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ABSTRACT

Motivation: Detection of single nucleotide polymorphisms (SNPs)
has been a major application in processing second generation
sequencing (SGS) data. In principle, SNPs are called on single base
differences between a reference genome and a sequence generated
from SGS short reads of a sample genome. However, this exercise
is far from trivial; several parameters related to sequencing quality,
and/or reference genome properties, play essential effect on the
accuracy of called SNPs especially at shallow coverage data. In this
work, we present Slider II, an alignment and SNP calling approach
that demonstrates improved algorithmic approaches enabling larger
number of called SNPs with lower false positive rate. In addition to
the regular alignment and SNP calling, as an optional feature, Slider
II is capable of utilizing information about known SNPs of a target
genome, as priors, in the alignment and SNPs calling to enhance
it’s capability of detecting these known SNPs and novel SNPs and
mutations in their vicinity.
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1 INTRODUCTION
The ability to perform an unambiguous alignment of sequence reads
(Langmead et al., 2009; Li et al., 2008; Li and Durbin, 2009; Li et al.,
2009; Lin et al., 2008; Malhis et al., 2009; Schatz et al., 2007; Smith
et al., 2008) and the detection of sequence variants (Li et al., 2008;
Li et al., 2009) is an essential task in processing the output of second
generation sequencing. As this technology evolves, algorithms used
in alignment and single nucleotide polymorphism (SNP) calling
need to be modified to adapt to rapidly changing parameters such
as read length, overall read quality, the number of reads and the
sequence coverage being generated. Furthermore, information about
reference genomes, in particular known polymorphisms, have the
potential to improve the alignment and SNP calling accuracy. For
example, the current human reference sequence typically used for
alignment reflects, within any region, a single haplotype that will
contain private SNPs as well as ones of low frequency within
the human population. Such polymorphic regions, through their
generation of an alignment mismatch, will impede the ability to
determine nearby mutations of interest.

A commonly used application for alignment and SNP calling from
Illumina reads is the MAQ aligner (Li et al., 2008). MAQ uses
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hash tables to align the most probable sequence of each read to a
reference genome, and then uses the Bayesian theorem to construct
consensus sequence from these aligned and calibrated most probable
reads, a list of SNPs are called on differences between the reference
sequence and the consensus, and filtered by a set of threshold cut-
off parameters such as SNP quality score, minimum and maximum
coverage, the maximum allowed number of SNPs in a small window
(dense SNPs) and the size of this small window. Previously, we
reported on the ability of the Slider algorithm (Malhis et al., 2009)
to use a merge-sort approach for aligning the probability (prb) values
at each position of Illumina short reads. By utilizing the probability
values to reconstruct likely sequences from each read, Slider was
able to achieve considerably higher alignment accuracy, reducing
the number of mis-mapped reads arising due to sequence error.

The algorithmic approach of Slider II continues to utilize the
probability of all four possible nucleotides generated by Illumina
to improve the overall alignment. This information has also been
incorporated to improve SNPs calling quality.

In brief, Slider II high SNP calling accuracy is a result of higher
alignment accuracy of Slider (Malhis et al., 2009), higher SNP
calling capability achieved in utilizing information provided in prb
data and higher SNPs filtering accuracy:

• High alignment accuracy: while most aligners are designed to
align the most probable sequence, higher alignment accuracy
is achieved by Slider by aligning the prb sequences for all
four bases (Malhis et al., 2009). Slider II uses the merge-sort
approach of Slider to align seeds of the first 31 bases (higher
quality bases) of each read and then extend these seeds to full
reads.

• After the alignment step, Slider II utilizes more information
provided in prb data for SNP calling:
◦ Using all four prb values in a consensus construction yield a

more discriminatory probability accumulation compared to
only using the probability of the most probable base (mpb).

