 3

continuous, 3

discrete, 3

numeric, 3

interval-scaled, 3

ratio-scaled, 3

bagging, 576

Bayes classifier, 467

categorical attributes, 471

numeric attributes, 468

Bayes theorem, 467, 492

Bernoulli distribution

mean, 64

sample mean, 64

sample variance, 64

variance, 64

Bernoulli variable, 63

BetaCV measure, 441

bias-variance decomposition, 572

binary database, 218

vertical representation, 218

Binomial distribution, 65

bivariate analysis

categorical, 72

numeric, 42

Bonferroni correction, 320

boosting, 577

AdaBoost, 577

combined classifier, 579

bootstrap

sampling, 325, 563

C-index, 441

Calinski–Harabasz index, 450

categorical attributes

angle, 87

cosine similarity, 88

covariance matrix, 68, 83

distance, 87

Euclidean distance, 87

Hamming distance, 88

585
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categorical attributes (cont.)

Jaccard coefficient, 88

mean, 67, 83

bivariate, 74

norm, 87

sample covariance matrix, 69

bivariate, 75

sample mean, 67

bivariate, 74

Cauchy–Schwartz inequality, 7

central limit theorem, 565

centroid, 333

Charm algorithm, 248

properties, 248

χ2 distribution, 80

chi-squared statistic, 80

χ2 statistic, 80, 85

classification, 29

accuracy, 549, 550, 553

area under ROC curve, 557

assessment measures, 548

contingency table based, 550

AUC, 557

bagging, 576

Bayes classifier, 467

bias, 573

bias-variance decomposition, 572

binary classes, 553

boosting, 577

AdaBoost, 577

classifier evaluation, 562

confidence interval, 565

confusion matrix, 550

coverage, 551

cross-validation, 562

decision trees, 481

ensemble classifiers, 575

error rate, 549, 553

expected loss, 572

F-measure, 551

false negative, 553

false negative rate, 554

false positive, 553

false positive rate, 554

K nearest neighbors classifier, 477

KNN classifier, 477

loss function, 572

naive Bayes classifier, 473

overfitting, 574

paired t-test, 569

precision, 550, 554

recall, 551

sensitivity, 554

specificity, 554

true negative, 553

true negative rate, 554

true positive, 553

true positive rate, 554

unstable, 575

variance, 573

classifier evaluation, 562

bootstrap resampling, 563

confidence interval, 565

cross-validation, 562

paired t-test, 569

closed itemsets, 243

Charm algorithm, 248

equivalence class, 244

cluster stability, 454

clusterability, 457

clustering, 28

centroid, 333

curse of dimensionality, 388

DBSCAN, 375

border point, 375

core point, 375

density connected, 376

density-based cluster, 376

directly density reachable, 375

ǫ-neighborhood, 375

noise point, 375

DENCLUE

density attractor, 385

dendrogram, 364

density-based

DBSCAN, 375

DENCLUE, 385

EM, see expectation maximization

EM algorithm, see expectation maximization

algorithm

evaluation, 425

expectation maximization, 342, 343

expectation step, 344, 348

initialization, 344, 348

maximization step, 345, 348

multivariate data, 346

univariate data, 344

expectation maximization algorithm,

349

external validation, 425

Gaussian mixture model, 342

