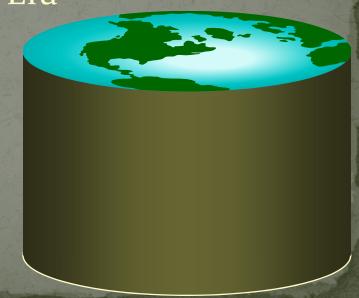


Instructor: Jinze Liu

Fall 2008



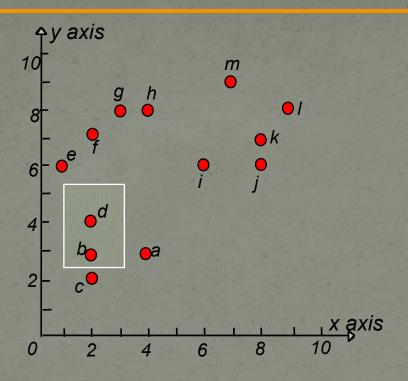
Beyond ISAM, B-, and B+-trees

- Other tree-based indexes: R-trees and variants, GiST, etc.
- Hashing-based indexes: extensible hashing, linear hashing, etc.
- Text indexes: inverted-list index, suffix arrays, etc.
- Other tricks: bitmap index, bit-sliced index, etc.
 - How about indexing subgraph search?

R-Tree

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

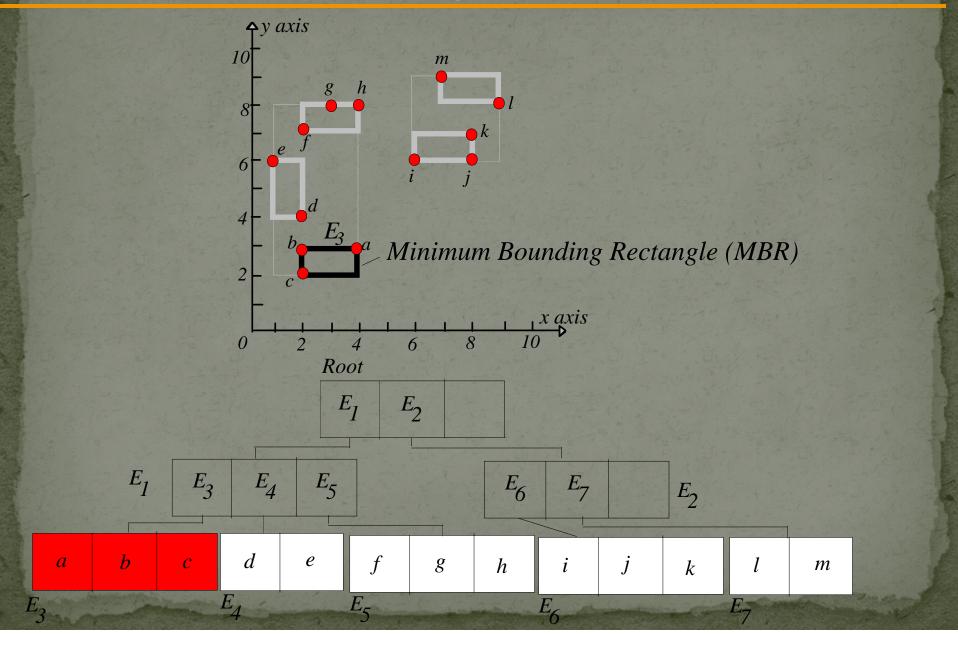
R-Tree Motivation



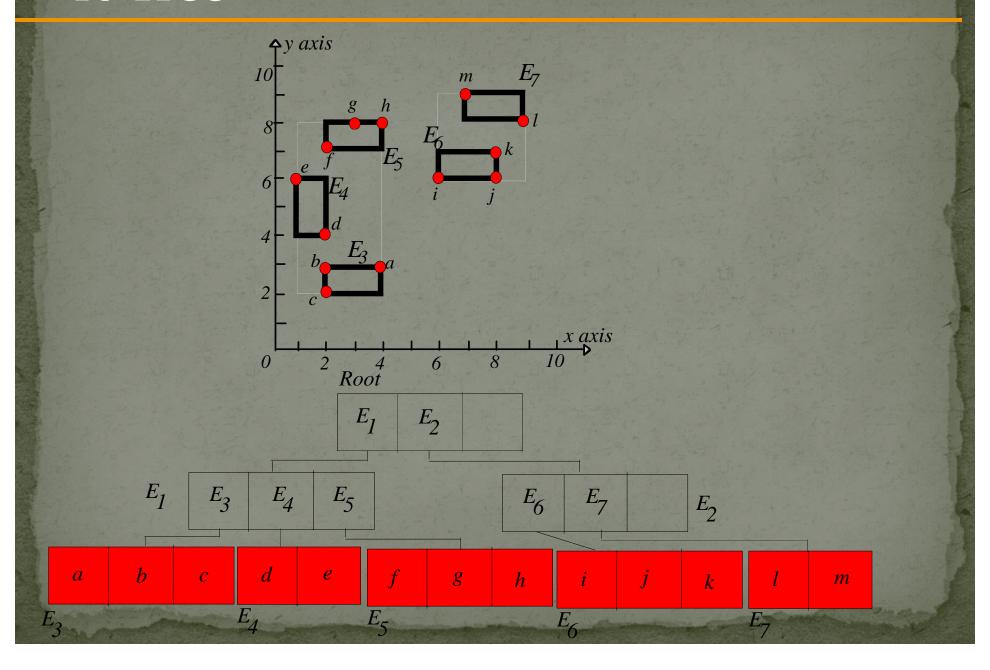
Range query: find the objects in a given range. E.g. find all hotels in Boston.

No index: scan through all objects. NOT EFFICIENT!