◦ With heterozygous SNPs, the expectation is to have
approximately equal coverage representation for the
reference nucleotide and the allele nucleotide, however, this
coverage, due to the low numbers, is likely to be skewed
in favor of one nucleotide or another. Since probability
accumulates exponentially to the level of coverage, such
coverage unbalance is likely to mask the probability of
the under represented nucleotide, therefore, in order to
overcome this, Slider II builds a coverage probability
consensus that only include data when the reference
nucleotide has a lower probability than some threshold
value. Again, having the probability values of all four
nucleotides enables more accurate filtering of these bases.
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• Higher SNP filtering accuracy: in addition to dense SNPs
(Marth et al., 1999; Li et al., 2008) and SNPs with high
coverage (Li et al., 2008), Slider II also utilizes SNP average
location in the set of covering reads to reduce the effect of
structural rearrangements on SNPs calling. We have determined
that bona fide SNPs typically are randomly distributed along
the lengths of the covering reads, whereas false positive SNPs
tend to show a biased distribution, see Section 2.2.2.

• And finally, a unified SNP score which correlates with SNP
prediction accuracy is generated by penalizing or filtering out
some observed SNPs that (based on SNP average location, total
coverage and dense SNPs) are likely to be false positive results
from structural rearrangements.

We use the phrase ‘shallow coverage’ for those sections of DNA
that are covered by two to four reads only. Since coverage of the
reference vary between sections, the ability of identifying SNP at
shallow coverage is particularly important for those sections that are
less-covered.

In addition to regular alignment and SNP calling, Slider II
provides an option of utilizing known SNPs from SNP databases,
as priors, in the alignment and the SNP calling process. Utilizing
known SNPs improve alignment quality by accurately aligning reads
on locations with more variants (known and unknown variants),
otherwise such reads would either not be aligned or misaligned to an
inaccurate location. This helps in the general identification of SNP,
and known SNPs are also used as priors in the SNP calling process,
which enable SNP calling of known SNPs at lower coverage.

2 METHODS

2.1 Alignment
The first 31 bases of each prb line are used as seed sequences, which aligned
to the reference sequence as explained previously in Malhis et al., 2009.
Aligned seeds are extended to full reads, RDs, allowing up to three base
mismatches per RD. When using paired-end sequence data (PET), if only
one side can be uniquely matched to the reference, SliderII will attempt:

• If the other side has multiple matches. Slider II will resolve the multiple
matches using the PET span distribution information.

• If the other side was not successfully aligned. SliderII will attempt to
align it without the restriction of one mismatch in a seed.

We define sequence map-ability at any location as the number of different
reads of 36 bases that can be uniquely mapped to cover this location.
Considering forward and reverse complement, sequence map-ability for any
location is an integer in the range of [0 … 72].

To facilitate identifying unique matches, we also define a sequence
commonness factor as the number of bases starting at any chromosomal
position that are needed to define a unique location on the reference.
Reference sequence commonness and sequence map-ability for every point
in the reference are calculated and stored during the reference database
construction process. Figure 1 shows the percentage of human genome with
an equals or higher sequence commonness.

2.2 SNP calling
After alignment of sequenced reads to a reference genome, SNPs can be
observed at any location l as a consistent base difference between reads
bases and the reference base at l. In many cases the ability to detect SNPs
is obfuscated by many factors, including read misalignments, paralogous
mapping, indels and genomic rearrangements.

Fig. 1. The percentage of human genome with an equal or higher sequence
commonness value.

Fig. 2. This 12-base read has a SNP at base 7, plus, some non-crisp bases
including bases 4 and 10, where the accurate nucleotide is not the mpb, as a
result, the read has 3 points distance of its accurate location on the genome,
and if this read is to be matched to the reference with any aligner starting
from the most probable sequence allowing up to two base mismatches, it is
going to be misaligned.

Read misalignments take place when a read is wrongly aligned to the
reference at an erroneous location; this can be due to a combination of
factors such as sequencing error(s), SNPs and low map-ability. Regions of
low map-ability are particularly problematic, as a single-base call error has a
higher probability of allowing the read to be erroneously aligned elsewhere
in the genome, a problem that is contained through the more aggressive
utilization of the probability data to identify the second most likely base call
for poorly called base pairs. Figure 2 demonstrates a scenario resulting from
the misalignment of a 12 bp read. Misaligned reads are likely to introduce an
inaccurate coverage profile that affects the accuracy of SNP calling, while this
inaccurate coverage is less likely to build up with high enough consistency
for calling a false SNP; it is likely to add a level of noise capable of masking
a SNP at shallow coverage regions. Examples 1 and 2 show how a single
misaligned read can easily mask a SNP at shallow coverage. In utilizing
the probability values for all four nucleotides, Slider reduces the percentage
of misaligned reads significantly compared to aligners that utilize only the
most probable sequence or calibrated most probable sequence (Malhis et al.,
2009).

