Data Understanding Data Preprocessing

Classification & Regression

Overfitting in Decision Trees

- If a decision tree is fully grown, it may lose some generalization capability.
- This is a phenomenon known as *overfitting*.

Data Understanding Data Preprocessing

Classification & Regression

Definition of Overfitting

Consider the error of hypothesis h. We let error on the training data be $\operatorname{error}_{train}(h)$ and error over the entire distribution D of data be $\operatorname{error}_D(h)$.

Then a hypothesis h "overfits" the training data if there is an alternative hypothesis, h', such that: $\operatorname{error}_{train}(h) < \operatorname{error}_{train}(h')$ $\operatorname{error}_{D}(h) < \operatorname{error}_{D}(h')$

Data Understanding Data Preprocessing Classification & Regression

Model Overfitting

Errors committed by classification models are generally divided into two types:

1

Training Errors

The number of misclassification errors committed on training records; also called resubstitution error.

3

Generalization Errors

The expected error of the model on previously unseen records.

Data Understanding Data Preprocessing

Classification & Regression

Causes of Overfitting

Overfitting Due to Presence of Noise Mislabeled instances may contradict the class labels of other similar records.

Overfitting Due to Lack of Representative Instances Lack of representative instances in the training data can prevent refinement of the learning algorithm.

4

Overfitting and the Multiple Comparison Procedure Failure to compensate for algorithms that explore a large number of alternatives can result in spurious fitting.

5

Data Preprocessing Classification & Regression

Overfitting Due to Noise: An Example

An example training set for classifying mammals. Asterisks denote mislabelings.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Porcupine	Warm-blooded	Yes	Yes	Yes	Yes
Cat	Warm-blooded	Yes	Yes	No	Yes
Bat	Warm-blooded	Yes	No	Yes	No*
Whale	Warm-blooded	Yes	No	No	No*
Salamander	Cold-blooded	No	Yes	Yes	No
Komodo dragon	Cold-blooded	No	Yes	No	No
Python	Cold-blooded	No	No	Yes	No
Salmon	Cold-blooded	No	No	No	No
Eagle	Warm-blooded	No	No	No	No
Guppy	Cold-blooded	Yes	No	No	No

6

Data Understanding Data Preprocessing

Classification & Regression

Overfitting Due to Noise

An example testing set for classifying mammals.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Human	Warm-blooded	Yes	No	No	Yes
Pigeon	Warm-blooded	No	No	No	No
Elephant	Warm-blooded	Yes	Yes	No	Yes
Leopard shark	Cold-blooded	Yes	No	No	No
Turtle	Cold-blooded	No	Yes	No	No
Penguin	Cold-blooded	No	No	No	No
Eel	Cold-blooded	No	No	No	No
Dolphin	Warm-blooded	Yes	No	No	Yes
Spiny anteater	Warm-blooded	No	Yes	Yes	Yes
Gila monster	Cold-blooded	No	Yes	Yes	No

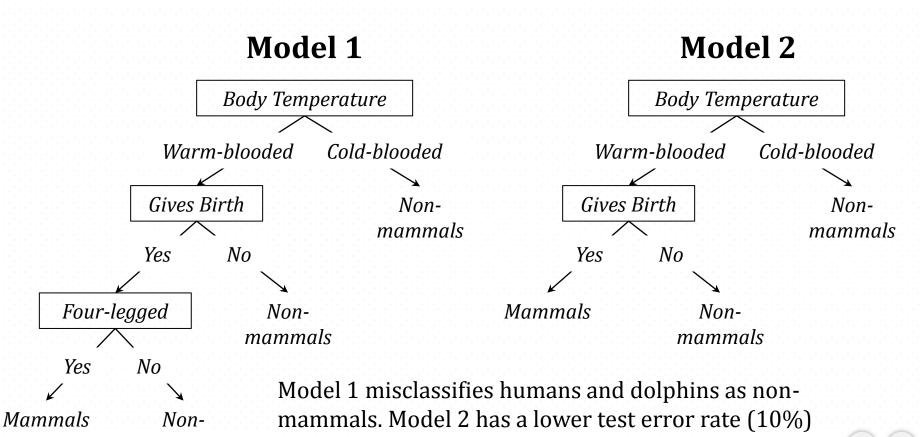
7

Data Understanding

mammals

Data Preprocessing Classification & Regression

Overfitting Due to Noise



even though its training error rate is higher (20%).