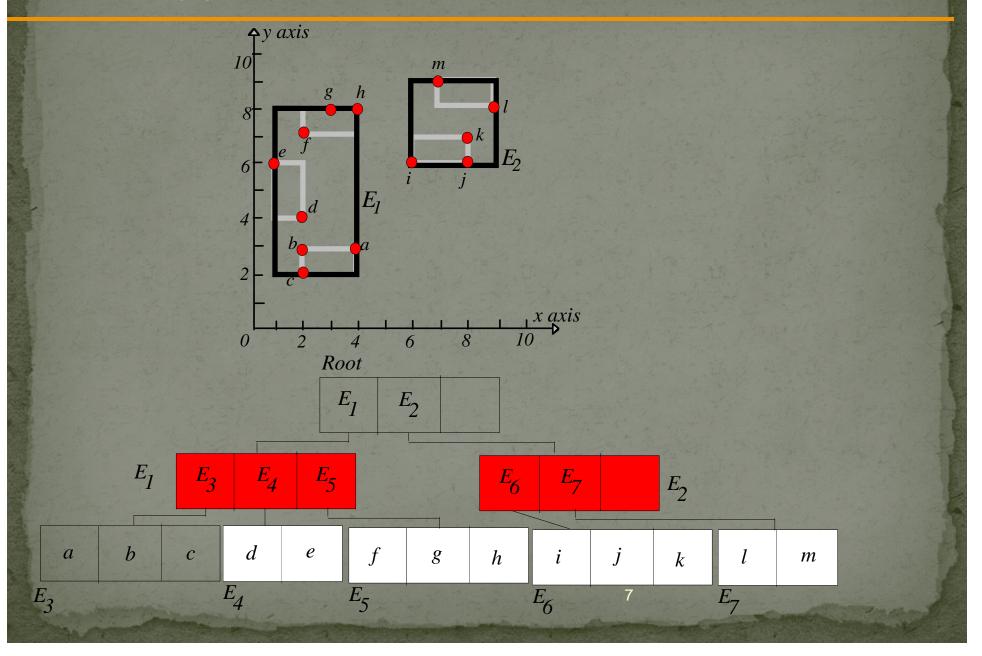
R-Tree: Clustering by Proximity

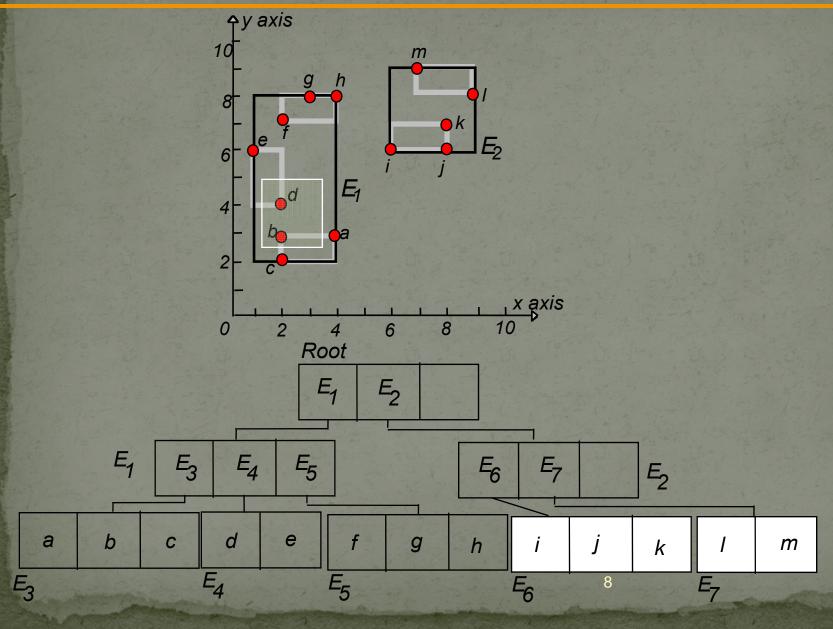


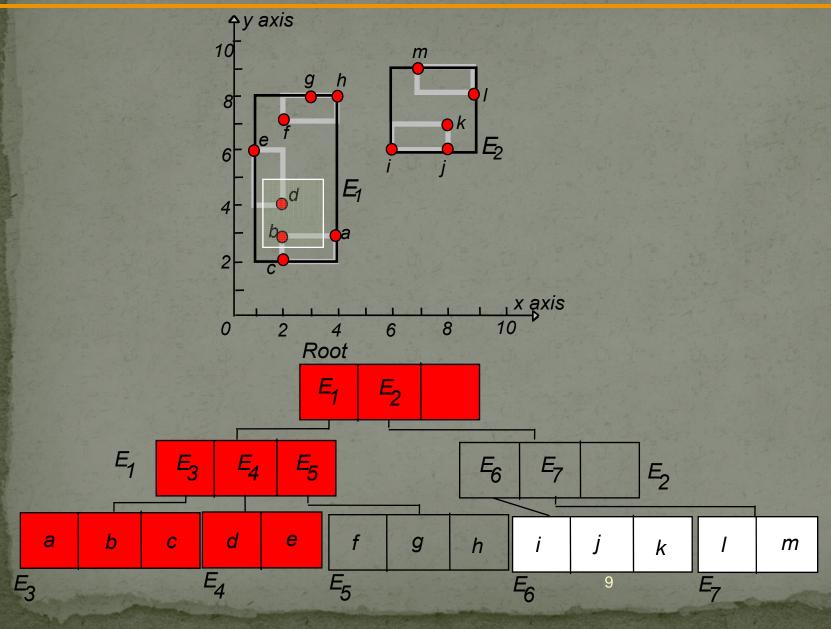
R-Tree

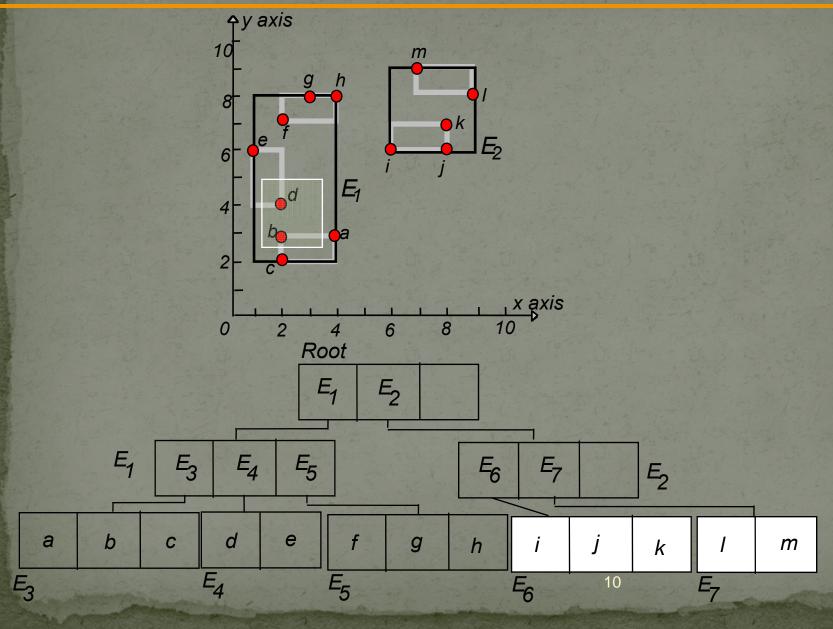


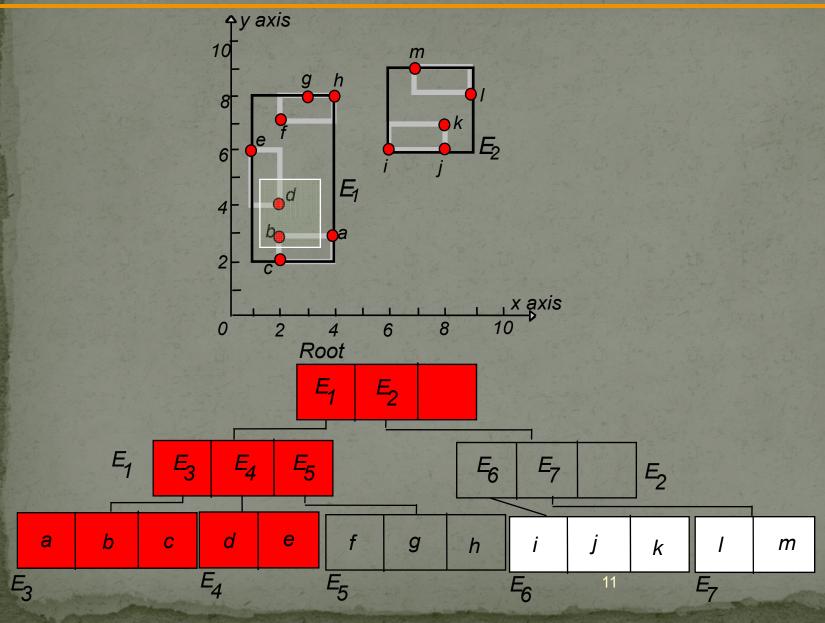
R-Tree









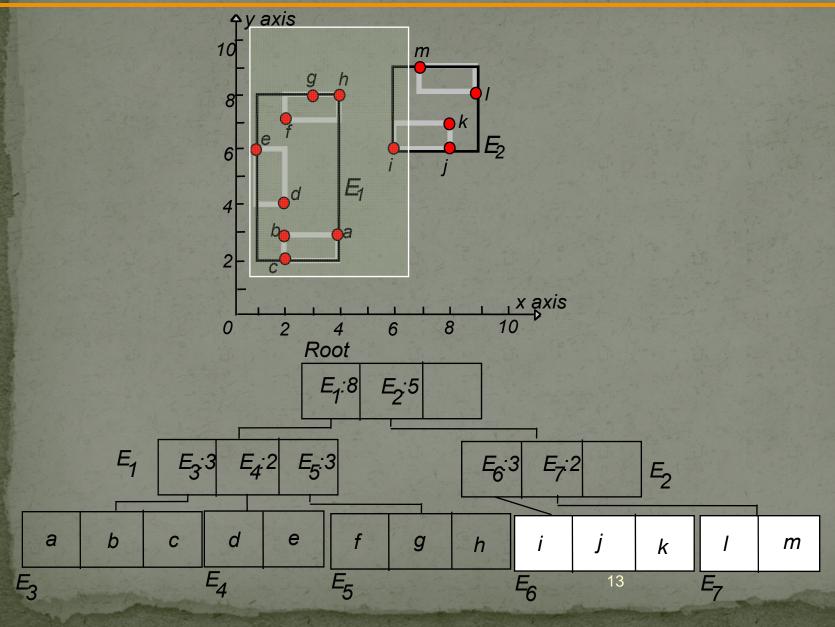


Aggregation Query

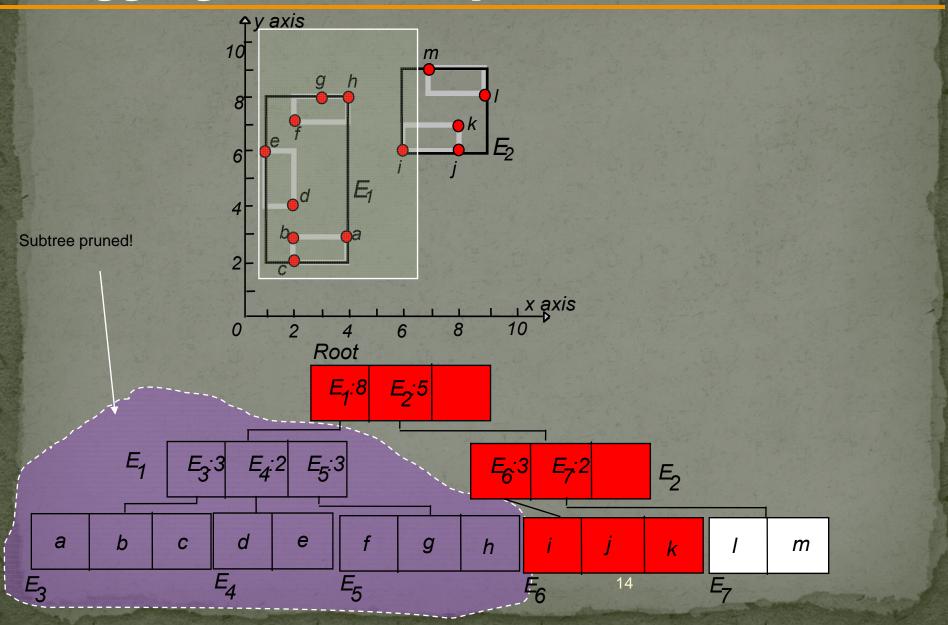
- Given a range, find some aggregate value of objects in this range.
- COUNT, SUM, AVG, MIN, MAX
- E.g. find the total number of hotels in Massachusetts.

