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Abstract

We discuss the identification of features that are associated with an outcome in RNA-

Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments.

RNA-Seq data takes the form of counts, so models based on the normal distribution are

generally unsuitable. The problem is especially challenging because different sequencing

experiments may generate quite different total numbers of reads, or “sequencing depths”.

Existing methods for this problem are based on Poisson or negative-binomial models:

they are useful but can be heavily influenced by “outliers” in the data. We introduce a

simple, non-parametric method with resampling to account for the different sequencing

depths. The new method is more robust than parametric methods. It can be applied to

data with quantitative, survival, two-class, or multiple-class outcomes. We compare our

proposed method to Poisson and negative-binomial based methods in simulated and real

data sets, and find that our method discovers more consistent patterns than competing

methods.
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1 Introduction

Biological conditions and disease statuses are known to be largely characterized by dif-

ferences in gene expression levels (see for instance [8, 26, 10, 6]). In the past decade, mi-

croarrays have been the primary choice for genome-wide gene expression analysis. Each

array measures the expression levels of all genes from one sample, and using multiple

arrays, expression levels in different samples are captured. Genes that are differentially

expressed among samples can then be identified by statistical algorithms (see for example

[9, 13, 19, 31]).

In the recent years, RNA-Seq has become a very competitive alternative to the mi-

croarrays (see for instance [17, 18, 25, 33, 34]). Figure 1 illustrates the process of using

RNA-Seq for comparative experiments. In each experiment, mRNA are amplified, shat-

tered, and reverse transcribed into cDNA. These short pieces of cDNA are sequenced,

giving a list of short sequences called reads. These reads are then mapped to the reference

genome using an appropriate algorithm, telling us which region each read comes from.

Finally, for a set of regions of interest on the genome, such as genes, exons, or junctions,

we count the number of reads mapped unambiguously to each of them, and use this

count as a measure of expression of the region. This measure is a nonnegative integer,

in contrast to the continuous value obtained from a microarray. In comparative experi-

ments, RNA-Seq measurements are done for multiple samples. While the expressions of

each sample are summarized by a vector of counts, the expressions of all experiments are

finally put together and form a matrix, as shown in Figure 1.

Suppose that we have data from n RNA-Seq experiments, and each of them produces

counts for p regions of interest. Statistically, we treat each experiment as a “sample”,

and each region of interest as a “feature”. The data we have is an n×p matrix N, whose

element Nij is the number of reads mapped to Feature j in Experiment i, 1 ≤ i ≤ n,

1 ≤ j ≤ p. It is important to note that the expectation of Nij depends not only on the

expression of Feature j, but also on the length of the read list (that is, the total number

of reads) generated by Experiment i (See Figure 1). For example, if Experiment 1 and

2 use the identical biological sample (so every feature is equally expressed in the two

experiments), but Experiment 1 has one million reads in total and Experiment 2 has two

million reads in total, then it is likely that N2j ' 2N1j, for any j. Thus, counts from
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different experiments are not directly comparable before being “scaled” or “normalized”

properly. As a (relative) measure of the length of the list of reads, sequencing depth

is introduced. Suppose Feature j is non-differentially expressed in Experiment 1, . . . , n.

Using Experiment 1 as the base level whose sequencing depth is set to one, the sequencing

depth of Experiment i is the ratio of expected values E(Nij)/E(N1j), 1 ≤ i ≤ n.

In comparative experiments, the goal is to correlate gene expression with an “out-

come” for that sample. This outcome can be (1) two-class, such as diseased versus

healthy; (2) multiple-class, like subtype A versus subtype B versus subtype C of a dis-

ease; (3) quantitative, like a continuous value measuring the virus concentration in a

patient’s blood; or (4) survival, like the survival time of a patient. The task of compara-

tive experiments is to identify features that are overexpressed/underexpressed in samples

in one/several classes, samples with larger quantitative outcomes, or samples that survive

longer. If such overexpression or underexpression is found in a feature, we say this feature

is differentially expressed.

Many methods have been developed to identify differentially expressed features from

RNA-Seq data. These methods are parametric: they assume that (maybe after some

simple transformation) each Nij is drawn from a particular distribution, such as Gaussian

([4, 12]), Poisson ([16, 7, 32, 11, 14]), negative binomial ([23, 24, 22, 11, 1]), et al ([2, 15]).

It is reported that data from technical replicates can often be well characterized by Poisson

distribution ([16]), while data from biological replicates have much larger variance and

negative binomial models seem to be more appropriate ([21]). More precisely, in each

class, Nij ∼ Poisson(di ·νj) in technical replicates, where di denotes the sequencing depth

of Experiment i, and νj denotes the expression of Feature j. In biological replicates,

as samples in the same class may still have different expressions, it is better to assume

Nij ∼ Poisson(di · νij). However, this model contains too many parameters, so people

use Nij ∼ negative binomial(di · νj) instead. Most parametric methods (e.g. [22, 1, 14])

estimate the sequencing depth di first, and then include it as a known term in their model.

Then parametric test statistics are employed to test differential expression. As many of

these methods utilize the most powerful test statistic, they are very efficient when the

distributional assumption holds, even when the sample size is small. However, there is

no guarantee that the real data can be well characterized by the assumed distribution.
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If this distribution is a poor approximation, the results from the parametric method will

not be reliable.