Paralogous mapping of reads happens when aligning reads originate from
repeats or duplications in the sample genome (or near repeats, e.g. a repeat
with a single base difference) and are represented only once in the reference
(if a repeat is represented more than once in the reference, such reads will
end up as multiple matches). Such paralogous mapping should result in
abnormally high coverage to these regions of the sequence and will likely
generate a large number of false positive SNPs. In some cases, such false
positive SNPs will be clustered into dense groups.

Coverage depth: typically, most SNP prediction tools call SNPs utilizing
both sequence differences and the sequence coverage of the base mismatch.
A single sequence read indicating a base mismatch would not usually be
considered sufficient to reliably identify a SNP, and redundant observations
are needed. A relevant question is what depth of coverage is required

1030

 by guest on S
eptem

ber 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[10:30 23/3/2010 Bioinformatics-btq092.tex] Page: 1031 1029–1035

High quality SNP calling using Illumina data at shallow coverage

to robustly call a SNP? To address this, Slider II relies on two main
parameters:

• The expected ratio of SNPs in our sample reflects our confidence in the
reference genome to match the sample. For example, on one extreme,
if we know with absolute certainty that our sample is SNP free (i.e.
the SNP free PHIX control), no mater how many reads are consistently
showing a mismatch, a SNP should not be called; this can be contributed
to contamination, paralogous mapping and/or sequencing errors. On the
other extreme, if we have very little confidence in the quality of the
reference, we might legitimately accept a base mismatch with very low
coverage.

• The alignment quality of the covering reads and the mismatch bases
quality: Higher quality alignments with high quality bases can provide
enough confidence in a SNP with less number of read coverage.

Most tools (i.e. MAQ) used qCal values and alignment quality to score
SNPs, but it requires a user input for a minimum coverage (and maximum
coverage) for calling SNPs, Slider II does not need such an input.

In principle, SliderII calls SNPs at any location with consensus coverage
different from the reference nucleotide, when the confidence accumulated
from the aligned reads is higher than our confidence of the base in the
reference genome, which is a function of the expected ratio of SNPs in
that genome. The consensus sequence constructed from aligned bases that
shows a low-probability for the reference nucleotide, taking into account
the alignment quality and the base-calibrated quality, qCal, gives the
accumulated probability, PaccBass,l , of each one of the three nucleotides
(not including the reference) at each location l. Whereas, reference base
probabilities, Pref Bass,l , of each one of the four nucleotides at each location
is computed using reference sequence and the expected SNPs ratio; this
expected polymorphism ratio vary from one population to another, for
example, in the human population a polymorphism is believed to occur
on average every 1000 bases, so the default probability of the reference
nucleotide can be estimated at 99.9%, and 0.033% for each other nucleotide.
Other species are likely to have different SNP ratio, in the Caenorhabditis
elegans, CE. While the Hawaiian strain is likely to have about the same SNP
ratio as in the human genome, in the CE California strain from Pasadena,
the ratio of SNPs is about 1 SNP in 5 kb, and in CE N2 Bristol strain, our
analysis show this ratio is less than 1 SNP in more than 10 kb.

When utilizing a set of known SNPs as priors, SliderII heuristically set
the reference base probabilities such that the reference base is 66.6%, and
each possible SNP nucleotide is set to 33.3%, and 0.033% for every other
nucleotide; then these four values are normalized to the sum of one.

A SNP is called at a location l if:

• The mpb, at l is not the reference base.

• The confidence accumulated from sequence coverage is higher than the
confidence in the reference sequence. In practice, Slider II calculates
score1 by dividing the sum of the probabilities of the consensus two
lowest bases, PaccBass,l , by the sum of those of the reference, Pref Bass,l .
Score1 must be >1.