- Straightforward approach: reduce to a range query.
- Better approach: along with each index entry, store aggregate of the sub-tree.

Aggregation Query



Aggregation Query



Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

Nearest Neighbor (NN) Query

• Given a query location *q*, find the nearest object.

• E.g.: given a hotel, find its nearest bar.

0

A Useful Metric: MINDIST

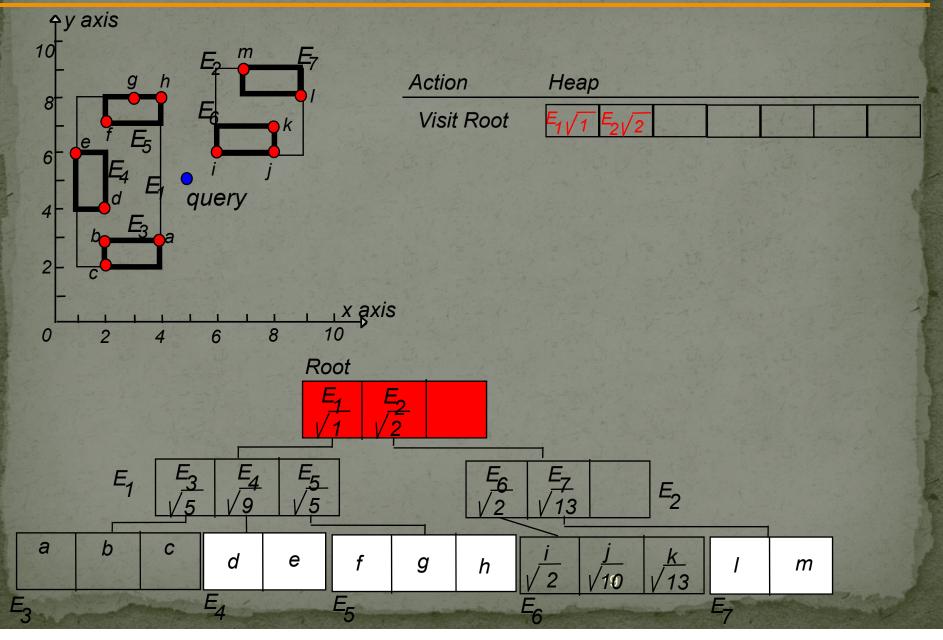
Minimum distance between q and an MBR.

