CS 505: Intermediate Topics to
Database Systems

Instructor: Jinze Liu

s

Fall 2008

-

Review

The unit of disk read and write is
Block (or called Page)

The disk access time is composed by
Seek time
Rotation time
Data transfer time

Jinze Liu @ University of Kentucky 10/8/2008

Review

A row in a table, when located on disks, is called
A record

Two types of record:
Fixed-length
Variable-length

Jinze Liu @ University of Kentucky 10/8/2008

Review

In an abstract sense, a file is
A set of “records” on a disk

In reality, a file is
A set of disk pages

Each record lives on
A page

Physical Record ID (RID)
A tuple of <page#, slot#>

Jinze Liu @ University of Kentucky 10/8/2008

A DBMS Preview

Users: DBA Staff Casual Users Application Parametric Users

/ \ l Programmers
DDL Privileged Interactive (" Application
Statements Commands Query L Programs
| I |
* * * Host

DDL Query . Language
Compiler Compiler F’recol’npller cngngr

v v v

T

I

I

: Query DML Compiled

: Optimizer Compiler Transactions
1

I

- P
~ -
(@ —=

—
—

-

-

DBA Commands,
Quueries, and Transactions

Runtime Stored
Data
Manager

Database

Processor Concurrency Control/
Backup/Recovery
Subsystems

System
Catalog/
Data
Dictionary

Input/Output
Query and Transaction fromm Database
Execution

System Catalogs

For each relation:
name, file location, file structure (e.g., Heap file)
attribute name and type, for each attribute
index name, for each index
integrity constraints
For each index:
structure (e.g., B+ tree) and search key fields
For each view:
view name and definition

Plus statistics, authorization, buffer pool size, etc.

Jinze Liu @ University of Kentucky 10/8/2008

Attr_Cat(attr_name, rel_name, type, position)

attr name |rel name

Jinze Liu @ University of Kentucky 10/8/2008

Indexes

A Heap file allows us to retrieve records:
by specifying the rid, or
by scanning all records sequentially

Sometimes, we want to retrieve records by specifying
the values in one or more fields, e.g.,

Find all students in the “CS” department

Find all students with a gpa > 3

are file structures that enable us to answer
such efficiently.

Jinze Liu @ University of Kentucky 10/8/2008

Today's Topic

How to locate data in a file fast?
Introduction to indexing

Tree-based indexes
ISAM: Indexed sequence access method
B*-tree

Jinze Liu @ University of Kentucky 10/8/2008

Basics

Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * ERONMSRIEES SWEEREYR -A = 5.5

Other search criteria, e.g.

Range search
SELEC e EROM (REURERES A« >apinivies

Keyword search

database indexing [Search

Jinze Liu @ University of Kentucky 10/8/2008

Dense and sparse indexes

Dense: one index entry for each search key value

e Sparse: one index entry for each block
Records must be clustered according to the search key

Jinze Liu @ University of Kentucky 10/8/2008

Dense versus sparse indexes

Index size
Sparse index is smaller

Requirement on records
Records must be clustered for sparse index

Lookup
Sparse index is smaller and may fit in memory
Dense index can directly tell if a record exists

Update

Easier for sparse index

Jinze Liu @ University of Kentucky 10/8/2008

Primary and secondary indexes

Primary index
Created for the primary key of a table

Records are usually clustered according to the primary
key

Can be sparse

Secondary index
Usually dense

SQL
PRIMARY KEY declaration automatically creates a
primary index, UNIQUE key automatically creates a
secondary index

Additional secondary index can be created on non-key

attribute(s) Jinze Liu @ University of Kentucky ~ 10/8/2008
CREATE INDEX StudentGPAlndex ON

Tree-Structured Indexes: Introduction

Tree-structured indexing techniques support both range
selections and equality selections.

ISAM = ndexed equential ccess ethod
static structure; early index technology.

Bt tree: dynamic, adjusts gracefully under inserts and
deletes.

Jinze Liu @ University of Kentucky 10/8/2008

Motivation for Index

"' Find all students with gpa > 3.0”
If data file is sorted, do binary search

Cost of binary search in a database can be quite high,
Why?
Simple idea: Create an "index file.

JinZe Liv/@ University of Kentucky */ 10/8/2008

ISAM

What if an index is still too big?
Put a another (sparse) index on top of that!
ISAM (Index Sequential Access Method), more or less

Index blocks

192, 191 200, 203.

Jinze LiRAtANRIGGKcentucky 10/8/2008

Updates with ISAM

100, 104 4. |192, 191 200, 203. |901. 901,

119, 12:‘

Data blocks

Overflow chains and empty data blocks degrade
performance
Worst case: most records go into one long chain

Jinze Liu @ University of Kentucky 10/8/2008

A Note of Caution

ISAM is an old-fashioned idea

B+-trees are usually better, as we'll see

But, ISAM is a good place to start to understand the
idea of indexing

Upshot

Don’t brag about being an ISAM expert on your resume

Do understand how they work, and tradeoffs with B+-
trees

Jinze Liu @ University of Kentucky 10/8/2008

B*-tree

A hierarchy of intervals

Balanced (more or less): good performance guarantee
Disk-based: one node per block; large fan-out

Max fan-out: 4

@) (=) |
o H = m —
R e v |

Jinge Lig @ University o KeniJcky 10/8/2004

Sample B*-tree nodes

to keys
100 - k

Max fan-out: 4
Non-leaf

to keys to keys to keys to keys
100 <=k <120 120<=k <150 150<=k<180 180<=k

|_eaf to next leaf node in sequence

to records with these k values:;

or, store records directly in leaves
Jinze Liu @ University of Kentucky 10/8/2008