graph cuts, 401

internal validation, 425

K-means, 334

specialization of EM, 353

kernel density estimation, 379

kernel K-means, 338

Markov chain, 416

Markov clustering, 416

Markov matrix, 416

relative validation, 425

spectral clustering

computational complexity, 407

stability, 425

sum of squared errors, 333

tendency, 425

validation

external, 425
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internal, 425

relative, 425

clustering evaluation, 425

clustering stability, 425

clustering tendency, 425, 457

distance distribution, 459

Hopkins statistic, 459

spatial histogram, 457

clustering validation

BetaCV measure, 441

C-index, 441

Calinski–Harabasz index, 450

clustering tendency, 457

conditional entropy, 430

contingency table, 426

correlation measures, 436

Davies–Bouldin index, 444

distance distribution, 459

Dunn index, 443

entropy-based measures, 430

external measures, 425

F-measure, 427

Fowlkes–Mallows measure,

435

gap statistic, 452

Hopkins statistic, 459

Hubert statistic, 437, 445

discretized, 438

internal measures, 440

Jaccard coefficient, 435

matching based measures, 426

maximum matching, 427

modularity, 443

mutual information, 431

normalized, 431

normalized cut, 442

pairwise measures, 433

purity, 426

Rand statistic, 435

relative measures, 448

silhouette coefficient, 444, 448

spatial histogram, 457

stability, 454

variation of information, 432

conditional entropy, 430

confidence interval, 325, 565

small sample, 567

unknown variance, 566

confusion matrix, 550

contingency table, 78

χ2 test, 85

clustering validation, 426

multiway, 84

correlation, 45

cosine similarity, 7

covariance, 43

covariance matrix, 46, 49

bivariate, 74

determinant, 46

eigen-decomposition, 57

eigenvalues, 49

inner product, 50

outer product, 50

positive semidefinite, 49

trace, 46

cross-validation, 562

leave-one-out, 562

cumulative distribution

binomial, 18

cumulative distribution function, 18

empirical CDF, 33

empirical inverse CDF, 34

inverse CDF, 34

joint CDF, 22, 23

quantile function, 34

curse of dimensionality

clustering, 388

data dimensionality, 2

extrinsic, 13

intrinsic, 13

data matrix, 1

centering, 10

column space, 12

mean, 9

rank, 13

row space, 12

symbolic, 63

total variance, 9

data mining, 25

data normalization

range normalization, 52

standard score normalization, 52

Davies–Bouldin index, 444

DBSCAN algorithm, 375

decision tree algorithm, 485

decision trees, 481

axis-parallel hyperplane, 483

categorical attributes, 485

data partition, 483

decision rules, 485

entropy, 486

Gini index, 487

information gain, 487

purity, 484

split point, 483

split point evaluation, 488

categorical attributes, 492

measures, 486

numeric attributes, 488

DENCLUE

center-defined cluster, 386

density attractor, 385

density reachable, 387

density-based cluster, 387

DENCLUE algorithm, 385

dendrogram, 364

density attractor, 385
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density estimation, 379