Here we examine the sequencing data from [35], which we denote as the “Witten

data”. This data set contains 58 samples, evenly assigned to two classes, and 714 features

(miRNAs). 186 of the features are discarded from the analysis as they have no more than

0.5 reads averaged across samples. We apply the popular program edgeR ([21]), which

assumes negative binomial distribution, to this data. When we plot the counts of the

20 most significant features reported by edgeR, we see that many of them are unlikely

to follow a negative binomial distributions: one count dominates the class declared as

overexpressed (we call it leading class), while all the other counts are very small or

even zero. Figure 2 shows three of these genes. They are the 7th, 10th and 11th most

significant features detected by edgeR, and the largest count contains 99%, 88%, and 84%

of all reads in the leading class. Here, and in all similar plots in this paper, counts from

different experiments are scaled by the sequencing depths. Among the 528 features, 192

of them have more than 50% of reads concentrated on only one count. Provided each class

contains 29 samples, 50% is exceedingly large. It is well known that the negative binomial

distribution often has its largest mass not far from the mean, so it is very unlikely that the

counts follow a negative binomial distribution. If we still treat the distribution of counts

as negative binomial, these large counts should be “outliers”. There are possible reasons

for outliers. A gene may be very highly expressed in one individual but not others. In

this case, this high expression is a characteristic of this individual, and not related to the

outcome. Mapping errors may also produce outliers. In Section 3, we will use simulation

to show that parametric methods are very sensitive to the presence of outliers, where

they generally fail to give a reasonable estimate of the false discovery rate.

Nonparametric methods are a way to finesse the difficulty of modeling counts. With-

out relying on underlying distributional assumption, they can give reliable results on a

vast variety of data sets. In this paper, we describe a simple nonparametric method to

measure the significance of features from RNA-Seq data. We also implement the usual

permutation plug-in method to estimate the false discovery rate (FDR). Under various

simulation scheme, we show that this statistic is competitive with the best parametric-

based statistic under moderate sample size when the assumed parametric model holds.
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When the assumed model does not hold, our statistic is able to select significant features

much more efficiently than parametric methods. Also, in contrast to parametric methods,

our method gives a reliable estimate of the FDR. On several real data sets, our method

is able to find features that are expressed consistently higher in one class, and these are

more likely to be biologically meaningful.

Moreover, the use of current parametric methods is limited in the outcome types that

they can handle. Except for PoissonSeq ([14]), to our knowledge, existing methods can

only be used for data with two-class outcomes. PoissonSeq can also be used for data with

quantitative outcomes and multiple-class outcomes, but not survival outcomes. Because

of the complexity of parametric methods, it is often difficult to extend them to other

types of outcomes. In contrast, our nonparametric method can be used for all of the

types of outcomes mentioned above. Further, the resampling strategy that we developed

(Section 2.2) eliminates the difference between sequencing depths of experiments, making

it easy to generalize our method to other possible types of outcomes.

The rest of this paper is organized as follows. In Section 2, we propose a nonparametric

statistic for data with a two-class outcome and the associated resampling strategy, as well

as a permutation plug-in method to estimate the false discovery rate (FDR). In Section

3, we study the performance of our nonparametric method on simulated data sets, and

compare it with three available methods, edgeR, PoissonSeq, and DESeq. In Section 4,

we apply our method as well as edgeR, PoissonSeq, and DESeq on three real RNA-Seq

data sets, and compare the list of features that are called as differentially expressed by

different methods. In Section 5, we extend our nonparametric statistic to other types of

outcomes, and show their performance on simulated data sets. Section 6 contains the

discussion.

2 A nonparametric method for two-class data

2.1 Wilcoxon statistic

For Feature j, suppose that we have counts N1j , . . . , Nnj from either Class 1 or Class

2. Suppose Class k contains nk samples, k = 1, 2 and n1 + n2 = n. Let Ck = {i :

Sample i is from Class k}, k = 1, 2. If the sequencing depths of all n experiments are
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the same, then Ni1j > Ni2j indicates the expression of Feature j is higher in Experiment

i1 than i2. Let Rij(N) be the rank of Nij in N1j , . . . , Nnj. Then the two-sample Wilcoxon

statistic (also called the “Mann-Whitney statistic”) is

Tj =
∑

t∈C1

Rtj(N)− n1(n + 1)

2
(2.1)

Here we assume that there are no ties between N1j , . . . , Nnj. The constant term is set

as −n1(n + 1)/2 instead of −n1(n1 + 1)/2 (the usual definition) to make ETj = 0 when

Feature j is not differentially expressed. A larger absolute value of Tj is stronger evidence

of differential expression of Feature j, and positive/negative Tj indicates Feature j is over-

expressed/under-expressed in Class 1. The Wilcoxon statistic (2.1) only depends on the

ranks, and it is nonparametric.

2.2 Resampling strategy

Statistic (2.1) makes sense only if the sequencing depths of samples are the same. Other-

wise, N1j , . . . , Nnj are not comparable. Unfortunately, the sequencing depths of different

samples are often very different in real data sets.

One idea to solve this problem might be to simply scale each count Nij by the se-

quencing depth for Sample i. However we have found that this works poorly, as it does

not produce counts with the appropriate amount of variation. So we use a resampling

strategy instead.

