CS 505: Intermediate Topics to
Database Systems

Instructor: Jinze Liu

s

Fall 2008

-

Review: Database Design

Figure 3.1

A simplified diagram
to illustrate the

main phases of]
database design

REQUIREMENTS

COLLECTION AND

Functional Requirements Data Requirements

Y v

FUNCTIONAL ANALYSIS | | CONCEPTUAL DESIGN

High-Level Transaction Conceptual Schema
Specification (In a high-level data model)

v

DBMS-independent LOGICAL DESIGN
l DBMS-specific (DATA MODEL MAPPING)

v

Logical (Conceptual) Schema
APPLICATION PROGRAM (In the data model of a specific DBMS)
DESIGN +

l PHYSICAL DESIGN

v

TRANSACTION Internal Schema
IMPLEMENTATION

v

Application Programs

A DBMS Preview

Users: DBA Staff Casual Users Application Parametric Users

/ \ l Programmers
DDL Privileged Interactive (" Application
Statements Commands Query L Programs
| I |
* * * Host

DDL Query . Language
Compiler Compiler F’recol’npller cngngr

v v v

T

I

I

: Query DML Compiled

: Optimizer Compiler Transactions
1

I

- P
~ -
(@ —=

—
—

-

-

DBA Commands,
Quueries, and Transactions

Runtime Stored
Data
Manager

Database

Processor Concurrency Control/
Backup/Recovery
Subsystems

System
Catalog/
Data
Dictionary

Input/Output
Query and Transaction fromm Database
Execution

Outline

It’s all about disks! @

That’s why we always draw databases as

And why the single most important metric in database

processing is the number of disk I/O’s performed
Storing data on a disk

Record layout

Block layout

Jinze Liu @ University of Kentucky 10/1/2008

The Storage Hierarchy

eMain memory (RAM)
for currently used data

eDisk for the main
database (secondary
storage).

eTapes for archiving
older versions of the
data (tertiary storage).

Source: Operating Systems Concepts 5th Editi29

Jinze Liu @ University of Kentucky 10/1/2008

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Andromeda

Tape [Optical s =< 2,000 Years
R 0 b Ot i

10°

10 Disk 2 Years

1.5 hr
Memory

On Board Cache This Lecture Hall 10 min
On Chip Cache This Room

Registers ? My Head 1 min

Jinze Liu @ University of Kentucky 10/1/2008

A typical disk

Tracks

Disk am_——

Platter

-

—

N

i 1 Cylinders
11

>

el

Arm movement Spindle rotation “Moving parts” are slow
| | |

Jinze Liu @ University of Kentucky 10/1/2008

Top view

Higher-density sectors on inner tracks
and/or more sectors Track
on outer tracks

A block is a

logical unit

of transfer

consisting of

Jo20@NE OF More sectors

Jinze Liu @O =oT Rentucky

Disk access time

Sum of:
Seek time: time for disk heads to move to the correct
cylinder
Rotational delay: time for the desired block to rotate
under the disk head

Transfer time: time to read/write data in the block (=
time for disk to rotate over the block)

Jinze Liu @ University of Kentucky 10/1/2008

Random disk access

Seek time + rotational delay + transfer time

Average seek time
Time to skip one half of the cylinders?
Not quite; should be time to skip a third of them (why?)
“Typical” value: 5 ms

Average rotational delay
Time for a half rotation (a function of RPM)
“Typical” value: 4.2 ms (7200 RPM)

Typical transfer time
.08msec per 8K block

Jinze Liu @ University of Kentucky 10/1/2008

Sequential Disk Access Improves Performance

Seek time + rotational delay + transfer time

Seek time
o (assuming data is on the same track)

Rotational delay
o (assuming data is in the next block on the track)

Easily an order of magnitude faster than random disk
access!

Jinze Liu @ University of Kentucky 10/1/2008

Performance tricks

Disk layout strategy

Keep related things (what are they?) close together:
same sector/block ! same track ! same cylinder ! adjacent
cylinder

Double buffering

While processing the current block in memory, prefetch
the next block from disk (overlap I/O with processing)

Disk scheduling algorithm
Track bufter

Read/write one entire track at a time

Parallel I/O

More disk heads working at the same time

Jinze Liu @ University of Kentucky 10/1/2008

Files

Blocks are the interface for I/O, but...

Higher levels of DBMS operate on , and

: A collection of pages, each containing a
collection of records. Must support:
insert/delete/modify record
fetch a particular record (specified using record id)

scan all records (possibly with some conditions on the
records to be retrieved)

Jinze Liu @ University of Kentucky 10/1/2008

Unordered (Heap) Files

Simplest file structure contains records in no particular
order.

As file grows and shrinks, disk pages are allocated and
de-allocated.