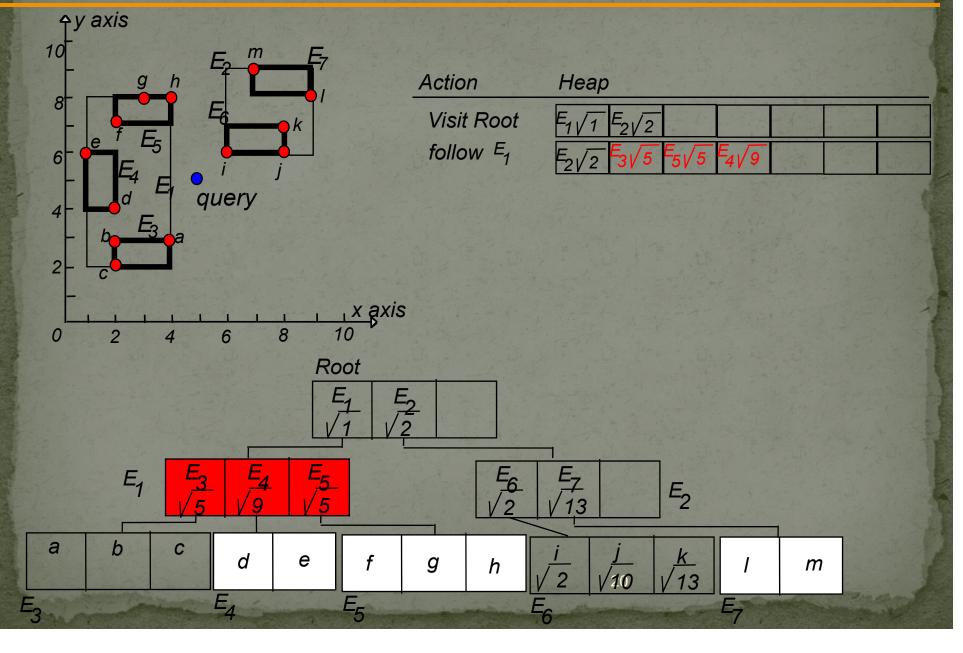
$$E_1$$

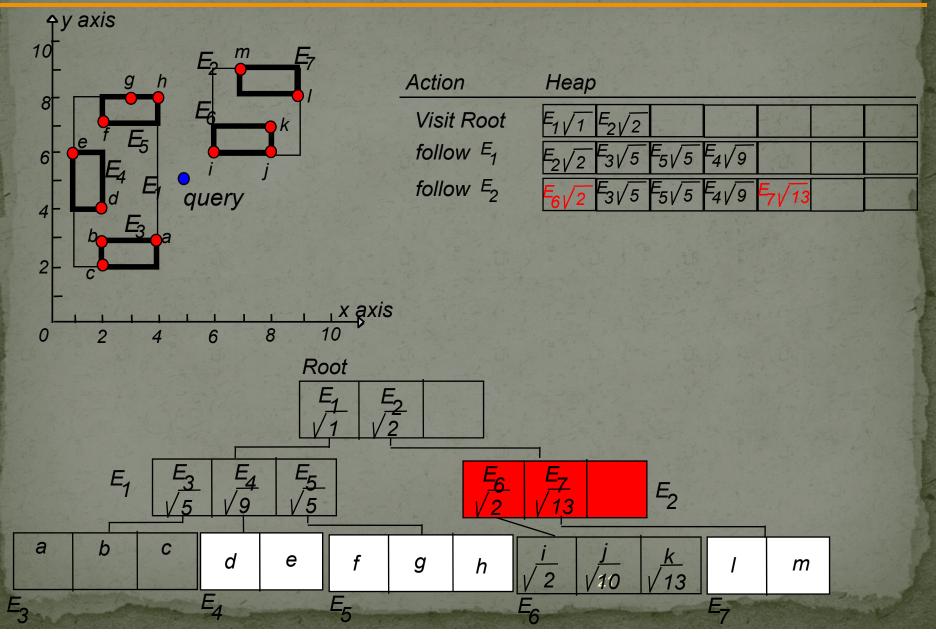
- It is an lower bound of d(o, q) for every object o in E_1 .
- MINDIST(o, q) = d(o, q).

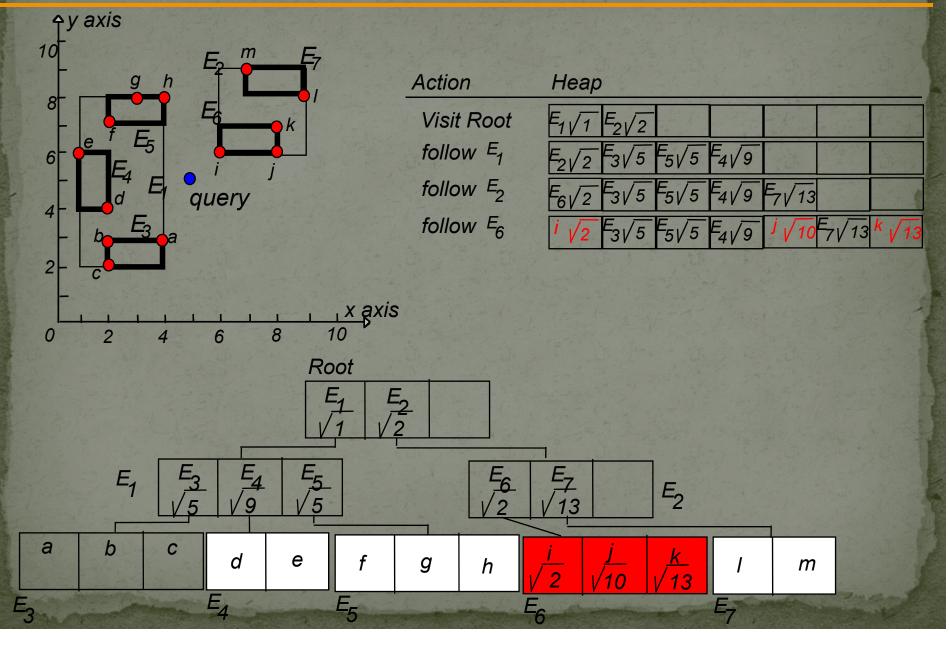
NN Basic Algorithm

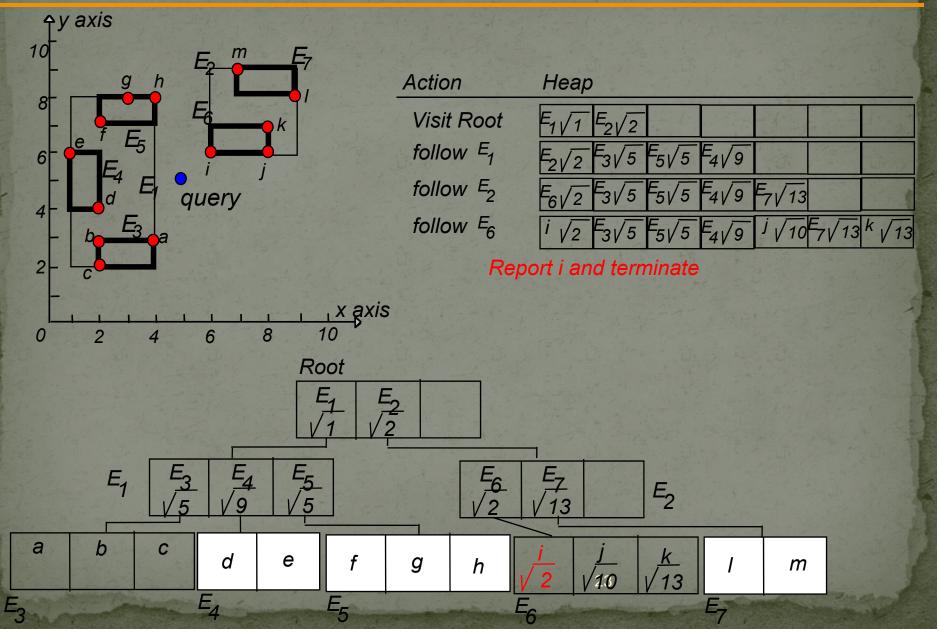
- Keep a heap H of index entries and objects, ordered by MINDIST.
- Initially, *H* contains the root.
- While $H \neq \phi$
 - Extract the element with minimum MINDIST
 - If it is an index entry, insert its children into *H*.
 - If it is an object, return it as NN.
- End while





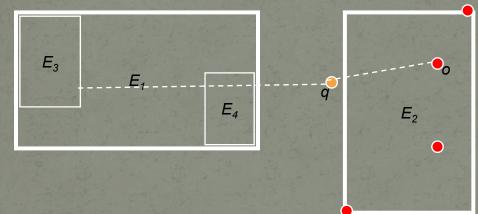






Pruning 1 in NN Query

• If we see an object o, prune every MBR whose MINDIST > d(o, q).



Side notice: at most one object in H!

Pruning 2 using MINMAXDIST

- Prune even before we see an object!
- Prune E_i if exists E_2 s.t. MINDIST $(q, E_i) > \text{MINMAXDIST}(q, E_2)$.

 E_1 E_2 $\exists \text{ Object } o \text{ in sub-tree}$ of E_2 s.t. $d(o, q) \leq$ $\text{MINMAXDIST}(q, E_2)$

• MINMAXDIST: compute max dist between q and each edge of E_2 , then take min.

NN Full-Blown Algorithm

- Keep a heap *H* of index entries and objects, ordered by MINDIST.
- Initially, *H* contains the root.
- Set $\delta = +\infty$.
- While $H \neq \phi$
 - Extract the element *e* with minimum MINDIST.
 - If it is an object, return it as NN.
 - For every entry se in PAGE(e) whose MINDIST≤δ
 - Insert *se* into *H*.
 - Decrease δ to MINMAXDIST(q, se) if possible.
- End while

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

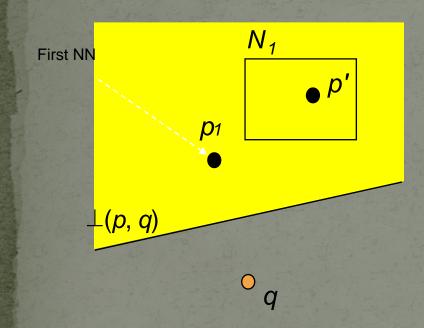
Reverse NN: Definition

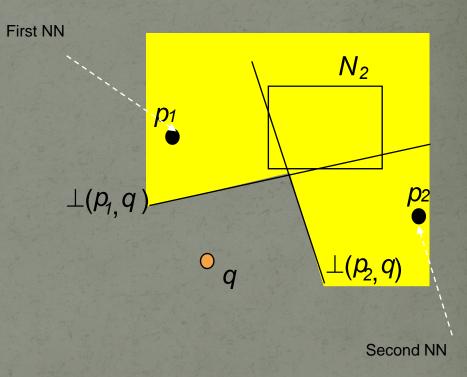
- Given a set of points, and a query location *q*.
- Find the points whose NN is *q*.

$$p_1$$
 p_4
 p_3
 p_3

• RNN(q)={ p_1 , p_2 }, NN(q)= p_3 .