Suppose the sequencing depths of the experiments are d1, . . . , dn. Here we assume

they are known. Denote dmin = mini=1,...,n di, and imin = argmini=1,...,n di. That is, the

iminth experiment has the smallest sequencing depth dmin. Recall that Nij is the number

of reads mapped to Feature i in Experiment j (See Figure 2). We keep the whole list

of reads generated by Experiment imin unchanged, and shorten lists generated by other

experiments so that they also have sequencing depth dmin. To do this, we randomly

select each read with probability dmin/di, and discard it with probability 1 − dmin/di.

After selection, the number of reads mapped to Feature j in Experiment i is

N ′
ij ∼ binomial(Nij, dmin/di). (2.2)
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We call this sampling method “down sampling”.

It can be viewed in another way. If Nij ∼ Poisson(di · νij), where νij is the expression

of Feature i in Experiment j, and we generate N ′
ij by (2.2), then N ′

ij ∼ Poisson(dmin · νij)
exactly. In this case, Experiment i after down sampling has the expected sequencing

depth dmin.

The Wilcoxon statistic for the down sampled data can be defined accordingly as

T ′
j =

∑

t∈C1

Rtj(N
′)− n1(n+ 1)

2
, (2.3)

where Rij(N
′) is the rank of N ′

ij in N ′
1j , . . . , N

′
nj.

In our experience, this down sampling method works well, but can be inefficient when

dmin is small, as too many reads are discarded. In this case, we instead resample each

experiment to a sequencing depth that is the geometric mean of the sequencing depths

for all experiments. More specifically, we let d̄ = (Πn
i=1di)

1/n, and resample using

N ′
ij ∼ Poisson(

d̄

di
Nij). (2.4)

We call this sampling method “Poisson sampling”. It is worth noting that even if Nij

follows a Poisson distribution, N ′
ij does not. It has the expected value d̄ · νij , but the

variance is inflated by a factor of d̄/di + 1. However, it turns out that this inflation

does not significantly harm the performance of the method (See section 3). Generally,

it is impossible to generate Poisson(d̄ · νij) from Poisson(di · νij) for any unknown νij if

d̄ > di. (Proof given by Persi Diaconis, not shown; personal communication.) Comparing

down sampling and Poisson sampling on simulation data under various scheme (results

not shown), we find they give very similar results when dmax/dmin < 10, and Poisson

sampling is significantly better than down sampling otherwise. Hence, we use Poisson

sampling hereafter. In the appendix, we give a simple theoretical analysis for the two

methods, based on Pitman efficiency.

In Equation (2.3), we assumed no ties between N ′
1j , . . . , N

′
nj. However, since they are

all integers, ties may occur. To break ties, we add a small random number to each count,

i.e., N ′
ij ← N ′

ij + εij , where εij ∼ i.i.d. Uniform(0, 0.1), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

In the above, we assume the sequencing depths d1, . . . , dn are known. In practice,
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they can be accurately estimated by several methods such as TMM ([22]), DESeq ([1]),

quantile normalization ([7]), and the one proposed in [14]. The last one is used in our

paper: it is a simple estimate, based on the mean read count over those features that

seem to be null in the data set.

2.3 Multiple resampling

The above resampling strategy makes the Wilcoxon statistic applicable, but it has two

drawbacks. First, only parts of the data are used: many reads are discarded during the

resampling procedure. Second, resampling, as well as adding small numbers for breaking

the ties, brings randomness to the results, which might be substantial for features with

small counts. These two drawbacks may finally lower the power of our nonparametric

method. To minimize these limitations, we repeat the resampling S times (S > 1) and

take the average. That is, if the rank of N ′
ij in N ′

1j , . . . , N
′
nj in Resampling s is Rtj(N

′s),

we use the statistic

T ?
j (two-class) =

1

S

S
∑

s=1

(

∑

t∈C1

Rtj(N
′s)− n1(n + 1)

2

)

. (2.5)

This multiple resampling strategy actually increases the power of Wilcoxon statistic de-

fined by (2.3) by reducing its variance. In simulation data, we find that S = 20 is large

enough to give a stable value of T ?
j and gain sufficient power.

2.4 Estimating the false discovery rate

Given T ?
1 , . . . , T

?
p , we often set a cutoff, say C, and call features with |T ?

j | > C as signifi-

cant. It is important to know the accuracy of our findings. When p is large, the preferred

measure of accuracy is the false discovery rate ([3]), FDR, the expected proportion of

false positives in the set of features called significant. Several ways have been proposed

to estimate FDR. When p-values can be easily calculated by the (exact or asymptotic)

distribution of the statistic, one can use methods by Benjamini and Hochberg ([3]). When

the distribution of the statistic is unknown, a popular choice is the permutation plug-in

estimate ([31, 27, 30, 29, 28]), which uses permutations to generate the null distribution

of the statistic.
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In our cases, the distribution of Wilcoxon statistics defined by Equation (2.3) are

known, but T ?
j defined by (2.5) are using the average of S Wilcoxon statistics, and

its distribution is no longer known. Hence, we use the permutation plug-in method to

estimate FDR in the following steps (See [30] for a detailed description).

1. Compute T ?
1 , . . . , T

?
p based on the data.

2. Permute the n outcome values B times. In the bth permutation, compute statistics

T ?b
1 , . . . , T ?b

p based on the permuted data.