• Pass the dense SNPs condition: while Slider II penalizes SNPs that are
likely to appear as a result of structural rearrangements or indels by
down scoring or filtering them out in the final SNP scores step after the
SNP calling step, the dense SNPs condition can be made more effective
if it is implemented during the SNPs calling step as described in the
following paragraph.

The dense SNPs condition: a commonly used filtering technique that
reduces the percentage of false SNPs that are likely to appear clustered
in dense groups. Filtering out dense SNPs has been used by Li et al.
(2008) and Marth et al. (1999). However, while dense base mismatches
at contig edges and paralogous (false SNPs resulting from contig edges and
paralogous will be discussed in Section 2.2.2) are likely to generate dense
false SNPs, in many cases, only few of these base mismatches reach high
enough coverage for SNPs calling, which will reduce the effectiveness of

this technique, therefore, we introduced the low-quality bases concept: LQB
are consensus bases in which the probability of the reference base in the
consensus is <5%. A SNP can be called if the number of LQBs in any
window (of size SizeWindow = readAverageSize - seedSize) that cover the SNP is
less than SizeWindow/3.

2.2.1 Constructing consensus Consensus is constructed by accumulating
sequence bases probability from coverage read bases probabilities using
Bayes theorem. The prb values provided in prb files first needs to be adjusted
for sequencing quality and alignment quality. Calibrated sequencing base
qualities, qCal, are derived from prb values by computing the percentage of
mapped bases with good mapping quality for every prb value. In practice a
high accuracy prediction of read alignment quality (mapping quality) is not
possible given that the similarity between the reference and the sample is
unknown; many alignment parameters such as contamination, chromosomal
rearrangements, etc., are not measurable. We propose a heuristic alignment
weight Wa (score) based on three parameters:

• the size of the aligned read, Size;

• the calibrated probability of the aligned base at read location x, Px ; and

• the reference commonness factor at the start of the read, k.

Aligned seeds are first extended and an alignment weight is calculated:

Wa =
k∏

i=1

Pi +
∑size

j=k+1 Pj

k

If Wa is greater than one, Wa is set to be one.
Wa is likely to be correlated with alignment accuracy sine bases quality

and read size that are positively correlated with alignment quality and k,
which is negatively correlated with alignment quality and all correlate in the
same way with Wa. The initiative behind this is that the first part

k∏

i=1

Pi

should calculate the probability of the first k bases of the read to match the
reference at the aligned location. If the sequenced sample was identical to
the reference, this should be enough to identify a unique match. The (size–k)
bases at the tail of the read (in the following part) are used to adjust for
variations, smaller k value (which reflect higher reference complexity around
the alignment area) should result a higher significant for these bases in the
second part.

Alignment quality is:

Qa =0.5+0.5∗Wa

Base calibrated quality adjusted for alignment quality qCala is:

qCala =qCal∗Qa +(1−Qa)/4

Finally, sequenced accumulated probability PAcc,l is calculated from
aligned bases that show low reference nucleotide probability (<5%) using
Bayesian theorem. Starting from uniform priors probabilities, posterior
probabilities are computed by updating the priors with one of the coverage
base calibrated probabilities adjusted for alignment quality, qCala, as
conditional probabilities. The resulting posterior is then used as a prior for
the next coverage base. Given a read RD aligned at location l, the posterior
probability of nucleotide n at the location l+i given base at location i, RDi,
P(nl+i|RDi), is:

P
(
nl+i|RDi

)= P
(
RDi|n

)∗P
(
nl+i

)

T∑
m=A

P
(
RDi|m

)∗P
(
ml+i

) (1)

Where: P(RDi|n) is the calibrated quality adjusted for alignment of
nucleotide n in read RD at location i. or qCala at read location i.

P(nl+i) is the priors probability of nucleotide n at location l+i.
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The following two hypothetical examples are designed to illustrate the
advantage of using qCal values of all four bases versus the mpb in building a
consensus sequence and to illustrate the effect of misaligned reads in masking
SNPs at shallow coverage.

