

Instructor: Jinze Liu

Fall 2008

Review: Database Design

A DBMS Preview

Outline

• It's all about disks!

- That's why we always draw databases as
- And why the single most important metric in database processing is the number of disk I/O's performed
- Storing data on a disk
 - Record layout
 - Block layout

The Storage Hierarchy

- Main memory (RAM)for currently used data
- Disk for the main database (secondary storage).
- Tapes for archiving older versions of the data (tertiary storage).

Source: Operating Systems Concepts 5th Edipinger, Slower

Jim Gray's Storage Latency Analogy: How Far Away is the Data?

A typical disk

Top view

Higher-density sectors on inner tracks and/or more sectors Track on outer tracks Track Track Sectors A block is a logical unit of transfer consisting of one or more sectors Jinze Liu @ Oniversity of Kentucky

Disk access time

Sum of:

- Seek time: time for disk heads to move to the correct cylinder
- Rotational delay: time for the desired block to rotate under the disk head
- Transfer time: time to read/write data in the block (= time for disk to rotate over the block)

Random disk access

Seek time + rotational delay + transfer time

- Average seek time
 - Time to skip one half of the cylinders?
 - Not quite; should be time to skip a third of them (why?)
 - "Typical" value: 5 ms
- Average rotational delay
 - Time for a half rotation (a function of RPM)
 - "Typical" value: 4.2 ms (7200 RPM)
- Typical transfer time
 - .o8msec per 8K block

Sequential Disk Access Improves Performance

Seek time + rotational delay + transfer time

- Seek time
 - o (assuming data is on the same track)
- Rotational delay
 - o (assuming data is in the next block on the track)
- Easily an order of magnitude faster than random disk access!

Performance tricks

- Disk layout strategy
 - Keep related things (what are they?) close together: same sector/block! same track! same cylinder! adjacent cylinder
- Double buffering
 - While processing the current block in memory, prefetch the next block from disk (overlap I/O with processing)
- Disk scheduling algorithm
- Track buffer
 - Read/write one entire track at a time
- Parallel I/O
 - More disk heads working at the same time

Files

- Blocks are the interface for I/O, but...
- Higher levels of DBMS operate on *records*, and *files of records*.
- FILE: A collection of pages, each containing a collection of records. Must support:
 - insert/delete/modify record
 - fetch a particular record (specified using record id)
 - scan all records (possibly with some conditions on the records to be retrieved)

Unordered (Heap) Files

- Simplest file structure contains records in no particular order.
- As file grows and shrinks, disk pages are allocated and de-allocated.
- To support record level operations, we must:
 - keep track of the *pages* in a file
 - keep track of free space on pages
 - keep track of the records on a page
- There are many alternatives for keeping track of this.
 - We'll consider 2

Heap File Implemented as a List

- The header page id and Heap file name must be stored someplace.
 - Database "catalog"
- Each page contains 2 `pointers' plus data.

Heap File Using a Page Directory

- The entry for a page can include the number of free bytes on the page.
- The directory is a collection of pages; linked list implementation is just one alternative.
 - Much smaller than linked list of all HF pages!

Record layout

Record = row in a table

- Variable-format records
 - Rare in DBMS—table schema dictates the format
 - Relevant for semi-structured data such as XML
- Focus on fixed-format records
 - With fixed-length fields only, or
 - With possible variable-length fields

Record Formats: Fixed Length

- All field lengths and offsets are constant
 - Computed from schema, stored in the system catalog
- Finding *i'th* field done via arithmetic.

Fixed-length fields

• Example: CREATE TABLE Student(SID INT, name CHAR(20), age INT, GPA FLOAT);

```
0 4 24 28 36
142 Bart (padded with space) 10 2.3
```

- Watch out for alignment
 - May need to pad; reorder columns if that helps
- What about NULL?
 - Add a bitmap at the beginning of the record

Record Formats: Variable Length

• Two alternative formats (# fields is fixed):

Fields Delimited by Special Symbols

Array of Field Offsets

Second offers direct access to i'th field, efficient storage of <u>nulls</u> (special *don't know* value); small directory overhead.

LOB fields

- Example: CREATE TABLE Student(SID INT, name CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));
- Student records get "de-clustered"
 - Bad because most queries do not involve picture
- Decomposition (automatically done by DBMS and transparent to the user)
 - Student(<u>SID</u>, name, age, GPA)
 - StudentPicture(<u>SID</u>, picture)

Block layout

How do you organize records in a block?

- Fixed length records
- Variable length records
 - NSM (N-ary Storage Model) is used in most commercial DBMS

Page Formats: Fixed Length Records

NSM

- Store records from the beginning of each block
- Use a directory at the end of each block
 - To locate records and manage free space
 - Necessary for variable-length records

Options

- Reorganize after every update/delete to avoid fragmentation (gaps between records)
 - Need to rewrite half of the block on average
- What if records are fixed-length?
 - Reorganize after delete
 - Only need to move one record
 - Need a pointer to the beginning of free space
 - Do not reorganize after update
 - Need a bitmap indicating which slots are in use

System Catalogs

- For each relation:
 - name, file location, file structure (e.g., Heap file)
 - attribute name and type, for each attribute
 - index name, for each index
 - integrity constraints
- For each index:
 - structure (e.g., B+ tree) and search key fields
- For each view:
 - view name and definition
- Plus statistics, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

Attr_Cat(attr_name, rel_name, type, position)

attr_name	rel_name	type	position
attr_name	Attribute_Cat	string	1
rel_name	Attribute_Cat	string	2
type	Attribute_Cat	string	3
position	Attribute_Cat	integer	4
sid	Students	string	1
name	Students	string	2
login	Students	string	3
age	Students	integer	4
gpa	Students	real	5
fid	Faculty	string	1
fname	Faculty	string	2
sal	Faculty	real	3

Indexes (a sneak preview)

- A Heap file allows us to retrieve records:
 - by specifying the *rid*, or
 - by scanning all records sequentially
- Sometimes, we want to retrieve records by specifying the values in one or more fields, e.g.,
 - Find all students in the "CS" department
 - Find all students with a gpa > 3
- <u>Indexes</u> are file structures that enable us to answer such value-based queries efficiently.

Summary

- Disks provide cheap, non-volatile storage.
 - Random access, but cost depends on the location of page on disk; important to arrange data sequentially to minimize *seek* and *rotation* delays.

Summary (Contd.)

- DBMS vs. OS File Support
 - DBMS needs features not found in many OS's, e.g., forcing a page to disk, controlling the order of page writes to disk, files spanning disks, ability to control pre-fetching and page replacement policy based on predictable access patterns, etc.
 - Variable length record format with field offset directory offers support for direct access to i'th field and null values.