3. For a range of values of the cutpoint C, compute V̂ = 1
B

∑p
j=1

∑B
b=1 I(|T ?b

j |>C), and

R̂ =
∑p

j=1 I(|T ?
j |>C).

4. Estimate the FDR at the cutpoint C by ˆFDRC = π̂0V̂ /R̂.

In Step 4 above, π̂0 is an estimate of π0, the true proportion of null features in the

population. The estimation is typically made by comparing the numbers of observed

and permutation statistics that fall in the non-significant range of values. We use the

usual estimate π̂0 = 2
∑p

j=1 I(|T ?
j |≤q)/p, where q the median of all permuted values |T ?b

j |,
j = 1, . . . , p, b = 1, . . .B.

In this paper, we call our nonparametric method SAMseq.

3 A simulation study

Methods based on the Poisson distribution assume that

Nij ∼ Poisson(µij), (3.1)

and

log µij = log di + log νj + γjI(j∈C2). (3.2)

Here di is the sequencing depth of Experiment i, νj captures the expression level of Feature

j in the first class, and γj is the differential expression. Current negative binomial-

distribution based methods assume

Nij ∼ negative binomial(µij), (3.3)
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with µij also specified by Equation 3.2.

Li et al. ([14]) proposed a way to simulate di, νj and γj in Model (3.2) to mimic real

data, and we employ it here. Briefly it is as follows: (1) di are simulated so that the total

number of reads are similar to real RNA-Seq experiments and the maximum sequencing

depth is about 7 times of the minimum, (2) νj are simulated so that the profile of gene

expression levels are similar to a real RNA-Seq data set ([16]), (3) γj are simulated so that

the average fold change for the significant features is about 2.7. p = 20, 000 features are

simulated, which is roughly the number of genes in the human genome. For the negative

binomial distributed data, a constant dispersion parameter 0.25 is used. Different from

Li et al. ([14]) , 30% instead of 10% of the features are set to be differential expressed so

that the differences between different methods are more clearly shown. We simulate 12

samples in each of the two classes.

We next compare the performance of our method with other methods. Li et al. ([14])

did a detailed comparison of many methods on simulated data sets, including (1) their

own method, PoissonSeq, (2) SAM (Significance Analysis of Microarrays, [31]) applied to

the square root of normalized data, (3) The Poisson distribution based method proposed

by [16], which is implemented in an R package DEGSeq ([1]), and (4) edgeR ([21]), a

negative binomial based method with sequencing depths estimated by TMM ([22]). Of

all these methods, only edgeR and PoissonSeq can give reasonable estimates of FDRs in

both Poisson and negative binomial cases. So here we focus our comparison on these two

methods, as well as a newly developed one called DESeq ([1]).

Here we give a brief introduction to edgeR, DESeq, and PoissonSeq. Both edgeR and

DESeq assume a negative binomial distribution for the data. They estimate the dispersion

parameter first, calculate the values of an (approximately) exact statistic, which are

then converted to p-values by their known distribution. Finally, FDRs are estimated by

Benjamini and Hochberg ([3]). The main difference between edgeR and DESeq is their

different models for the dispersion parameter. (See [21] and [1] for details.) On the

other hand, PoissonSeq always assumes Poisson distribution for the data; overdispersed

data are transformed to Poisson using a simple order transformation. Score statistics are

calculated, and the FDRs are obtained by a modified version of the permutation plug-in

method.
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3.1 Data without outliers

We first simulate Poisson and negative binomial data with no outliers. Figure 3(A, B)

gives the plots of the true (solid lines) and estimated (broken lines) FDRs of the four

methods. All FDR curves are the mean of 20 simulations. In the case of Poisson data

(Figure 3(A)), our method and PoissonSeq give significantly lower true FDRs than edgeR

and DESeq. While edgeR and DESeq greatly under-estimate FDRs, both our method and

PoissonSeq slightly over-estimate FDRs. In the case of negative binomial data (Figure

3(B)), PoissonSeq gives slightly smaller true FDRs, and DESeq gives slightly higher true

FDRs. While DESeq under-estimates FDRs a bit, the other three methods give accurate

estimates of FDRs.

These simulations show that with moderate sample size, our non-parametric method

gives competitive results to popular parametric methods, when the latter’s distributional

assumption holds.

3.2 Data with outliers

Parametric methods can work well when their assumption holds. However, real data

sets often deviate from their assumed model. In particular, real data sets often contain

outliers, as we have shown in the Introduction. Here we simulate data with such outliers.

We still generate µij according to (3.2), but then, we let µij ← 10µij with probability

0.01. That is, 1% of the counts are outliers.

Results are shown in Figure 3(C, D). In both the Poisson and negative binomial

cases, the true FDRs of SAMseq are only slightly higher than those in Figure 3(A, B),

where no outliers present in the data. Also, the estimates of FDRs are still very accu-

rate. So certain amount of outliers barely hurt the performance of our nonparametric

method. However, the performance of the three parametric methods is a different story.

Their true FDRs become unacceptably high, and further, they greatly underestimate the

FDRs. Underestimating FDRs in real applications is often very dangerous. We see that

parametric methods can completely fail when the underlying distribution does not hold

strictly.
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3.3 Data with small sample size

In the above, we simulated data sets with a moderate sample size (12 samples in each

class). For even smaller data sets, we may worry about the performance of our non-

parametric method, since in that case (1) nonparametric methods are often inefficient

compared to parametric methods when the distributional assumption holds, and (2) the

number of possible permutations is too small to generate an accurate null distribution.