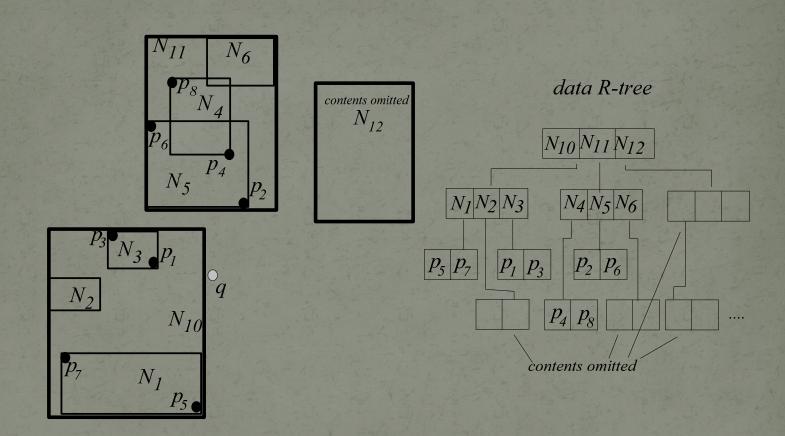
Half-plane pruning

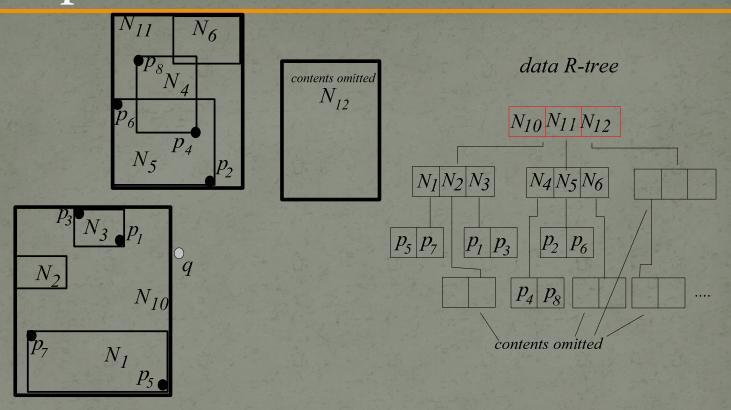




(TPL) Algorithm

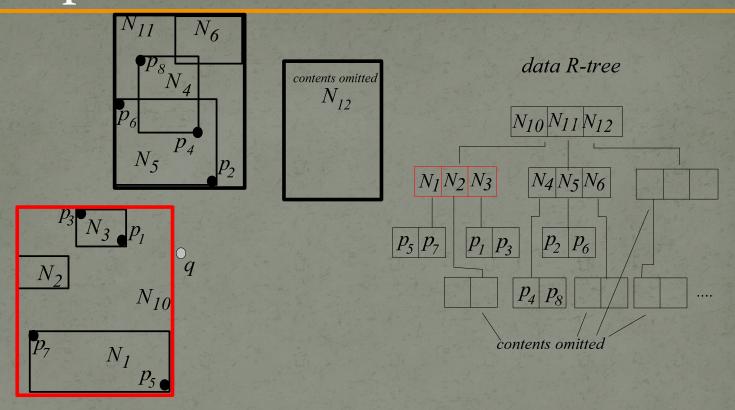
- Two logical steps:
 - Filter step: Find the set S_{cnd} of candidate points
 - Find NN;
 - Prune space;
 - Find NN in unpruned space;
 - •
 - Till no more object left.
 - Refinement step: eliminate false positives
 - For each point p in S_{cnd} , check whether its NN is not q.
- The two steps are combined in a single tree traversal, by keeping all pruned MBRs/objects in S_{rfn} .



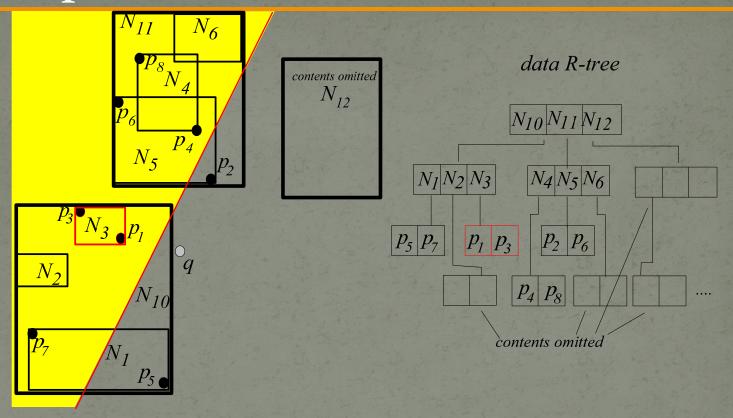


Action

Heap visit root $\{N_{10}, N_{11}, N_{12}\}$ Scnd



ActionHeap S_{end} S_{rfn} visit N_{10} { $N_3,N_{11},N_2,N_1,N_{12}$ } \varnothing



Action

Heap

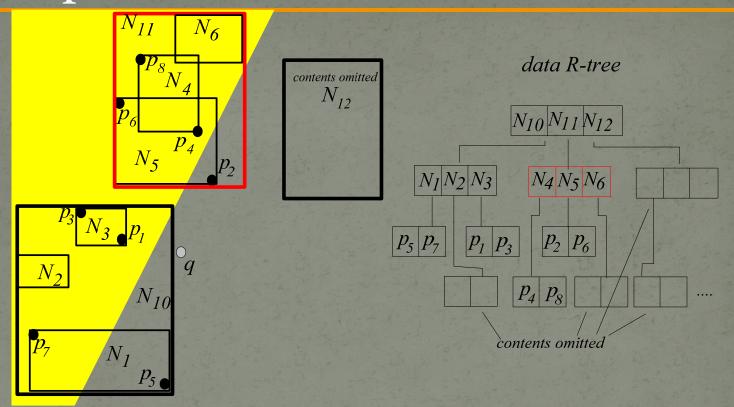
visit $N_3 \{N_{11}, N_2, N_1, N_{12}\}$