(>

Data Understanding Data Preprocessing Classification & Regression

Overfitting Due to Lack of Samples

An example training set for classifying mammals.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Salamander	Cold-blooded	No	Yes	Yes	No
Guppy	Cold-blooded	Yes	No	No	No
Eagle	Warm-blooded	No	No	No	No
Poorwill	Warm-blooded	No	No	Yes	No
Platypus	Warm-blooded	No	Yes	Yes	Yes

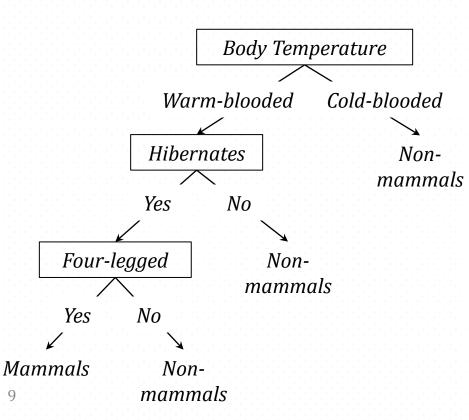
9

Understanding

Preprocessing

Classification & Regression

Overfitting Due to Lack of Samples



Although the model's training error is zero, its error rate on the test set if 30%.

Humans, elephants, and dolphins are misclassified because the decision tree classifies all warmblooded vertebrates that do not hibernate as non-mammals. The tree arrives at this classification decision because there is only one training records, which is an eagle, with such characteristics.

Data nderstandin Data Preprocessing Classification & Regression

Model Overfitting

A good model must not only fit the training data well but also accurately classify records it has never seen.

In other words, a good model must have *low training error* **and** *low generalization error*.

11

Data nderstandin Data Preprocessing Classification & Regression

Model Overfitting

A good model must not only fit the training data well but also accurately classify records it has never seen.

In other words, a good model must have *low training error* **and** *low generalization error*.

Data Understanding

Data Preprocessing

Classification & Regression

Occam's Razor

"Everything should be made as simple as possible, but no simpler."

All other things being equal, simple theories are preferable to complex ones.

Data Understanding Data Preprocessing

Classification & Regression

Occam's Razor

But *why* prefer a short hypothesis?

There are fewer short hypotheses than long hypotheses.

3

A short hypothesis that fits the data is unlikely to be a coincidence.

A long hypothesis that fits the data might be a coincidence.

Data Inderstandii Data Preprocessing Classification & Regression

Minimum Description Length Principle

- A formalization of Occam's razor.
- The Idea:

The best hypothesis for a given set of data is the one that leads to the best compression of the data.

How do we measure "compression"?

Data Understanding Data Preprocessing

Classification & Regression

MDL: Inuitive Explanation

Occam's razor: prefer the shortest hypothesis.

MDL: prefer the hypothesis *h* that minimizes the space required to describe a theory plus the space required to describe the theory's mistakes.

Data Understanding Data Preprocessing Classification & Regression

MDL: Formal Explanation

Occam's razor: prefer the shortest hypothesis. **MDL**: prefer the hypothesis *h* that minimizes $h_{MDL} = \underset{h \in H}{\operatorname{argmin}} L_{C_1}(h) + L_{C_2}(D|h)$

where L_{C_x} is the description length of x under encoding C.

Data Understanding Data Preprocessing

MDL Example

Let *H* be a set of decision trees (hypotheses) and *D* be a set of training data labels. Then,

- $L_{C_1}(h)$ is the number of bits to describe tree *h*.
- $L_{C_2}(D|h)$ is the number of bits to describe D given h.
 - Note that $L_{C_2}(D|h) = 0$ if all training instances are classified perfectly by *h*. It need only describe exceptions.
- Hence h_{MDL} trades-off tree size for training errors.

Data Preprocessing Classification & Regression

MDL for Classification Models

- The hypothesis is the classification model and the description length is the combined description of the model and its errors on the training data.
- Using the MDL principle, we seek a classifier with *shortest* description.
- Used this way, the MDL principle is a model selection criterion—a way to select between potential models or hypotheses.

Data nderstanding Data Preprocessing

Classification & Regression

Model Selection Criteria

Model selection criteria attempt to find a good compromise between:

- a) The model's complexity
- b) The model's prediction accuracy on unseen data
- Reasoning: a good model is a simple model that achieves high accuracy on the given data
- Also known as Occam's Razor: the best theory is the smallest one that describes all the facts

Data

Data Preprocessing Classification & Regression

Elegance vs. Errors

Consider the following two theories of some data:

Theory 1: very simple, elegant theory that explains the data almost perfectly

Theory 2: significantly more complex theory that reproduces the data without mistakes

Theory 1 is probably preferable.