Here we simulate data with only 5 samples in each class, either Poisson distributed with

outliers or negative binomial distributed with outliers. Except for the sample size, the

other parameters are simulated by the same way as in Section 3.2.

The plots of true and estimated FDRs are shown in Figure 3(E, F). We find that

the true FDRs of SAMseq are still much smaller than edgeR PoissonSeq and DESeq,

although it is unable to differentiate among the most significant features (top ∼2,000 in

Figure 3(E), and top ∼600 in Figure 3(F)), as there are too few possible values of the

Wilcoxon statistic. SAMseq overestimates FDRs in both panels, mainly because of the

overestimation of π0. Fortunately, this overestimation should still be acceptable. The

three parametric methods again fail to give reasonable estimates of FDRs.

4 Performance on real data sets

4.1 Description of the data sets

We compare PoissonSeq, edgeR, DESeq, and SAMseq on three real sequencing data sets:

an RNA-Seq data set from [16], a Tag-Seq data set from [12], and an miRNA-Seq data set

from [35]. For short, we call them Marioni data, t’Hoen data, and Witten data, accord-

ing to the names of the first author. These three data sets use similar next-generation

sequencing techniques to generate reads, although reads are mapped to different regions:

genes (RNAs), tags, and miRNAs, respectively.

Marioni data contains five technical replicates in each class. The original file contains

32,000 genes, but many of them have no more than 5 reads totally. These genes are

removed, leaving 18,228 for analysis. The counts in this data set are considered to be

Poisson distributed with few outliers ([16]).

t’Hoen data contains four biological replicates in each class. This data set is sig-
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nificantly overdispersed with outliers. The original file contains 844,316 tags (features).

Filtering features with no more than 5 reads totally, 111,809 features are left for analysis.

As we introduced in the Introduction, Witten data contains 29 biological replicates

in each class, and 528 features after filtering those with too small counts. This data set

is also largely overdispersed with outliers.

4.2 Estimated FDRs

We apply PoissonSeq, edgeR, DESeq and SAMseq on the three datasets, and Figure 4

shows the plots of the estimated FDR curves. On Marioni data, the four curves have very

similar shape, though edgeR and DESeq are unable to estimate the proportion of null

genes and their largest FDRs are always 1. Also, we list the 10,000 most significant genes

by each method, and count how many genes also appear in the list by other methods. We

find that the overlap is ∼90% of each pair. These observations agree with the conclusion

by [16] that this data set contains little noise, and also show that our non-parametric

method performs competitively with parametric methods on Poisson distributed data

with few outliers.

On the other hand, the four methods perform quite differently on t’Hoen data and

Witten data, both of which are heavily overdispersed and with outliers. Note that this

tells us nothing about the true FDR curves, as the estimates might be quite far from

the true values (see Figure 3). We also calculate the percentage of common genes in the

top calls (top 2,000 on t’Hoen data and top 150 on Witten data) by different methods.

The numbers are quite low, especially between nonparametric and parametric methods

(∼25% on t’Hoen data and ∼53% on Witten data).

4.3 Different features detected by different methods

To figure out why nonparametric and parametric methods give such different results, we

take a closer look at the most significant features found by them. We have checked the

Witten data in the Introduction, and now we consider t’Hoen data. We find that the

top features detected by the parametric methods (edgeR, PoissonSeq, and DESeq), and

by SAMseq show quite different patterns. Features found by parametric methods tend

to have one or two extremely large values in one class, which might be “outliers”. If
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we delete them, the feature can become insignificant. In contrast, top features found by

SAMseq often have similar counts in each class, and counts in one class are consistently

larger than the other class–for this dataset, this means that all four counts in one class

are larger than any count in the other class.

Many features are detected only by SAMseq or only by parametric methods. In Figure

5, we show several such examples. The top left panel shows a feature from t’Hoen data

detected only by SAMseq. Class 2 has consistently larger counts but the difference is

not large enough to be detected by parametric methods. The bottom left panel shows

a feature from Witten data detected only by SAMseq. Most values in Class 2 are lower

than in Class 1, so SAMseq deems this feature as differentially expressed, but there are

three large values in Class 2, making the mean values of the two classes almost the same,

and parametric methods report that this feature is not differentially expressed. The top

right panel shows a feature from t’Hoen data detected only by parametric methods. Only

one sample has a non-zero count. The bottom right panel shows a feature from Witten

data detected only by parametric methods. The second class have a very large count,

making its mean much larger than that of the first class. However, if we delete this large

count, the mean of the second class will conversely be smaller than the first class.

It seems that parametric methods, especially edgeR and DESeq, favor features with

outliers. We divide features into groups according to the proportion of reads concentrating

on the largest count in the leading class, and count the proportion of features that are

called significant in each group. We plot their relation in Figure 6. It is clear that when

the proportion is very high, edgeR and DESeq are more likely to select it as significant.

On the contrary, SAMseq tends to detect features that have consistent expression in the

leading class. For example, on Witten data, 80% of features whose proportion of reads

in the largest count is larger than 80% are detected as very significant by edgeR, 73% are

detected by DESeq, and 47% are detected by PoissonSeq ; these three are much higher

than their own average. On the contrary, only 13% of such features are detected to be

differentially expressed by SAMseq.
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5 Application to other types of outcomes

In the above, we discussed a nonparametric method for data with a two-class outcome.