Example 1. Lets assume a location in the reference with an A
nucleotide is covered by a three non-crisp bases with qCala =qCal values
of [(−27,−27,1,−1), (−8,−27,−27,8) and (−27,10,−27,−10)]. Starting
from uniform priors, a final posterior probability is calculated by updating
the priors three times, Equation (1), using qCala values of all four bases.
The resulting posterior quality (−48,−40,−42,37), Table I, represents a T
with enough quality for calling a SNP on the human genome (1 SNP in
1000 bases). In using the qCal values of the mpb only, Table II, the posterior
quality will be (−17,1,−11,−3), this represents a very low quality C.

Table I Q(A) Q(C) Q(G) Q(T) P(A)% P(C)% P(G)% P(T)%
coverage 1 −27 −27 1 −1 0.2 0.2 55.7 43.8
coverage 2 −8 −27 −27 8 13.68 0.2 0.2 85.92
coverage 3 −27 10 −27 −10 0.2 90.9 0.2 8.69
Posterior −48 −40 −42 37 0.00 0.01 0.01 99.98
Misaligned base −14 5 −6 −27 3.75 75.97 20.08 0.20
Posterior (masked) −35 −14 −22 13 0.03 4 0.65 95.32

Table II Q(A) Q(C) Q(G) Q(T) P(A)% P(C)% P(G)% P(T)%
coverage 1 – – 1 – 14.76 14.76 55.73 14.76
coverage 2 – – – 8 4.56 4.56 4.56 86.32
coverage 3 – 10 – – 3.03 90.91 3.03 3.03
Posterior −17 1 −11 −3 1.86 55.86 7.03 35.25

A single misaligned read adding an extra error base coverage might mask
such SNP call, for example, an error base of (−14,5,−6,−27) will result
in a posterior probability accumulation not sharp enough for calling a SNP,
Table I, last two lines.

Example 2. In this example, a location in the reference with an A
nucleotide, a total coverage of two, one crisp base and one non-crisp base of
[(−27,−27,−27,25) and (−27,−27,4,−4)], Table I, the posterior quality
using all qCal values for all four bases is (−49,−49,−23,23), this represents
a T with enough quality for calling a SNP on the human genome. However,
in using the qCal values of the mpb only, Table II, the posterior quality is
(−30,−30,−20,19) that is not enough for calling a SNP.

Table I Q(A) Q(C) Q(G) Q(T) P(A)% P(C)% P(G)% P(T)%
coverage 1 −27 −27 4 −4 0.20 0.20 71.24 28.36
coverage 2 −27 −27 −27 25 0.20 0.20 0.20 99.40
Posterior −49 −49 −23 23 0.00 0.00 0.50 99.50
misaligned base −14 5 −6 −27 3.75 75.97 20.08 0.20
Posterior (msk) −35 −22 5 −5 0.03 0.61 75.66 23.70

Table II Q(A) Q(C) Q(G) Q(T) P(A) P(C) P(G) P(T)
coverage 1 – – 4 – 9.49 9.49 71.53 9.49
coverage 2 – – – 25 0.11 0.11 0.11 99.68
Posterior −30 −30 −20 19 0.10 0.10 0.99 98.80

Again, a single misaligned read might mask such SNP call, the error base
of (−14,5,−6,−27) is enough for masking this SNP, Table I, last two lines.

In general, the coverage of one crisp base from a good aligned read
provides enough probability for calling a SNP in a genome with one SNP
expected up to every 100 bases, and two crisp bases are enough for a SNP
call in a genome with expected SNPs ratio up to 1 SNP in every 10 000 bases.

2.2.2 Generating the final SNP scores During the SNPs calling process,
a set of SNP evaluation values are generated for each called SNP, these
evaluation values are to be used for evaluating the relative confidence in each

Fig. 3. Coverage of an edge between two contig portions of a reference
showing a true SNP marked with a shaded X, and a false CE SNP marked
with X over the first base of a next uncovered (shaded) contig (a deletion in
the sample data), the shaded locations in the reference are part of the second
contig, those which are crossed with a single line are bases that differ from
the sample.