Data Jnderstandin Data Preprocessing Classification & Regression

Elegance vs. Errors Example

Canonical example: Kepler's laws of planetary motion.

- Actually *less* accurate the Copernicus's latest refinement of the Ptolemaic theory of epicycles.
- But far simpler.

"I have cleared the Augean stables of astronomy of cycles and spirals, and left behind me a single cartload of dung." –Johannes Kepler

Data Understanding Data Preprocessing Classification & Regression

From Theory to Practice

Let's look at how to turn these ideas of model selection criteria into practice.

Data Understanding

Data Preprocessing

Avoiding Overfitting in Decision Trees

- Stop growing the tree when the data split is not statistically significant
- Grow the full tree, then prune
 - Do we really needs all the "small" leaves with perfect coverage?

Data Understanding Data Preprocessing

Classification & Regression

Avoiding Overfitting in Decision Trees

- How to select
 - Measure performance over training data (and include some estimates for generalization)
 - Measure performance over separate validation data
 - Use Minimum Description Length Principle (MDL)
 - Minimize, size(tree) + size(misclassiciation(tree))

Data Understanding

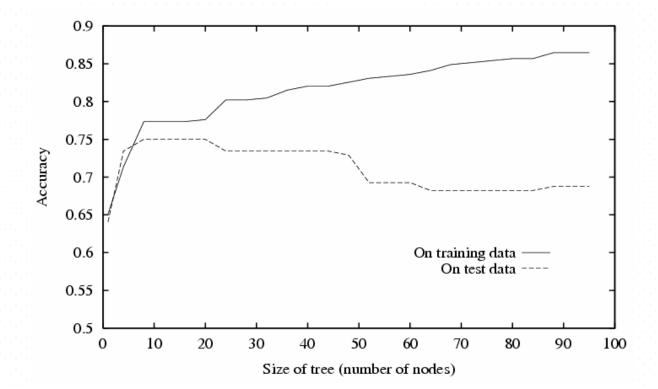
Data Preprocessing Classification & Regression

Decision Tree Pruning Methodologies

- Pre-pruning (top-down)
 - Stopping criteria while growing the tree
- Post-pruning (bottom-up)
 - Grow the tree, then prune
 - -More popular

Data Understanding Data Preprocessing Classification & Regression

Decision Tree Overfitting



Data Understanding Data Preprocessing Classification & Regression

Decision Tree Pre-Pruning

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node
 - Stop if all instances belong to the same class
 - Stop if all the feature values are the same

Data Understanding Data Preprocessing Classification & Regression

Decision Tree Pre-Pruning

- More restrictive conditions
 - Stop if the number of instances is less than some usespecified threshold
 - Stop if the class distribution of instances are independent of the available features
 - Stop if expanding the current node does not improve impurity.

Data Understanding Data Preprocessing Classification & Regression

Decision Tree Post-Pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-prunning

Data Understanding Data Preprocessing

Classification & Regression

Decision Tree Post-Pruning

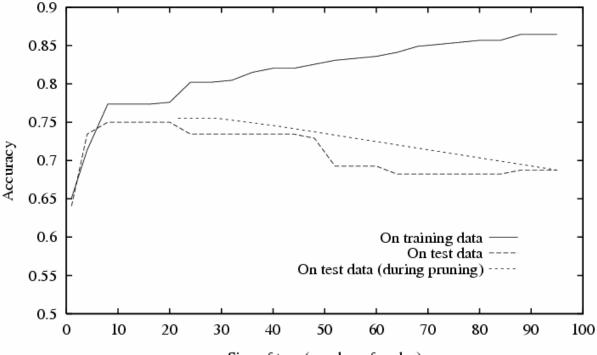
- Reduced Error Pruning
 - Split data into training and validation set
 - Remove one node at a time and evaluate the performance on the validation data
 - Remove the one that decreases the error
 - Usually produces the smallest version of a tree
 - But always requires a validation set

31

Data Understanding

Data Preprocessing Classification & Regression

Decision Tree Pruning



Size of tree (number of nodes)

Data Understanding Data Preprocessing

Classification & Regression

Decision Trees: Pros and Cons

- Pros:
 - Fast in implementation
 - Works with all types of features
 - Insensitive to outliers
 - Few tuning parameters
 - Efficient in handling missing values
 - Interpretable model representation

Data Understanding Data Preprocessing

Classification & Regression

Decision Trees: Pros and Cons

- Cons:
 - Not effective at approximating linear or smooth functions or boundaries
 - Trees always include high-order interactions
 - Large variance
 - Each split is conditional on all of its ancestor splits.