The extension to other types of outcomes is straightforward, and we give details next.

5.1 Multiple-class

Suppose there areK classes, and Class k contains nk samples, k = 1, . . . , K and
∑K

k=1 nk =

n. Let Ck = {i : Sample i is from Class k}. We use the Kruskal-Wallis statistic (the

Wilcoxon statistic for multiple classes), and the multiple resampling version is

T ?
j (multiple-class) =

1

S

S
∑

s=1

(

12

n(n + 1)

K
∑

k=1

(
∑

t∈Ck
Rtj(N

′s))2

nk
− 3(n+ 1)

)

. (5.1)

This statistic is unsigned.

5.2 Quantitative

Here each outcome yi is a real number, i = 1, . . . , n. The statistic we use is Spearman’s

rank correlation coefficient, which is the (Pearson’s) correlation between R1j(N
′), . . . , Rnj(N

′)

and R1(y), . . . , Rn(y), the ranks of y1, . . . , yn. By using the rank of yi, we only assumes a

monotone relation between the mean of the count and the outcome, rather than a linear

relation. Accordingly, the multiple sampling version is defined as

T ?
j (quantitative) =

1

S

S
∑

s=1

corr({Rs
i (y)}, {Ri(y)}). (5.2)

5.3 Survival

Here each outcome is a pair (ti, δi), where ti is the survival time (may have ties), and δi is

an indicator of whether the failure is observed (δi = 1) or censored (δi = 0), i = 1, . . . , n.

For Feature j, we use R1j(N
′), . . . , Rnj(N

′) as the single predictor in a Cox proportional

hazards model. Possible ties in the survival times are handled by Breslow’s method ([5]).

Cox model uses the partial likelihood, which involves only the ranks of the survival times,

making the model semiparametric. We use its score statistic, and the multiple resampling
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version is

T ?
j (survival) =

1

S

S
∑

s=1

∑n
i=1 δi(Rij(N

′s)− Bs
ij/Ai)

√

∑n
i=1 δi(AiC

s
ij − (Bs

ij)
2)/(As

i )
2
, (5.3)

where Ai =
∑n

k=1 Itk≥ti, B
s
ij =

∑n
k=1Rkj(N

′s)Itk≥ti , and Cs
ij =

∑n
k=1R

2
kj(N

′s)Itk≥ti .

5.4 A simulation study

As in Section 3.2, we simulate data following a Poisson distribution with outliers and

a negative binomial distribution with outliers. In all cases below, we simulate 20,000

features and 24 samples.

The simulation of data with 4-class outcomes and quantitative outcomes are the same

as that in Li et al. ([14]). In the 4-class case, we simulate the mean according to

log µij = log di+log νj+
∑4

k=2 γjkI(j∈Ck), where the distribution of di and νj are the same

as the two-class case, and γj2, γj3, γj4 ∼ i.i.d. N(0, 1). We simulate 6 samples in each

class.

In the quantitative case, we simulate the mean as logµij = log di + log νj + γjyj. The

distribution of di and νj are the same as the two-class case, yj ∼ Uniform(−1, 1), and
γj ∼ N(0, 1).

For survival data, to simulate correlated survival time and counts, we assume that

there are latent variables y1, . . . , yn, and simulate di, νj, yj and µij the same as the above.

Then we let the true survival time tsurvi = 1 + yi + Uniform(0, 0.2), the censoring time

tcensi = Uniform(1, 2), and so ti = min(tsurvi , tcensi ), δi = I(tcensi ≥tsurvi ). To get some ties, we

finally let ti ← b20tic, where bc means the integer part.

Among the four methods, only SAMseq and PoissonSeq can be used on data with

multiple-class outcomes and quantitative outcomes. We find that the results (not shown)

are quite like the case of two-class outcomes (Figure 3): when no outliers present, both

methods estimate FDRs accurately, but when there are outliers, only SAMseq gives

accurate estimates.

SAMseq is the only method that is applicable to data with survival outcomes. The

FDR curves are shown in Figure 7. We find that SAMseq gives accurate estimates of

FDRs.
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6 Discussion

In this paper, we developed a nonparametric method that can be used on data with

two-class, multiple-class, quantitative, and survival outcomes. The major strength of our

method is its robustness. According to our simulation studies, the presence of outliers

does not significantly hurt its performance. It overestimates the FDR in some cases,

but not by very much. What is important, it never seems to significantly underestimate

the FDR in our different simulation settings. In contrast, although parametric methods

sometimes show better true FDRs, their estimates of FDRs can be far too low if the

distributional assumption does not hold.

We argue that accurately estimating FDRs can be as important as, if not more im-

portant than, having a low actual FDR. For real data sets, the true FDRs are unknown

and computational methods can only give estimated FDRs. For example, if on a data

set, method 1 gives a list of 100 significant genes, and correctly estimates the FDR to be

10%. Method 2 gives a list of 200 significant genes, but underestimates the FDR from

10% to 1%. In this case, although Method 2 is more powerful in detecting significant

genes, using the whole list of 200 significant genes and believing that there are only about

2 false positives could be dangerous.