Scnd

{*p*₁}

 S_{rfn}

 $\{p_3\}$

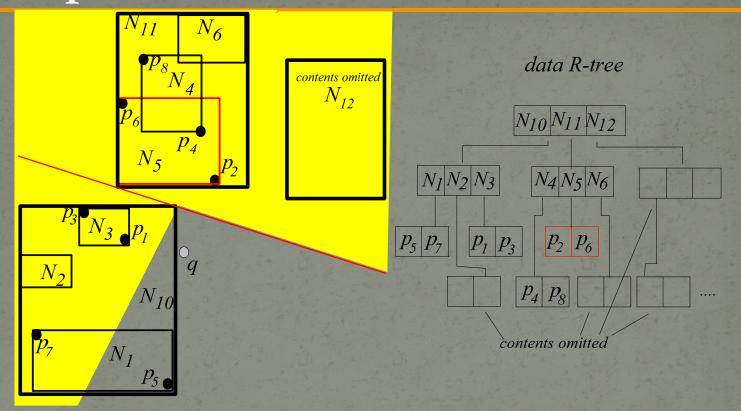


Action

Heap visit N_{11} { N_5, N_2, N_1, N_{12} }

Scnd {*p*₁}

 S_{rfn} $\{p_3, N_4, N_6\}$



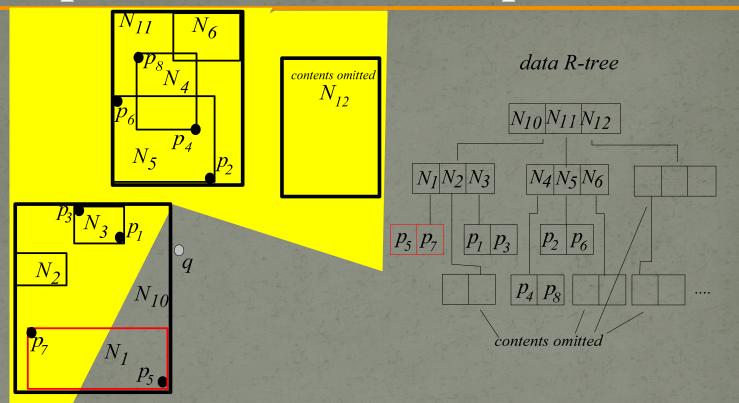
Action visit N_5

Heap $\{N_2, N_1, N_{12}\}$

 S_{cnd} $\{p_1,p_2\}$

 S_{rfn} $\{p_3, N_4, N_6, p_6\}$

Example (end of filter step)

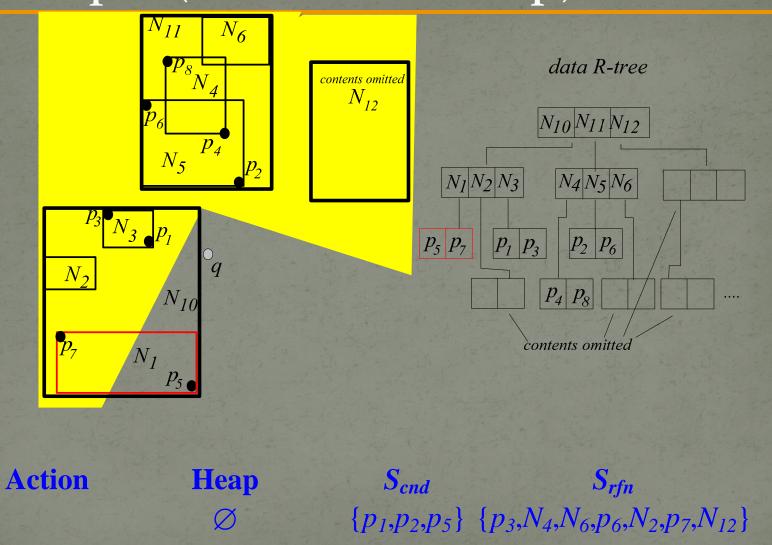


Action visit N_I

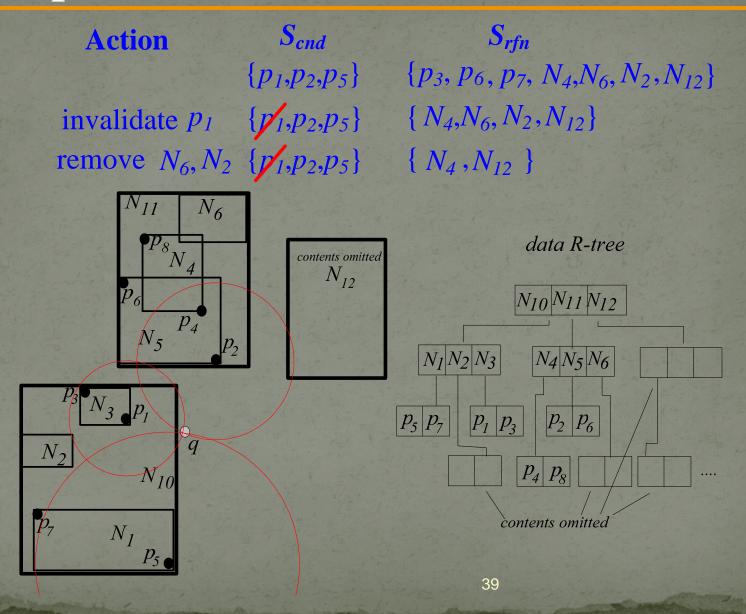
Heap $\{N_{12}\}$

 S_{cnd} S_{rfn} $\{p_1,p_2,p_5\}$ $\{p_3,N_4,N_6,p_6,N_2,p_7\}$

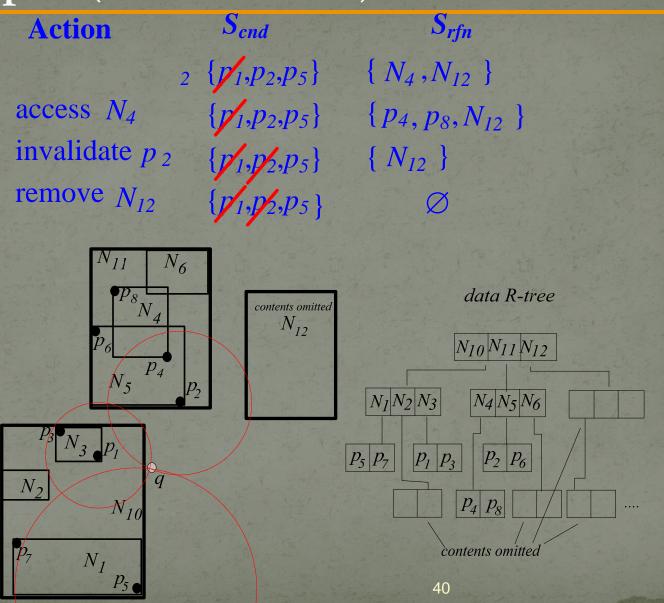
Example (end of filter step)



Example (refinement)



Example (refinement)



Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

Closest Pair (CP) Query

- Given two sets of objects *R* and *S*,
- Find the pair of objects $(r \in R, s \in S)$ with minimum distance.

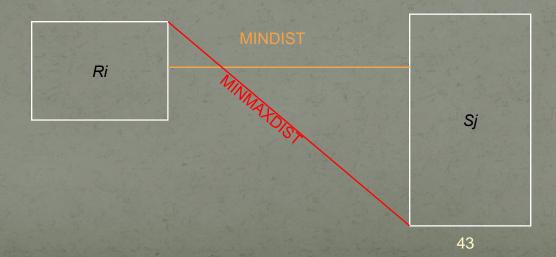
$$r_1$$
 s_1 r_2 r_3

• $CP = (r_2, s_1)$

• $CP = (r_2, s_1)$ r_4 s_2 E.g. find the closest pair of hotel-bar.

CP Solution Idea

- Assume *R* and *S* are indexed by R-trees with same height.
- Similar to the NN query algorithm.
- MINDIST, MINMAXDIST for a pair of MBRs:



CP Basic Algorithm

- Keep a heap H of pairs of index entries and pairs of objects, ordered by MINDIST.
- Initially, *H* contains the pair of roots.
- While $H \neq \phi$
 - Extract the pair (e_R, e_S) with minimum MINDIST.
 - If it is a pair of objects, return it as CP.
 - For every entry se_R in PAGE(e_R) and every entry se_S in PAGE(e_S)
 - Insert(e_R , e_S) into H.
- End while

CP Full-Blown Algorithm

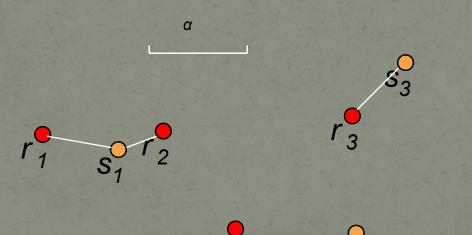
- Keep a priority queue *H* of pairs of index entries and pairs of objects, ordered by MINDIST.
- Initially, *H* contains the pair of roots.
- Set $\delta = +\infty$.
- While $H \neq \phi$
 - Extract the pair (e_R, e_S) with minimum MINDIST.
 - If it is a pair of objects, return it as CP.
 - For every entry se_R in PAGE(e_R) and every entry se_S in PAGE(e_S) whose MINDIST≤δ
 - Insert(se_R, se_S) into H.
 - Decrease δ to MINMAXDIST(se_R , se_S) if possible.
- End while

Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

Close Pair Query

- Given two sets of objects R and S, plus a threshold α ,
- Find every pair of objects $(r \in R, s \in S)$ with distance $<\alpha$.