Fig. 4. The concordance of called SNPs as a function of their average
location in the reads and coverage. The significance of SNPs average location
is higher for higher coverage SNPs.

called SNP with respect to the overall set of predicted SNPs. The evaluation
values include the SNP score1 derived from consensus accumulated
probability and reference probability as described in Section 2.2, the average
SNP location in covering reads, the SNP coverage and the alignment quality
of the best aligned read. While these values provide a separate evaluation of
each SNP accuracy, a more accurate evaluation is obtained by combining all
of these values in a single score in the range [0 … 100], this score correlates
with SNPs’ prediction accuracy such that SNPs with the highest accuracy
have a score of a 100 and the lowest accuracy has a 0 score. Lets first try to
understand the main features that are likely to contribute to false SNP calling
and what parameters can be used to identify them.

Indels and/or genomic rearrangements between the sequenced sample and
the reference are a major source of false positive called SNPs. Genomic
rearrangements in the form of different continued sections of the sequenced
genome, contigs, are located at different locations on the reference. With
respect to our SNPs calling problem, contig edges result in calling false SNPs
type CE . Reads are aligned by first aligning their seeds and then extending
these seeds to full reads, lets assume that the contig end (by an indel or
genomic rearrangements) just few bases, x, short of some reads. If x is a small
number, the last x bases of these reads might, by chance, match the start of
the next contig with one base mismatch that will result in calling a false SNP.
Ofcourse, if there are several base mismatches, the resulting cluster of dense
SNPs will be filtered out by dense SNPs filtering. The average locations of
these false SNPs type CE in covering reads is likely to be either toward the
tail or the beginning of reads. Figure 3 shows a sample of true SNP in contig
A, and one false SNPs type CE at the beginning of contig B.

Figure 4 shows the concordance of called SNPs as a function of their
average location percentage in the reads at different coverage levels.
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Fig. 5. A paralogous region on the reference with higher coverage than
average. One false SNP type PI is observed inside the paralogous region,
and one false SNP type PE is observed at the edge of this region.

We can see that the significance of this average location is higher as the
coverage is higher. Since seed reads are aligned first with up to one mismatch
and then extended allowing up to three mismatches in total, the extension
portion of aligned reads are, on average, more likely to include false SNP
type CE and those SNPs averaging at the tail of reads are more likely to be
inaccurate. A second accuracy score, score2, is computed from SNPs average
percentage location, bidx:

Paralogous regions are regions of the reference, where paralogous reads
align resulting in significantly higher coverage. Paralogous regions can
generate two types of false SNPs: first, false paralogous SNPs type, PI ,
are observed if paralogous reads include some base mismatches which
will be observed as SNPs (heterozygous SNPs or if the paralogous reads
largely outnumbers the accurately aligned reads, these SNPs might look like
homozygous); second type of paralogous false SNPs is observed on the edges
of these paralogous regions, false SNPs type PE . Figure 5 shows a sample
paralogous region with a paralogous false SNP type PI , and one false SNP
type PE at the edge of that region.

While PI SNPs are likely to have significantly higher than average
coverage, PE SNPs coverage is not as high as PI ’s; but they are likely to
appear at the edges of reads, and, therefore, the average locations of these
SNPs in the covering reads is likely to be toward the edges. The PCR artifact
introduced during library preparation can also fabricate false SNPs, some
might be observed similar to PI SNPs with significantly high coverage.

Even the reads alignment quality is incorporated into the consensus base
probabilities through qCala values, when the x coverage increases, some
areas of the genome that happen to have low sequence commonness factor
are candidate to accumulate enough misaligned reads (perhaps low-quality
reads) for calling false SNPs. To improve called SNPs accuracy, the highest
alignment quality of each location is used in assessing called SNPs quality.

While the above information provides multiple parameters for measuring
the accuracy of called SNPs, it is desirable to integrate this information into a
single SNP score that correlate with SNPs accuracy. Slider II uses a heuristic
approach that divides the SNP final score range into three different regions
based initially on the highest read alignment quality, AQMax , region three for
SNPs with the highest AQMax , above some threshold value, and region one
for those SNPs with the lowest, below some other threshold value. The final
SNPs score is computed by combining score1 and score2 and normalize the
outcome to fit in the appropriate SNP region score range, where region one
for scores in the range [67 … 100], region two for scores in [34 … 66] and
region three for [0 … 33].