Another important advantage of our nonparametric method is its simplicity. Previ-

ous methods often consider both the experimental effect (that is, different sequencing

depths for the samples) and the feature effect (that is, whether different values of out-

comes influence the feature expression, which is the effect we want to test) at the same

time. These two effects are confounded, making the statistical model and test statistic

relatively complicated. Our resampling strategy removes the experimental effects first,

which simplifies the problem and makes all our test statistics one-dimensional.

The simplicity of our method makes it easy to adapt to different settings. The field of

significance testing for one-dimensional problems is well developed and hence it is usually

easy to find an appropriate test for a given setting. We have applied our method to data

with two-class, multiple-class, quantitative and survival outcomes. We believe it will be

easy to extend it to other types of outcomes and to other experimental designs.

The most significant features that we find have different “patterns” from those found

by parametric methods. In the real data set we analyzed, we find that edgeR, PoissonSeq,
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and DESeq favor features with outliers, since one outlier is sufficient to make the mean of

one class much larger than the other class and completely change the value of the para-

metric statistic. On the other hand, one outlier changes only a little of our nonparametric

statistic. The most significant features detected by our method are those whose counts

are consistently higher in one class. Based on our discussions with biologists, features

with consistent patterns are often more valuable and trustworthy.

As with other nonparametric methods, the main limitation of our method is its rel-

atively low power for data with small sample size. In Section 3.3, we show the results

for data with 5 samples in each class. When the sample size is even smaller and the

underlying distribution is Poisson or negative binomial with no outliers, the true FDR

of our method will be much higher than parametric methods like PoissonSeq, edgeR,

and DESeq, although the estimated FDRs are still accurate, no matter whether outliers

present. In this case, parametric methods should be preferred if the possible outliers can

be carefully handled.

Our nonparametric method is computationally fast. On a Windows 7 laptop with a

2.40 GHz processor and 2 GB memory, estimating the FDR curve for 20,000 features and

12 samples on the basis of 100 permutations takes ∼23 seconds for two-class data, ∼42
seconds for 4-class data, ∼15 seconds for quantitative data, and ∼70 seconds for sur-

vival data. PoissonSeq takes ∼15 seconds for two-class, multiple-class, and quantitative

outcomes. DESeq takes 10∼80 seconds for two-class data. EdgeR takes ∼3 minutes for

two-class data. All our functions are written in R and they will be made freely available

as an extension package for the R statistical environment ([20]).

In this paper, we have discussed the identification of differentially expressed genes in

RNA-Seq data. In recent years, DNA-Seq, ChIP-Seq, 3SEQ, and other approaches related

to RNA-Seq have risen in popularity. Our proposed methods should be applicable to data

generated by these related technologies.
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Appendix

Pitman Efficiency is a measure for how well a test statistic performs on data. We calculate

the Pitman efficiency for Wilcoxon statistic on resampled data (Equation 2.3). The

following situation is considered. (We will show later that our resampled data can be

approximated by this situation.)

Xi ∼ N(b(µ + δ), c1(µ+ δ)), Yj ∼ N(bµ, c2µ), (6.1)

where b, c1, c2 > 0 are known constants, µ and δ are unknown, i, j = 1, . . . , m. We want

to test H0 : δ = 0 v.s. H1 : δ 6= 0 by Wicoxon statistic T =
∑m

i=1Ri − m(m + 1)/2,

where Ri is the rank of Xi among all Xs and Y s. The Pitman efficiency (PE) is defined

as PE = (dET
dδ
|δ=0)/

√

varT |δ=0. It is not hard to show that

PE =

√

6m2

π(2m+ 1)
· b
√

(c1 + c2)µ
·
[

1 + 6 · m− 1

m+ 0.5
·
(

f(

√

c2
c1
) + f(

√

c1
c2
)

)]−1/2

, (6.2)
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where f(x) = P (U > xV, U > xW ) − 1
3
, with U, V,W ∼ i.i.d. N(0, 1). When x > 0,

f(x) ∈ (−1
6
, 1
6
), and when x = 1, f(x) = 0, but there is no closed form generally; we

estimate it by simulation.

Now we show that under a much simplified scheme and use Gaussian approximation,

our resampled data can be expressed as (6.1). Suppose each class contains the same

number of samples, m = n/2. Let every sample in each class has the same sequencing

depth. Suppose Nij ∼ Poisson(dmax · νj) if i ∈ C1, and Nij ∼ Poisson(dmin · ν) if i ∈ C2.

Here νj is the expression of Feature j (assuming to be the same in all samples), dmax and

dmin are the sequencing depths, with dmax ≥ dmin. To study which resampling method is

preferred for different values of dmax/dmin, we reparametrize using µj = d̄ ·νj =
√
dmaxdmin

and D = dmax/dmin, then the Poisson means of the two classes are D1/2µj and D−1/2µj.

If down sampling is applied, N ′
ij ∼ Poisson(D−1/2µj), i = 1, . . . , n. So N ′

ij in ei-

ther class has mean D−1/2µj and variance D−1/2µj. If Poisson sampling is applied,

then for i ∈ C1, EN
′
ij = ENij

(EN ′

ij |Nij
N ′

ij) = ENij
( d̄
dmax

Nij) = d̄νj = µj , and varN ′
ij =

varNij
(EN ′

ij |Nij
N ′

ij) + ENij
(varN ′

ij |Nij
N ′

ij) = varNij
( d̄
dmax

Nij) + ENij
( d̄
dmax

Nij) = ( d̄
dmax

+ 1) ·
d̄νj = (1 + D−1/2)µj. Similarly, we get that for i ∈ C2, EN ′

ij = µj and varN ′
ij =

(1 +D1/2)µj.

