

Instructor: Jinze Liu

Fall 2008

2)

 $key \rightarrow h(key)$

Two Alternatives

3

(1) key \rightarrow h(key)

records

Two Alternatives

4

Alt (2) for "secondary" search key

Example hash function

- 5
- Key = 'x1 x2 ... xn' n byte character string
- Have b buckets
- h: add x1 + x2 + xn
 - compute sum modulo *b*

6

☒ This may not be best function ...

⊠ Read Knuth Vol. 3 if you really need to select a good function.

Good hash

Expected number of

function: keys/bucket is the

same for all buckets

Within a bucket:

7

• Do we keep keys sorted?

Yes, if CPU time critical

& Inserts/Deletes not too frequent

Inserts, overflows, deletes h(K)

EXAMPLE 2 records/bucket

9

INSERT:

$$h(a) = 1$$

$$h(b) = 2$$

$$h(c) = 1$$

$$h(d) = 0$$

$$h(e) = 1$$

Example: Deletion

10

Delete:

e

f

C

Rule of thumb:

11)

 Try to keep space utilization between 50% and 80%

Utilization = # keys used total # keys that fit

- If < 50%, wasting space
- If > 80%, overflows significant
 depends on how good hash
 function is & on # keys/bucket

How do we cope with growth?

- Overflows and reorganizationsDynamic hashing
 - - ExtensibleLinear

Extensible hashing: two ideas

13)

(a) Use *i* of *b* bits output by hash function

$$h(K) \rightarrow 0$$

$$00110101$$

$$use^{i} \rightarrow grows over time....$$

Extensible hashing: two ideas

14)

(b) Use directory

h(K)[i]

→ to bucket

Example: h(k) is 4 bits; 2 keys/bucket

Extensible hashing: <u>deletion</u>

18)

- No merging of blocks
- Merge blocks and cut directory if possible (Reverse insert procedure)

Deletion example:

19)

• Run thru insert example in reverse!

Note: Still need overflow chains

20

Example: many records with duplicate keys

insert 1100

2

11

1100

2

1100

1100

Solution: overflow chains

21)

insert 1100

1 1101 1100 add overflow block:

Extensible hashing

- (22)
- + Can handle growing files
 - with less wasted space
 - with no full reorganizations
- Indirection

(Not bad if directory in memory)

Directory doubles in size

(Now it fits, now it does not)

Linear hashing

(23)

Another dynamic hashing scheme

Two ideas:

(a) Use *i* low order bits of hash

(b) File grows linearly

Example b=4 bits, i=2, 2 keys/bucket

Note

25

- In textbook, n is used instead of m
- \bullet n=m+1

m = 01 (max used block)

Example b=4 bits, i=2, 2 keys/bucket

Example Continued: How to grow beyond this?

When do we expand file?

28

Keep track of: # used slots = U
 total # of slots

If U > threshold then increase m
 (and maybe i)

Linear Hashing

- 29
- Can handle growing files
 - with less wasted space
 - with no full reorganizations
- No indirection like extensible hashing

Can still have overflow chains

Summary

31

Hashing

- How it works
- Dynamic hashing
 - Extensible
 - Linear

Next:

32

- Indexing vs Hashing
- Index definition in SQL
- Multiple key access

Indexing vs. Hashing

33

Hashing good for probes given key
 e.g., SELECT ...

FROM R WHERE R.A = 5

Indexing vs. Hashing

34

• INDEXING (Including B Trees) good for Range Searches:

e.g., SELECT

FROM R WHERE R.A > 5

Index definition in SQL

35

- <u>Create index name on rel (attr)</u>
- <u>Create unique index</u> name <u>on</u> rel (attr)

— defines candidate key

<u>Drop</u> INDEX name

SQL

CANNOT SPECIFY TYPE OF INDEX

(e.g. B-tree, Hashing, ...)

OR PARAMETERS

(e.g. Load Factor, Size of Hash,...)