nearest neighbors based, 384

density-based cluster, 387

density-based clustering

DBSCAN, 375

DENCLUE, 385

dimensionality reduction, 183

discrete random variable, 14

discretization, 89

equal-frequency intervals, 89

equal-width intervals, 89

dominant eigenvector, 105

power iteration method, 105

Dunn index, 443

Eclat algorithm, 225

computational complexity, 228

dEclat, 229

diffsets, 228

equivalence class, 226

empirical joint probability mass function, 457

ensemble classifiers, 575

bagging, 576

boosting, 577

entropy, 486

split, 487

EPMF, see empirical joint probability

mass function

error rate, 549

Euclidean distance, 7

expectation maximization, 342, 343, 357

expectation step, 358

maximization step, 359

expected value, 34

exploratory data analysis, 26

F-measure, 427

false negative, 553

false positive, 553

Fisher exact test, 316, 318

Fowlkes–Mallows measure, 435

FPGrowth algorithm, 231

frequent itemset, 219

frequent itemsets

mining, 221

frequent pattern mining, 27

gamma function, 80, 166

gap statistic, 452

Gauss error function, 55

Gaussian mixture model, 342

generalized itemset, 250

GenMax algorithm, 245

maximality checks, 245

Gini index, 487

graph, 280

adjacency matrix, 96

weighted, 96

authority score, 110

average degree, 98

average path length, 98

Barabási–Albert model, 124

clustering coefficient, 131

degree distribution, 125

diameter, 131

centrality

authority score, 110

betwenness, 103

closeness, 103

degree, 102

eccentricity, 102

eigenvector centrality, 104

hub score, 110

pagerank, 108

prestige, 104

clustering coefficient, 100

clustering effect, 114

degree, 97

degree distribution, 94

degree sequence, 94

diameter, 98

eccentricity, 98

effective diameter, 99

efficiency, 101

Erdös–Rényi model, 116

HITS, 110

hub score, 110

labeled, 280

PageRank, 108

preferential attachment, 124

radius, 98

random graphs, 116

scale-free property, 113

shortest path, 95

small-world property, 112

transitivity, 101

Watts–Strogatz model, 118

clustering coefficient, 119

degree distribution, 121

diameter, 119, 122

graph clustering

average weight, 409

degree matrix, 395

graph cut, 402

k-way cut, 401

Laplacian matrix, 398

Markov chain, 416

Markov clustering, 416

MCL algorithm, 418

modularity, 411

normalized adjacency matrix, 395

normalized asymmetric Laplacian, 400

normalized cut, 404

normalized modularity, 415

normalized symmetric Laplacian, 399

objective functions, 403, 409

ratio cut, 403

weighted adjacency matrix, 394
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graph cut, 402