Lookups

SELECT * FROM R WHERE
SELECT * FROM R WHERE

1S

@)
—

Jinze Liu @ University of Kentucky 10/8/2008

Range query

SELECT * FROM R WHERE

> Max fan-out: 4

Jinze Liu @ University of Kentucky 10/8/2008

Insertion

Insert a record with search key value 32

|"% Max fan-out: 4

s)i ()RN(E
00 o) I
o Ef:ﬂ Sl

2

Jinze Liu @ University of Kentucky 10/8/2008

Another insertion example

Insert a record with search key value 152

/E; Max fan-out: 4

o

Jinze Liu @ University of Kentucky 10/8/2008

Node splitting

Max fan-out: 4

Jinze Liu @ University of Kentucky 10/8/2008

More node splitting

o

In the wo‘rst [asl, node splitting can °

of the tree (not illustrated here)

Max fan-out: 4

=

—

[{oFE e EmmT

—

O N~ -
o B |

ropagate” all lhelway up

Q O

to Ihe toot

Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one le

JII’]ZT Liu @ University of Kentucky
ve

Insertion

B*-tree Insert
Find correct leaf L.

Put data entry onto L.
If L has enough space, done!

Else, must L (into L and a new node L2)
Distribute entries evenly, middle key.
Insert index entry pointing to L2 into parent of L.

This can happen recursively
Tree growth: gets and (sometimes)

Jinze Liu @ University of Kentucky 10/8/2008

Deletion

Delete a record with search key value 130

Max fan-out: 4

AP E

Jinze Liu @ University of Kentucky 10/8/2008

Stealing from a sibling

Max fan-out: 4

LiEkaiaE

Jinze Liu @ University of Kentucky 10/8/2008

Another deletion example

Delete a record with search key value 179

Max fan-out: 4

Jinze Liu @ Universily cl Kentucky - 10,/8/2008

Coalescing

Max fan-out: 4

G

@ @) {ofE e
O O - O 0 O
= Q

i

e Deletion can “propagate” all the way up to the root of the tree (not illustrated
here)

When the root become¥ernp By Vtherssed “eshrinkstoigioone level

Deletion

B+-tree Delete
Start at root, find leaf L where entry belongs.

Remove the entry.
If L is at least half-full, done!
If L has only d-1 entries,

Try to , borrowing from sibling (adjacent node with
same parent as L).

If re-distribution fails, L and sibling.

If merge occurred, must delete entry (pointing to L or sibling)
from parent of L.

Tree shrink: gets and (sometimes)

Jinze Liu @ University of Kentucky 10/8/2008

i ey e, - SF

... And Then Deleting 24*

Must merge.

Observe of index
entry (key 27 on right), and
of index entry

(below).

o

Ao AL S /i g

Jinze Liu @ University of Kentucky 10/8/2008

B*-tree balancing properties

Height constraint: all leaves at the same lowest level

Fan-out constraint: all nodes at least half full
(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf f f-1

Root f f-1
Leaf L f-1

Jinze Liu @ University of Kentucky 10/8/2008

Performance analysis

How many I/O’s are required for each operation?
h, the height of the tree (more or less)
Plus one or two to manipulate actual records
Plus O(h) for reorganization (should be very rare if f'is large)
Minus one if we cache the root in memory
How big is h?
Roughly logg.. ... N, where N is the number of records

B*-tree properties guarantee that fan-out is least f / 2 for all
non-root nodes

Fan-out is typically large (in hundreds)—many keys and
pointers can fit into one block

A 4-level B*-tree is enough for typical tables

Jinze Liu @ University of Kentucky 10/8/2008

B*-tree 1n practice

Complex reorganization for deletion often is not
implemented (e.g., Oracle, Informix)

Leave nodes less than half full and periodically
reorganize

Most commercial DBMS use B*-tree instead of
hashing-based indexes because B+*-tree handles range
queries

Jinze Liu @ University of Kentucky 10/8/2008

The Halloween Problem

Story from the early days of System R...

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

There is a B+-tree index on Payroll(salary)
The update never stopped (why?)

Solutions?
Scan index in reverse
Before update, scan index to create a complete “to-do” list
During update, maintain a “done” list
Tag every row with transaction/statement id

Jinze Liu @ University of Kentucky 10/8/2008

Bt-tree versus ISAM

ISAM is more static; B*-tree is more dynamic

ISAM is more compact (at least initially)
Fewer levels and I/O’s than B+-tree

Overtime, ISAM may not be balanced
Cannot provide guaranteed performance as B*-tree does

Jinze Liu @ University of Kentucky 10/8/2008

B*-tree versus B-tree

B-tree: why not store records (or record pointers) in

non-leaf nodes?
These records can be accessed with fewer I/O’s

Problems?
Storing more data in a node decreases fan-out and

increases h
Records in leaves require more I/O’s to access

Vast majority of the records live in leaves!

Jinze Liu @ University of Kentucky 10/8/2008

Beyond ISAM, B-, and B*-trees

Other tree-based indexes: R-trees and variants, GiST,
etc.

Hashing-based indexes: extensible hashing, linear
hashing, etc.

Text indexes: inverted-list index, suffix arrays, etc.

Other tricks: bitmap index, bit-sliced index, etc.
How about indexing subgraph search?

Jinze Liu @ University of Kentucky 10/8/2008

R-Tree

The R-tree
Range Query
Aggregation Query
NN Query
RNN Query
Closest Pair Query
Close Pair Query

Skyline Query

R-Tree Motivation

R-Tree: Clustering by Proximity

]
JEEE,

Tes

|

KIKN ENERES KRENEY KK

Range Query

Range Query