To support record level operations, we must:
keep track of the in a file

keep track of on pages
keep track of the on a page

There are many alternatives for keeping track of this.
We'll consider 2

Jinze Liu @ University of Kentucky 10/1/2008

Heap File Implemented as a List

Header
Page

The header page id and Heap file name must be stored
someplace.

Database “catalog”
Each page contains 2 "pointers’ plus data.

Jinze Liu @ University of Kentucky 10/1/2008

Heap File Using a Page Directory

The entry for a page can include the number of free
bytes on the page.

The directory is a collection of pages; linked list
implementation is just one alternative.

Jinze Liu @ University of Kentucky 10/1/2008

Record layout

Record = row in a table

Variable-format records
Rare in DBMS—table schema dictates the format
Relevant for semi-structured data such as XML

Focus on fixed-format records
With fixed-length fields only, or
With possible variable-length fields

Jinze Liu @ University of Kentucky 10/1/2008

Record Formats: Fixed Length

F1 F2 F3 F4

~—L1— L2 K6 L4

\

All field lengths and offsets are constant
Computed from schema, stored in the system catalog

Finding i’th field done via arithmetic.

Jinze Liu @ University of Kentucky 10/1/2008

Fixed-length fields

Example: CREATE TABLE Student(SID INT, name CHAR(20),
age INT, GPA FLOAT):

4 24 28 36
Bart (padded with space)| 10 P

e \Watch out for alignment

May need to pad; reorder columns if that helps
e \What about NULL?
Add a bitmap at the beginning of the record

Jinze Liu @ University of Kentucky 10/1/2008

Record Formats: Variable Length

Two alternative formats (# fields is fixed):

Fl b2 F3 F4

$ $ $ $
Fields Delimited by Special Symbols

el F1 F2 F3 F4

[i
Nia e i ih

Array of Field Offsets

< Second offers direct access to i'th field, efficient storage

of (special don’t know value); small directory overhead,
Jinze Liu @ University of’Kentucky 10/1/2008 20

LOB fields

Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

Student records get “de-clustered”
Bad because most queries do not involve picture

Decomposition (automatically done by DBMS and
transparent to the user)

Student(SID, name, age, GPA)

StudentPicture(SID, picture)

Jinze Liu @ University of Kentucky 10/1/2008

Block layout

How do you organize records in a block?
Fixed length records

Variable length records

NSM (N-ary Storage Model) is used in most commercial
DBMS

Jinze Liu @ University of Kentucky 10/1/2008

Page Formats: Fixed Length Records

N| ol R e
MEE=8E30
PACKED UNPACKED, BITMAP

. In first alternative, moving
records for free space management changes rid; may not be

acceptable.
Jinze Liu @ University of Kentucky 10/1/2008

NSM

Store records from the beginning of each block

Use a directory at the end of each block
To locate records and manage free space
Necessary for variable-length records

| 142 part |1d 2123 Milhouse | 1¢ 3/2
867 |Lisa-_ |4 48
_ 456 Flialph i 8| 2.8
Why store data and directory
at two different ends?

Both can grpw easily

Jinze Liu @ University of Kentucky 10/1/2008

Options

Reorganize after every update/delete to avoid
fragmentation (gaps between records)
Need to rewrite half of the block on average

What if records are fixed-length?

Reorganize after delete
Only need to move one record
Need a pointer to the beginning of free space

Do not reorganize after update
Need a bitmap indicating which slots are in use

Jinze Liu @ University of Kentucky 10/1/2008

System Catalogs

For each relation:
name, file location, file structure (e.g., Heap file)
attribute name and type, for each attribute
index name, for each index
integrity constraints
For each index:
structure (e.g., B+ tree) and search key fields
For each view:
view name and definition

Plus statistics, authorization, buffer pool size, etc.

Jinze Liu @ University of Kentucky 10/1/2008

Attr_Cat(attr_name, rel_name, type, position)

attr name |rel name

Jinze Liu @ University of Kentucky 10/1/2008

Indexes (a sneak preview)

A Heap file allows us to retrieve records:
by specifying the rid, or
by scanning all records sequentially

Sometimes, we want to retrieve records by specifying
the values in one or more fields, e.g.,

Find all students in the “CS” department

Find all students with a gpa > 3

are file structures that enable us to answer
such efficiently.

Jinze Liu @ University of Kentucky 10/1/2008

Summary

Disks provide cheap, non-volatile storage.

Random access, but cost depends on the location of page
on disk; important to arrange data sequentially to
minimize seek and rotation delays.

Jinze Liu @ University of Kentucky 10/1/2008

Summary (Contd.)

DBMS vs. OS File Support
DBMS needs features not found in many OS’s, e.g.,
forcing a page to disk, controlling the order of page
writes to disk, files spanning disks, ability to control
pre-fetching and page replacement policy based on
predictable access patterns, etc.
Variable length record format with field offset directory
offers support for direct access to i'th field and null
values.

Jinze Liu @ University of Kentucky 10/1/2008

