
1

Association Rule Mining

Generating assoc. rules from
frequent itemsets

Assume that we have discovered the
frequent itemsets and their support
How do we generate association rules?
Frequent itemsets:

2{2,3,5}

2{3,5}

3{2,5}

2{2,3}

2{1,3}

3{5}

3{3}

3{2}

2{1}

?

For each frequent itemset l find all
nonempty subsets s. For each s
generate rule s ⇒ l-s if
sup(l)/sup(s)≥min_conf

Example: for {2,3,5}, min_conf = 75%
{2,3} ⇒ 5
{2,5} ⇒ 3
{3,5} ⇒ 2

√

√

X

2

Discovering Rules

Naïve Algorithm
for each frequent itemset l do

for each subset c of l do
if (support(l) / support(l - c) >= minconf) then

output the rule (l – c) ⇒ c,
with confidence = support(l) / support (l - c)
and support = support(l)

Discovering Rules (2)
Lemma. If consequent c generates a valid rule,
so do all subsets of c. (e.g. X ⇒ YZ, then XY ⇒ Z
and XZ ⇒ Y)

Example: Consider a frequent itemset ABCDE

If ACDE ⇒ B and ABCE ⇒ D are the only one-consequent
rules with minimum support confidence, then

ACE ⇒ BD is the only other rule that needs to be tested

3

Is Apriori Fast Enough? —
Performance Bottlenecks

The core of the Apriori algorithm:
Use frequent (k – 1)-itemsets to generate candidate frequent k-
itemsets
Use database scan and pattern matching to collect counts for
the candidate itemsets

The bottleneck of Apriori: candidate generation
Huge candidate sets:

104 frequent 1-itemset will generate 107 candidate 2-
itemsets
To discover a frequent pattern of size 100, e.g., {a1, a2, …,
a100}, one needs to generate 2100 ≈ 1030 candidates.

Multiple scans of database:
Needs (n +1) scans, n is the length of the longest pattern

FP-growth: Mining Frequent Patterns
Without Candidate Generation

Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure

highly condensed, but complete for frequent pattern
mining

avoid costly database scans

Develop an efficient, FP-tree-based frequent
pattern mining method

A divide-and-conquer methodology: decompose mining
tasks into smaller ones

Avoid candidate generation: sub-database test only!

4

FP-tree Construction from a
Transactional DB

Item frequency
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:

1. Scan DB once, find frequent 1-itemsets (single
item patterns)

2. Order frequent items in descending order of
their frequency

3. Scan DB again, construct FP-tree

FP-tree Construction

root

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

Item frequency
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

f:1

c:1

a:1

m:1

p:1

5

FP-tree Construction

root

Item frequency
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

f:2

c:2

a:2

m:1

p:1

b:1

m:1

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

FP-tree Construction

root

Item frequency
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

c:1

b:1

p:1

6

FP-tree Construction

root

Item frequency
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

TID freq. Items bought
100 {f, c, a, m, p}
200 {f, c, a, b, m}
300 {f, b}
400 {c, p, b}
500 {f, c, a, m, p}

c:1

b:1

p:1

Header Table
Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

Benefits of the FP-tree Structure

Completeness:
never breaks a long pattern of any transaction
preserves complete information for frequent pattern mining

Compactness
reduce irrelevant information—infrequent items are gone
frequency descending ordering: more frequent items are
more likely to be shared
never be larger than the original database (if not count
node-links and counts)
Example: For Connect-4 DB, compression ratio could be
over 100

7

Mining Frequent Patterns Using
FP-tree

General idea (divide-and-conquer)
Recursively grow frequent pattern path using the FP-tree

Method
For each item, construct its conditional pattern-base, and
then its conditional FP-tree
Repeat the process on each newly created conditional FP-
tree
Until the resulting FP-tree is empty, or it contains only
one path (single path will generate all the combinations of its
sub-paths, each of which is a frequent pattern)

Mining Frequent Patterns Using the FP-tree
(cont’d)

Start with last item in order (i.e., p).
Follow node pointers and traverse only the paths containing p.
Accumulate all of transformed prefix paths of that item to form
a conditional pattern base

Conditional pattern base for p
fcam:2, cb:1

f:4

c:3

a:3

m:2

p:2

c:1

b:1

p:1

p

Construct a new FP-tree based
on this pattern, by merging all
paths and keeping nodes that
appear ≥sup times. This leads to
only one branch c:3
Thus we derive only one frequent
pattern cont. p. Pattern cp

8

Mining Frequent Patterns Using the FP-tree
(cont’d)

Move to next least frequent item in order, i.e., m
Follow node pointers and traverse only the paths containing m.
Accumulate all of transformed prefix paths of that item to form
a conditional pattern base

f:4

c:3

a:3

m:2

m

m:1

b:1

m-conditional
pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree (contains only path fca:3)

All frequent patterns
that include m
m,
fm, cm, am,
fcm, fam, cam,
fcam

Properties of FP-tree for Conditional Pattern
Base Construction

Node-link property
For any frequent item ai, all the possible frequent patterns
that contain ai can be obtained by following ai's node-links,
starting from ai's head in the FP-tree header

Prefix path property
To calculate the frequent patterns for a node ai in a path P,
only the prefix sub-path of ai in P need to be accumulated,
and its frequency count should carry the same count as
node ai.

9

Conditional Pattern-Bases for the example

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p

Conditional FP-treeConditional pattern-baseItem

Principles of Frequent Pattern Growth

Pattern growth property
Let α be a frequent itemset in DB, B be α's conditional
pattern base, and β be an itemset in B. Then α ∪ β is
a frequent itemset in DB iff β is frequent in B.

“abcdef ” is a frequent pattern, if and only if
“abcde ” is a frequent pattern, and

“f ” is frequent in the set of transactions containing
“abcde ”

10

Why Is Frequent Pattern Growth Fast?

Performance studies show

FP-growth is an order of magnitude faster than Apriori,

and is also faster than tree-projection

Reasoning

No candidate generation, no candidate test

Uses compact data structure

Eliminates repeated database scan

Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With
the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