SNPs that are likely to be a result of paralogous alignments (PI and PE ),
or contig edges (CE ) and some PCR artifacts false SNPs are down scored by
moving them to a lower region.

A third score that rewords SNPs with higher ratio of reads that are not
showing the reference base is computed score3 = cnts/cntt , where:

cnts: is the number of cover bases with the probability of the reference
nucleotide less than 5%.

cntt : the total number of cover reads.
Ranks are first derived from score1 and score2 where each SNP has two

ranks, rank1 from score1 and rank2 from score2. For example, if a SNP
score1 is 32, and this put this SNP at the 78% rank among all other SNPs
with respect to score1, rank1 for this SNP is 78.

The final SNP score is:

Score= (rank2 ∗lg+rank1 ∗(2− lg)+score3)/3

where:

Slider II execution time is about 1.2 to 1.4 times the execution time of
Slider (Malhis et al., 2009).

3 RESULTS
We utilized 68 Illumina lanes of human breast cancer whole genome
shotgun sequencing paired-end sequence data, representing a total
of 906 million reads ranging in size from 36 to 42 bases (Shah
et al., 2009). These data were processed using both Slider II Version
1.1 and MAQ Version 0.7.1. Reads were first aligned to the human
genome hg18 resulting in an average coverage of ∼7.5×. For each
aligner, SNPs were called and sorted in descending order, using the
SNP score for Slider II and the Phred-like consensus quality score
provided by MAQ. We used the concordance of the called SNPs with
the Ensembl Variation database (version 50) SNPs to compare SNP
calling accuracy. We postulate that a higher level of concordance
with the variation database, given its large size, and yet relative rarity
of SNPs in the reference can only reflect a higher degree of accuracy
in SNP calling. Although SNP concordance does not give an exact
estimate of SNP calling accuracy, it provides a good relative measure
of performance. Concordance provides a lower boundary of this
accuracy (and an upper boundary to the novel SNPs in the sample),
for example, in a set of n called SNPs, if we have a concordance of
x%, this means that:

• Our SNPs calling accuracy is at least x%. It is exactly x% when
the sample data contain only known SNPs.

• The SNPs in our sample data has at most (1− x)% novel SNPs.
The percentage of novel SNPs is exactly (1 − x)% when we
have no calling errors.

Therefore, if the sample data contain y% novel SNPs and (0 ≤
y ≤ 1− x), novel SNPs accuracy is z%, and z=y/(1− x).

Figure 6 shows the concordance of top-scored SNPs for Slider
II without using known SNPs as priors (Slider II A), with known
SNPs as priors (Slider II B) and for MAQ at minimum coverage
depths of 3, 2 and 1. Whereas for Slider II, the called SNPs
concordance is correlated with their scores,; the MAQ concordance
dropped significantly for SNPs reported with high quality scores.
This phenomenon appears to be contributed by SNPs generated as a
result of alignment to paralogous or duplicated regions since MAQ
does not have the capability of filtering out such SNPs.

To provide a more comparable analysis, we filtered out SNPs
indicating sequence coverage higher than 15 (Figure 7) within the
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Fig. 6. SNP concordance with the Ensembl Variation database (version 50).
SNPs as a function of output size ranked by Phred-like consensus quality for
MAQ and SNP score for Slider II. MAQ 1d, MAQ 2d and MAQ 3d indicate
a minimum coverage depth 1, 2 and 3, respectively. Slider II A indicated
SNPs called by Slider II without using any prior knowledge of known SNPs.
Slider II B indicates SNPs called using priors knowledge of known SNPs.

Fig. 7. Labels are as in Figure 6, but MAQ SNPs with sequence coverage
higher than 15× are filtered out to reduce the effect of paralogous SNPs.

MAQ output in order to reduce those inaccurately called SNPs
at high quality scores. Figure 7 shows that Slider II using the
probabilities of all four bases is able to identify more SNPs with
higher accuracy than MAQ.