37

ATTRIBUTE LIST \Rightarrow MULTIKEY INDEX (next) e.g., CREATE INDEX foo ON R(A,B,C)

Multi-key Index

38

Motivation: Find records where

DEPT = "Toy" AND SAL > 50k

Notes 5

Strategy I:

39

- Use one index, say Dept.
- Get all Dept = "Toy" records and check their salary

Notes 5

Strategy II:

40

• Use 2 Indexes; Manipulate Pointers

Toy

Strategy III:

41

Multiple Key Index

One idea:

Example 10k Example Record 15k Art 17k Sales 21k Toy **Dept** 12k Name=Joe DEPT=Sales Index 15k SAL=15k 15k 19k Salary Index

For which queries is this index good?

- \square Find RECs Dept = "Sales" \wedge SAL=20k
- ☐ Find RECs Dept = "Sales" \land SAL \geq 20k
- ☐ Find RECs Dept = "Sales"
- \Box Find RECs SAL = 20k

Interesting application:

44

Geographic Data

DATA:

<X1,Y1, Attributes>

<X2,Y2, Attributes>

:

Queries:

- What city is at <Xi,Yi>?
- What is within 5 miles from <Xi,Yi>?
- Which is closest point to <Xi,Yi>?

Queries

- Find points with Yi > 20
- Find points with Xi < 5
- Find points "close" to $i = \langle 12, 38 \rangle$
- Find points "close" to $b = \langle 7,24 \rangle$

Geographic index

- okd-Trees (very similar to what we described here)
- Quad Trees
- OR Trees
- O ...

Two more types of multi key indexes

- Grid
- Partitioned hash

Grid Index Key 2 X1 X2 Xn V1 V2 Key 1 Vn To records with key1=V3, key2=X2

CLAIM

51

Can quickly find records with

$$\circ$$
 key $1 = V_i \land \text{Key } 2 = X_j$

$$\circ$$
 key $1 = V_i$

$$\circ$$
 key $2 = X_j$

And also ranges....

$$-$$
 E.g., key $1 \ge V_i \land \text{key } 2 < X_j$

But there is a catch with Grid Indexes!

52

How is Grid Index stored on disk?

Problem:

 Need regularity so we can compute position of <Vi,Xj> entry

Solution: Use Indirection

53

Buckets

*Grid only contains pointers to buckets

With indirection:

- Grid can be regular without wasting space
- We do have price of indirection

Can also index grid on value ranges

55

Salary

50K- ω 3

0-20K

20K-50K

	. •	.1
G	rı	a

Linear Scale

<u> </u>		
1	2	3
Toy	Sales	Personnel

Grid files

- Good for multiple-key search
- Space, management overhead (nothing is free)
- Need partitioning ranges that evenly split keys

Partitioned hash function

57

Idea:

Key1

h1(toy) =0 h1(sales) =1 h1(art) =1 000 <Fred> 001 h1(art) 010 011 <Joe><Sally> h2(10k) =01 h2(20k) =11 h2(30k) =01 100 101 110 h2(40k) =00111 <Fred,toy,10k>,<Joe,sales,10k> <Sally,art,30k> Insert

```
h1(toy)
             =0
                          000
                                       <Fred>
h1(sales) = 1
                          001
                                      <Joe><Jan>
h1(art)
             =1
                          010
                                       <Mary>
                          011
h2(10k)
                                       <Sally>
                          100
             =01
h2(20k) = 11
                          101
h2(30k) = 01
                          110
                                      <Tom><Bill>
h2(40k)
            =00
                          111
                                       <Andy>
```

Find Emp. with Dept. = Sales ∧ Sal=40k

h1(toy) =0000 <Fred> h1(sales) = 1001 <Joe><Jan> h1(art) =1 010 <Mary> 011 h2(10k) <Sally> 100 =01 h2(20k) = 11101 h2(30k) = 01110 <Tom><Bill> h2(40k) 111 =00<Andy> Find Emp. with Dept. = Sales

look here

Summary

62

Post hashing discussion:

- Indexing vs. Hashing
- SQL Index Definition
- Multiple Key Access
 - Multi Key Index

Variations: Grid, Geo Data

- Partitioned Hash