Thus, if we approximate N ′
ij by a Gaussian distribution with mean EN ′

ij and variance

varN ′
ij, then (1) N ′

ij generated by down sampling can be written in the form of (6.1) with

b = c1 = c2 = D−1/2 and µ = µj, (2) N
′
ij generated by Poisson sampling can be written

in the form of (6.1) with b = 1, c1 = 1+D−1/2, c2 = 1+D1/2 and µ = µj. Plugging them

in to 6.2, we get the relative efficiency of Poisson sampling to down sampling

PEPoisson sampling

PEdown sampling

=

√
2

1 +D−1/2
·
[

1 + 6 · m− 1

m+ 0.5
· (f(D−1/4) + f(D1/4))

]−1/2

.

By simulation, we find that f(D−1/4) + f(D1/4)) ∈ (−0.01, 0.07) for any D > 1. So

the second term is roughly 1 for any value of D and sample size m. The relative efficiency

is monotone increasing as D increases, and crosses 1 when D ' 6. This indicates that

under this simplified situation, Poisson sampling is less efficient than down sampling when

D < 6, and more efficient for larger values of D.

The above analysis of Pitman efficiency is only on a simplified case. It is not clear

to what extent these results will hold on real data, given that Gaussian distribution can

be a poor approximation for count data, and each experiment has a different sequencing

depth on real data. It is also not clear to what extent the results will hold for Wilcoxon

statistic under multiple resampling (Equation 2.5).
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Figure 1: Using RNA-Seq technique for comparative experiments. The sequencing ma-
chine generates a list of reads from each sample. Each read in the list is mapped (matched)
to a region (here we use a gene) on the genome. Then we sum up the number of reads
mapped to each gene, giving a count as a measure of its expression. Each RNA-Seq
experiment results in a vector of counts, with length p equal to the number of genes.
Combining results from n experiments, the final data can be summarized as an n × p
matrix.
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Figure 2: Counts from some miRNAs found to be very significant by edgeR do not seem
to follow negative binomial distributions. Each panel shows the counts from one miRNA
in the Witten data ([35]). These miRNAs are the 7th, 10th and 11th most significant
features detected by edgeR. The heights of vertical bars show the scaled counts from the
samples. The first 29 bars, colored red, are samples from the one class, and the other 29
bars, colored blue, are from the other. The black broken line is also drawn to separate
the two classes. In each panel, we see that one count has much larger values than all the
other counts.
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Figure 3: FDR curves for simulated data. (A) Poission distributed data, 12 samples in
each class; (B) negative binomial distributed data, 12 samples in each class; (C) Poission
distributed data with outliers, 12 samples in each class; (D) negative binomial distributed
data with outliers, 12 samples in each class; (E) Poission distributed data with outliers,
5 samples in each class; (F) negative binomial distributed data with outliers, 5 samples
in each class. The solid curves show the true FDRs; the broken curves are the estimates.
These are results (averaged over 20 simulations) on same simulation data sets using
different methods: PoissonSeq, edgeR, DESeq, and SAMseq. Some black lines do not go
through origin point since a proportion of the most significant features have the same
value of the statistic (2.5) and need to be called at the same time. The average standard
errors of the estimates are shown as vertical bars on the bottom right.
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Figure 4: Estimated FDR curves for three real data sets: Marioni data, t’Hoen data, and
Witten data (from left to right). In real data sets, the true FDR curves are unknown and
so we cannot tell which method is performing better.
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Figure 5: Examples for features deemed to be differentially expressed only by SAMseq on
t’Hoen data (top left) and on Witten data (bottom left), or only by parametric methods
(PoissonSeq, edgeR, and DESeq) on t’Hoen data (up right) and Witten data (bottom
right). The title of each subfigure shows the ranks of significance by different methods,
like the first one is the 20th most significant feature by SAMseq, 47018th by DESeq,
62356th by edgeR, and 48686th by PoissonSeq. In each panel, bars with different colors
are samples from different classes. The black broken line is used to separate the two
classes. The length of each bar is the scaled count of a sample.
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Figure 6: Relations between proportions of reads in the largest count and proportions
of significant features in two real data sets: t’Hoen data (left panel), and Witten data
(right panel). Features are divided into groups according to what proportion of reads
concentrate on the largest count of that class. An proportion near 1 means one count is
much larger than all other counts, that is, it has an outlier. We then count in each group
what proportion of features are among the list of most significant features (top 10,000 for
t’Hoen data, and top 150 for Witten data). We see that features with outliers are more
easily been called significant by parametric methods, especially edgeR and DESeq, while
our nonparametric method favors features with similar counts in different samples.
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Figure 7: FDR curves for simulated data with survival outcomes (averaged over 20 sim-
ulations). The left panel is Poisson distributed data with outliers, and the right panel is
negative binomial distributed data with outliers. The solid curves show the true FDRs;
the broken curves are the estimates. The average standard errors of the estimates are
shown as vertical bars on the bottom right.
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