• Close pairs = (r_1, s_1) , (r_2, s_1) , and (r_3, s_3) .

Close Pair Solution Idea

- Observation: if $d(r, s) < \alpha$, $\forall mbr_R$, mbr_S that contain r and s, respectively, we have: MINDIST(mbr_R , mbr_S) $< \alpha$.
- Solution idea:
 - start with the pair of root nodes,
 - Join pairs of index entries whose MINDIST $<\alpha$,
 - Till we reach leaf level.

Close Pair Algorithm

- Push the pair of root nodes into *stack*.
- While $stack \neq \phi$
 - Pop a pair (e_R, e_S) from stack.
 - For every entry se_R in PAGE(e_R) and se_S in PAGE(e_S) where MINDIST(se_R , se_S) $<\alpha$
 - Push (se_R , se_S) into stack if se_R is an index entry;
 - Otherwise report (se_R, se_S) as one close pair.
- End while

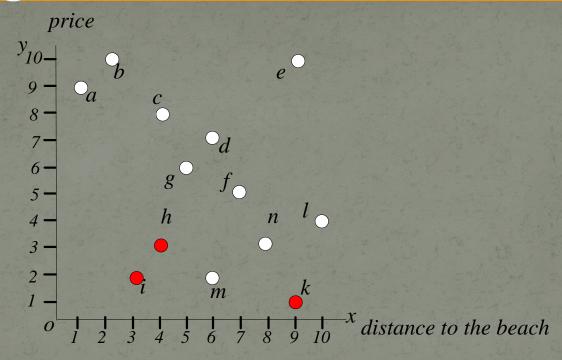
Content

- The R-tree
 - Range Query
 - Aggregation Query
- NN Query
- RNN Query
- Closest Pair Query
- Close Pair Query
- Skyline Query

Skyline of Manhattan

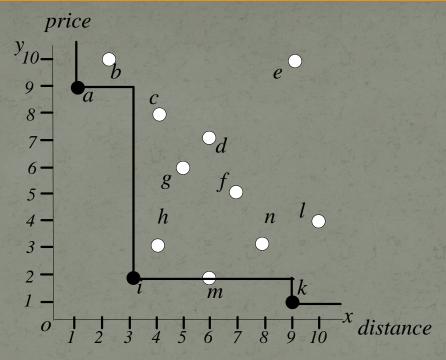
- Which buildings can we see?
 - -Higher or nearer

Finding A Hotel Close to the Beach



- Which one is better?
 - *i* or *h*? (*i*, because its price and distance dominate those of *h*)
 - *i* or *k*?

Skyline Queries

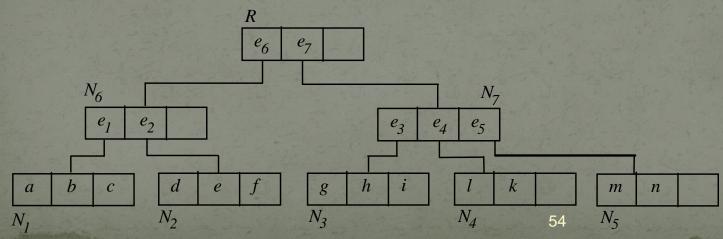


• Retrieve points not dominated by any other point.

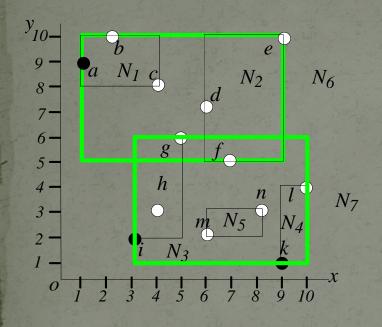
Branched and Bound Skyline (BBS)



- Assume all points are indexed in an R-tree.
- mindist(MBR) = the L_i distance between its lower-left corner and the origin.

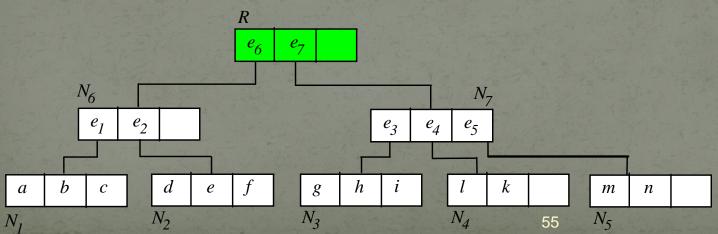


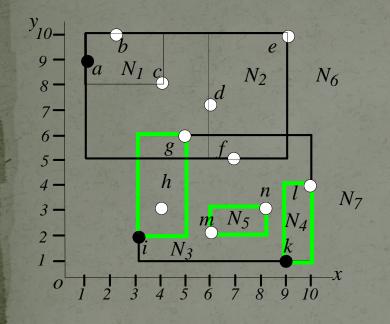
Branched and Bound Skyline (BBS)



 Each heap entry keeps the mindist of the MBR.

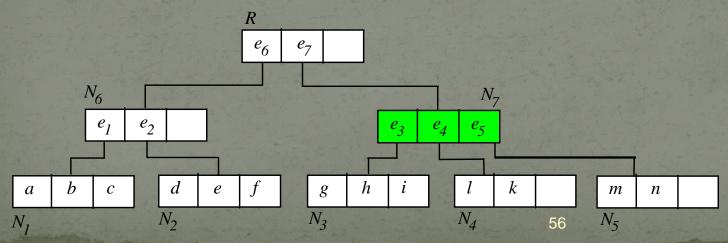
action heap contents access root $\langle e_7,4\rangle\langle e_6,6\rangle$