graph isomorphism, 281

graph kernel, 156

exponential, 157

power kernel, 157

von Neumann, 158

graph mining

canonical DFS code, 287

canonical graph, 286

canonical representative, 285

DFS code, 286

edge growth, 283

extended edge, 280

graph isomorphism, 281

gSpan algorithm, 288

rightmost path extension, 284

rightmost vertex, 285

search space, 283

subgraph isomorphism, 282

graph models, 112

Barabási–Albert model, 124

Erdös–Rényi model, 116

Watts–Strogatz model, 118

graphs

degree matrix, 395

Laplacian matrix, 398

normalized adjacency matrix, 395

normalized asymmetric Laplacian, 400

normalized symmetric Laplacian, 399

weighted adjacency matrix, 394

GSP algorithm, 261

gSpan algorithm, 288

candidate extension, 291

canonicality checking, 295

subgraph isomorphisms, 293

support computation, 291

hierarchical clustering, 364

agglomerative, 364

complete link, 367

dendrogram, 364, 365

distance measures, 367

divisive, 364

group average, 368

Lance–Williams formula, 370

mean distance, 368

minimum variance, 368

single link, 367

update distance matrix, 370

Ward’s method, 368

Hopkins statistic, 459

Hubert statistic, 437, 445

hyper-rectangle, 163

hyperball, 164

volume, 165

hypercube, 164

volume, 165

hyperspace, 163

density of multivariate normal, 172

diagonals, 171

angle, 171

hypersphere, 164

asymptotic volume, 167

closed, 164

inscribed within hypercube, 168

surface area, 167

volume of thin shell, 169

hypersphere volume, 175

Jacobian, 176–178

Jacobian matrix, 176–178

IID, see independent and identically distributed

inclusion–exclusion principle, 251

independent and identically distributed, 24

information gain, 487

interquartile range, 38

itemset, 217

itemset mining, 217, 221

Apriori algorithm, 223

level-wise approach, 223

candidate generation, 221

Charm algorithm, 248

computational complexity, 222

Eclat algorithm, 225

tidset intersection, 225

FPGrowth algorithm, 231

frequent pattern tree, 231

frequent pattern tree, 231

GenMax algorithm, 245

level-wise approach, 223

negative border, 240

partition algorithm, 238

prefix search tree, 221, 223

support computation, 221

tidset intersection, 225

itemsets

assessment measures, 309

closed, 313

maximal, 312

minimal generator, 313

minimum support threshold, 219

productive, 314

support, 309

relative, 309

closed, 243, 248

closure operator, 243

properties, 243

generalized, 250

maximal, 242, 245

minimal generators, 244

nonderivable, 250, 254

relative support, 219

rule-based assessment measures, 310

support, 219

Jaccard coefficient, 435

Jacobian matrix, 176–178



590 Index

K nearest neighbors classifier, 477

K-means

algorithm, 334

kernel method, 338

k-way cut, 401

kernel density estimation, 379

discrete kernel, 380, 382

Gaussian kernel, 380, 383

multivariate, 382

univariate, 379

kernel discriminant analysis, 505

kernel K-means, 338

kernel matrix, 135

centered, 151

normalized, 153

kernel methods

data-specific kernel map, 142

diffusion kernel, 156

exponential, 157

power kernel, 157

von Neumann, 158

empirical kernel map, 140

Gaussian kernel, 147

graph kernel, 156

Hilbert space, 140

kernel matrix, 135

kernel operations

centering, 151

distance, 149

mean, 149

norm, 148

normalization, 153

total variance, 150

kernel trick, 137

Mercer kernel map, 143

polynomial kernel

homogeneous, 144

inhomogeneous, 144

positive semidefinite kernel, 138

pre-Hilbert space, 140

reproducing kernel Hilbert space, 140

reproducing kernel map, 139

reproducing property, 140

spectrum kernel, 155

string kernel, 155

vector kernel, 144

kernel PCA, see kernel principal component

analysis

kernel principal component analysis, 202

kernel trick, 338

KL divergence, see Kullback–Leibler divergence

KNN classifier, 477

Kullback–Leibler divergence, 457

linear discriminant analysis, 498

between-class scatter matrix, 501

Fisher objective, 500

optimal linear discriminant, 501

within-class scatter matrix, 501

loss function, 572

squared loss, 572

zero-one loss, 572

Mahalanobis distance, 56

Markov chain, 416

Markov clustering, 416

maximal itemsets, 242

GenMax algorithm, 245

maximum likelihood estimation,

343, 353

covariance matrix, 355

mean, 354

mixture parameters, 356

maximum matching, 427

mean, 34

median, 35

minimal generator, 244

mode, 36

modularity, 412, 443

multinomial distribution, 71

covariance, 72

mean, 72

sample covariance, 72

sample mean, 72

multiple hypothesis testing, 320

multivariate analysis

categorical, 82

numeric, 48

multivariate Bernoulli variable, 66, 82

covariance matrix, 68, 83

empirical PMF, 69

joint PMF, 73

mean, 67, 83

probability mass function, 66, 73

sample covariance matrix, 69

sample mean, 67

multivariate variable

Bernoulli, 66

mutual information, 431

normalized, 431

naive Bayes classifier, 473

categorical attributes, 476

numeric attributes, 473

nearest neighbors density estimation,

384

nonderivable itemsets, 250, 254

inclusion–exclusion principle, 251

support bounds, 252

normal distribution

Gauss error function, 55

normalized cut, 442

orthogonal complement, 186

orthogonal projection matrix, 186

error vector, 186

orthogonal subspaces, 186
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pagerank, 108