The results in Figures 6 and 7 also show that the usage of
polymorphism priors (Slider II B) enables the detection of a larger
number of SNPs with substantially higher calling accuracy.

Figure 8 shows the output overlap for Slider II SNPs (not
including prior knowledge of known SNPs) with score greater than
25, counting 1 911 839 (or about 75% top scoring SNPs) and all of
the MAQ called SNPs with coverage in the range [2 … 15], counting
1 793 659. Given that Slider II and MAQ apply different approaches
in alignment, consensus generation, SNPs scoring and filtering, only
70.6% of the SNPs called by Slider II are also called by MAQ,
and 75.3% of MAQ SNPs are called by Slider II (using all of the
3 007 401 SNPs called by Slider II utilizing the prior knowledge of
known SNPs; this last ratio will become 89.7%).

While MAQ requires a minimum coverage cut off value to identify
SNPs and a maximum coverage parameter to filter out paralogous

Fig. 8. The called SNPs overlap between Slider II SNPs without using
any prior knowledge of known SNPs with score higher than 25 counting
1 911 839 SNPs and MAQ SNPs with coverage of at least 2 and less than 15
counting 1 793 659 SNPs. Known SNPs in the Ensembl Variation database
(version 50) are separated from potential novel SNPs that are not in the
variation database.

SNPs, Slider II does not rely on such heuristic values, instead
utilizes the expected ratio of polymorphism in the reference genome
for identifying SNPs at each position. In addition, an automated
approach filters out paralogous SNPs without a user instantiated cut
off value for maximum coverage.

4 DISCUSSION
In this article, we presented a comprehensive SNPs calling tool
from prb values of Illumina short reads, which aligns Illumina short
prb reads to a reference genome, utilizes alignment information in
calibrating all four prb values and accumulates bases probability
using Bayes approach, and finally SNPs are called on nucleotide
differences between the accumulated bases probabilities and the
reference genome, when our confidence in a consensus accumulated
from the reads is higher than our confidence of the used reference.
Each called SNP is associated with a single score that ranks its
accuracy among the set of called SNPs. SNPs that are likely to
be a result of genomic rearrangements are either down scored or
removed.As an optional feature, known SNPs of a target genome can
be utilized as priors in alignment and SNPs calling, which increases
the capability of detecting known SNPs. Results show that Slider II
calls more SNPs with higher accuracy than the leading competitive
tools; from Figure 7 we see that the concordance with Ensembl
known SNPs for Slider II is higher than that of MAQ at every output
size, for example, at concordance of 90%, Slider II was able to call
more than 2 million SNPs whereas MAQ called about 1.58 million
SNPs. We contribute this higher SNPs calling accuracy of Slider II
to two factors:

(1) The use of prb values: prb values result in higher alignment
quality and more discriminatory probability accumulation
outcome, compared to qCal value of the mpb, which enabled
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Slider II to call more SNPs at lower X coverage with higher
quality.

(2) Higher filtering capabilities: in filtering out SNPs that
are likely been called as a result of indels and genomic
rearrangements, Slider II implemented two new concepts that
resulted in a lower percentage of false positive called SNPs:
first, when the average SNP location in covering reads is
toward the edges, the SNP is more likely to be a false positive
that is called as a result of indels and genomic rearrangements
(as described in Section 2.2.2); second, the concept of LQB
is used to improve dense SNPs filtering (as described in
Section 2.2).

While higher SNPs calling capabilities resulted from utilizing
prb values in alignment and probability, accumulation can be more
essential at lower coverage areas and is noticeable at the right side
of charts in Figures 6 and 7, higher filtering capability of falsely
called SNPs utilizing the average SNP location gets more effective
as the coverage increases (Figure 4), which can be detected at the
left side of charts in Figures 6 and 7.

This algorithmic approach demonstrates that utilizing the
probability of all four possible nucleotides provide an important
factor in improving SNPs calling outcome. While many researchers
and software developers choose to ignore prb data due to its larger
files size, Slider II process prb from ‘.gz’ files which are compressed
with high ratio (7–10× smaller than the original prb source) due to
the high repeat in prb values.
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