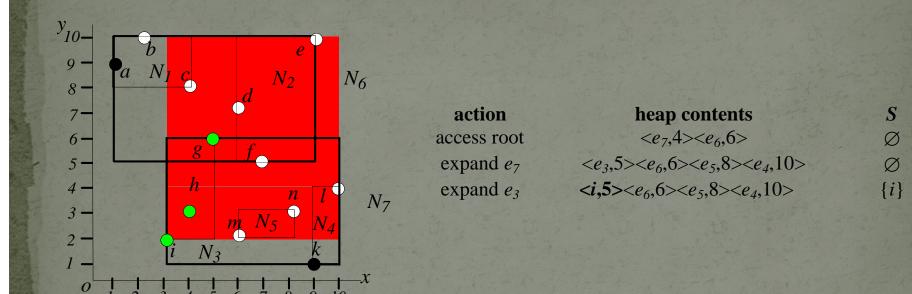


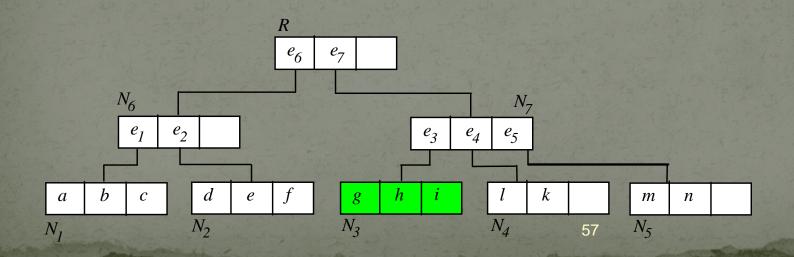


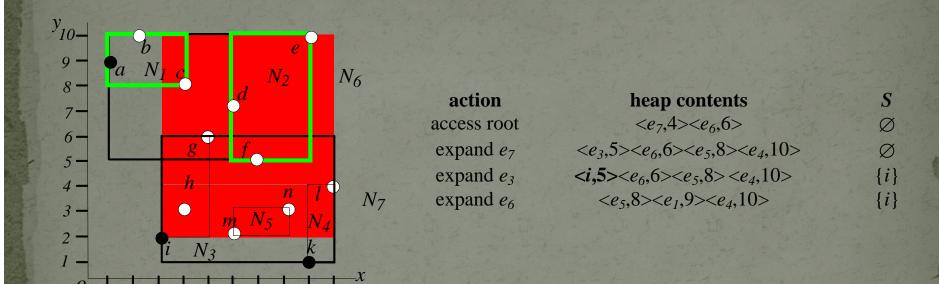
 Process entries in ascending order of their mindists.

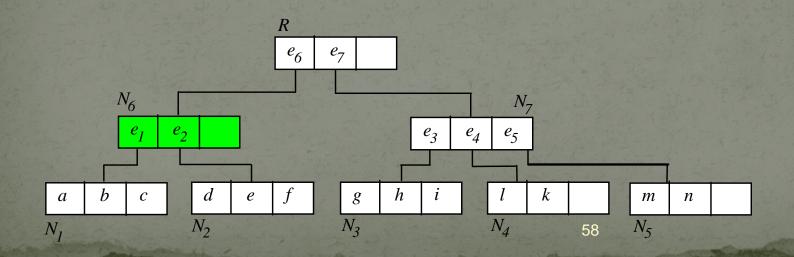
action	heap contents	S	5
access root	< <i>e</i> ₇ ,4>< <i>e</i> ₆ ,6>	Q	y
expand e_7	< <i>e</i> ₃ ,5>< <i>e</i> ₆ ,6>< <i>e</i> ₅ ,8>< <i>e</i> ₄ ,10>	Q	3

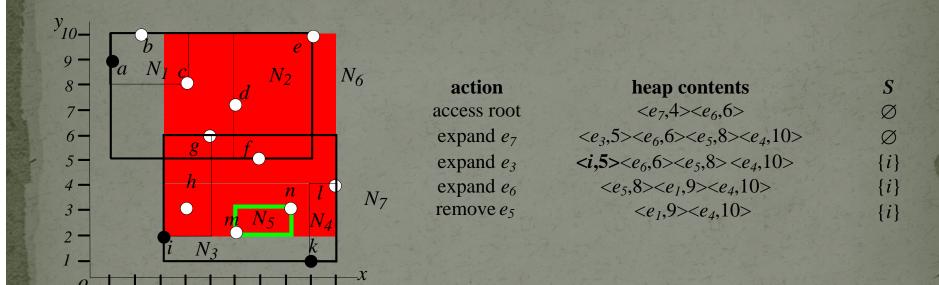


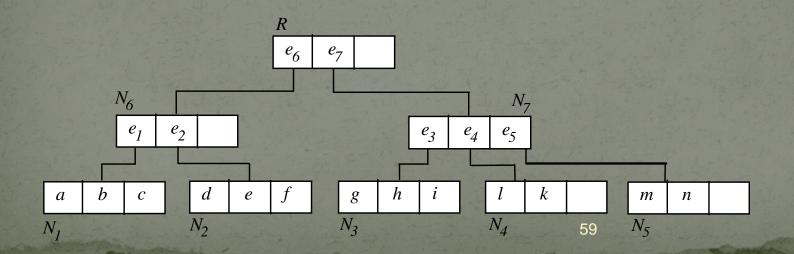


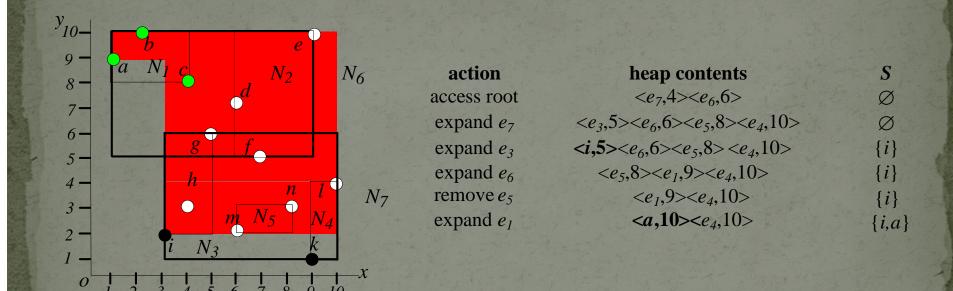


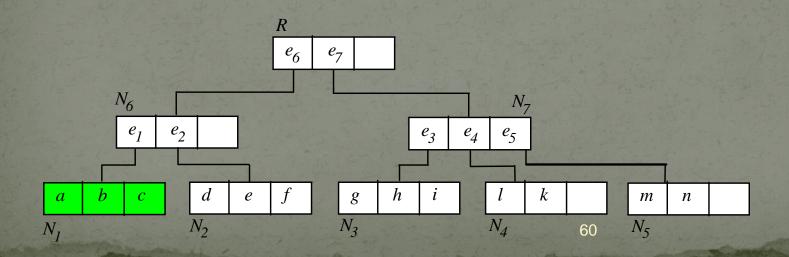


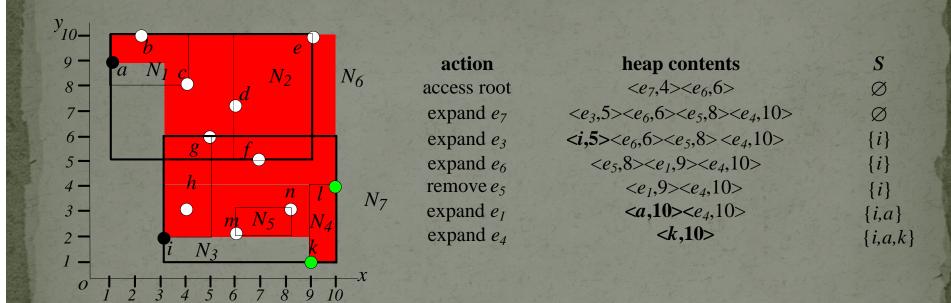


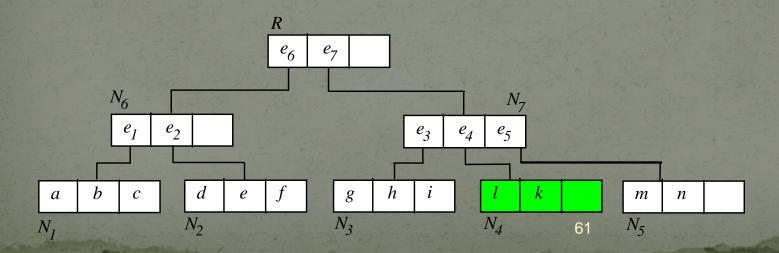












Summary & Reference

- NN Query: N. Roussopoulos, S. Kelley and F. Vincent, "Nearest Neighbor Queries", SIGMOD'95. (It didn't talk about best-first search).
- RNN Query: Y. Tao, D. Papadias and X. Lian, "Reverse kNN Search in Arbitrary Dimensionality", VLDB'04.
- Skyline Query: D. Papadias, Y. Tao, G. Fu, and B. Seeger, "An Optimal and Progressive Algorithm for Skyline Queries", SIGMOD'03.
- Also talked about Closest/Close Pair Queries.