paired t-test, 569

pattern assessment, 309

PCA, see principal component analysis

permutation test, 320

swap randomization, 321

population, 24

power iteration method, 105

PrefixSpan algorithm, 265

principal component, 187

kernel PCA, 202

principal component analysis, 187

choosing the dimensionality, 197

connection with SVD, 211

mean squared error, 193, 197

minimum squared error, 189

total projected variance, 192, 196

probability density function, 16

joint PDF, 20, 23

probability distribution

Bernoulli, 15, 63

binomial, 15

bivariate normal, 21

Gaussian, 17

multivariate normal, 56

normal, 17, 54

probability mass function, 15

empirical joint PMF, 43

empirical PMF, 34

joint PMF, 20, 23

purity, 426

quantile function, 34

quartile, 38

Rand statistic, 435

random graphs, 116

average degree, 116

clustering coefficient, 117

degree distribution, 116

diameter, 118

random sample, 24

multivariate, 24

statistic, 25

univariate, 24

random variable, 14

Bernoulli, 63

bivariate, 19

continuous, 14

correlation, 45

covariance, 43

covariance matrix, 46, 49

discrete, 14

empirical joint PMF, 43

expectation, 34

expected value, 34

generalized variance, 46, 49

independent and identically distributed, 24

interquartile range, 38

mean, 34

bivariate, 43

multivariate, 48

median, 35

mode, 36

moments about the mean, 39

multivariate, 23

standard deviation, 39

standardized covariance, 45

total variance, 43, 46, 49

value range, 38

variance, 38

vector, 23

receiver operating characteristic curve, 556

ROC curve, see receiver operating characteristic

curve

rule assessment, 301

sample covariance matrix

bivariate, 75

sample mean, 25

sample space, 14

sample variance

geometric interpretation, 40

sequence, 259

closed, 260

maximal, 260

sequence mining

alphabet, 259

GSP algorithm, 261

prefix, 259

PrefixSpan algorithm, 265

relative support, 260

search space, 260

sequence, 259

SPADE algorithm, 263

subsequence, 259

consecutive, 259

substring, 259

substring mining, 267

suffix, 259

suffix tree, 267

support, 260

silhouette coefficient, 444, 448

singular value decomposition, 208

connection with PCA, 211

Frobenius norm, 210

left singular vector, 209

reduced SVD, 209

right singular vector, 209

singular value, 209

spectral decomposition, 210

Spade algorithm

sequential joins, 263

spectral clustering

average weight, 409

computational complexity, 407

degree matrix, 395

k-way cut, 401
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spectral clustering (cont.)

Laplacian matrix, 398

modularity, 411

normalized adjacency matrix, 395

normalized asymmetric Laplacian, 400

normalized cut, 404

normalized modularity, 415

normalized symmetric Laplacian, 399

objective functions, 403, 409

ratio cut, 403

weighted adjacency matrix, 394

spectral clustering algorithm, 406

standard deviation, 39

standard score, 39

statistic, 25

robustness, 35

sample correlation, 45

sample covariance, 44

sample covariance matrix, 46, 50

sample interquartile range, 38

sample mean, 25, 35

bivariate, 43

multivariate, 48

sample median, 36

sample mode, 36

sample range, 38

sample standard deviation, 39

sample total variance, 43

sample variance, 39

standard score, 39

trimmed mean, 35

unbiased estimator, 35

z-score, 39

statistical independence, 22

Stirling numbers

second kind, 333

string, see sequence

string kernel

spectrum kernel, 155

subgraph, 281

connected, 281

support, 283

subgraph isomorphism, 282

substring mining, 267

suffix tree, 267

Ukkonen’s algorithm, 270

suffix tree, 267

Ukkonen’s algorithm, 270

support vector machines, 514

bias, 514

canonical hyperplane, 518

classifier, 522

directed distance, 515

dual algorithm, 535

dual objective, 521

hinge loss, 525, 532

hyperplane, 514

Karush–Kuhn–Tucker conditions, 521

kernel SVM, 530

linearly separable, 515

margin, 518

maximum margin hyperplane, 520

newton optimization algorithm, 539

nonseparable case, 524

nonlinear case, 530

primal algorithm, 539

primal kernel SVM algorithm, 541

primal objective, 520

quadratic loss, 529, 532

regularization constant, 525

separable case, 520

separating hyperplane, 515

slack variables, 525

soft margin, 525

stochastic gradient ascent algorithm, 535

support vectors, 518

training algorithms, 534

weight vector, 514

SVD, see singular value decomposition

SVM, see support vector machines

swap randomization, 321

tidset, 218

transaction identifiers, 218

tids, 218

total variance, 9, 43

transaction, 218

transaction database, 218

true negative, 553

true positive, 553

Ukkonen’s algorithm

computational cost, 271

implicit extensions, 272

implicit suffixes, 271

skip/count trick, 272

space requirement, 270

suffix links, 273

time complexity, 276

univariate analysis

categorical, 63

numeric, 33

variance, 38

variation of information, 432

vector

dot product, 6

Euclidean norm, 6

length, 6

linear combination, 4

Lp-norm, 7

normalization, 7

orthogonal decomposition, 10

orthogonal projection, 11

orthogonality, 8

perpendicular distance, 11

standard basis, 4

unit vector, 6



Index 593

vector kernel, 144

Gaussian, 147

polynomial, 144

vector random variable, 23

vector space

basis, 13

column space, 12

dimension, 13

linear combination, 12

linear dependence, 13

linear independence, 13

orthogonal basis, 13

orthonormal basis, 13

row space, 12

span, 12

spanning set, 12

standard basis, 13

Watts–Strogatz model

clustering coefficient, 122

z-score, 39




