CS 505: Intermediate Topics to
Database Systems

Instructor: Jinze Liu

s

Fall 2008

-

GREIESE

SELECT ... FROM ... WHERE ...
GROUP BY list_of_columns;

Example: find the average GPA for each age group
SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

9/16/2008 Jinze Liu @ University of Kentucky

Operational semantics of GROUP BY

SELECEERON =Sl HERE: . < GROUBPEE it
Compute FROM
Compute WHERE

Compute GROUP BY: group rows according to the
values of GROUP BY columns

Compute SELECT for each group

For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

Number of groups = number of rows in the final output

9/16/2008 Jinze Liu @ University of Kentucky

Example of computing GROUP BY

SELECT age, AVG(GPA) FROM Student GROUP BY

_ Compute GROUP BY: group

1234 | John Smith | 21 | 3.5 :
rows according to the

1123 Mary Carter 19 | 3.8 values of GROUP BY
1011 Bob Lee 2206

cQlumns
1204 | Susan Wong L5IEand: 4§>

1306 Kevin Kim 19 | 2.9

Compute SELECT for each 1234 | John Smith | 21 | 3.5

group - 1123 | Mary Carter 19 | 3.8
21 | 3.5

< 1306 Kevin Kim 19 | 2.9
19 | 335 1011 Bob Lee 22 | 2.6
22 | 3.0 1204 | Susan Wong 22 | 3.4

9/16/2008 Jinze Liu @ University of Kentucky

Aggregates with no GROUP BY

An aggregate query with no GROUP BY clause

represent a special case where all rows go into one
group Compute aggregate

SELECT AVG(SBRYERBIPstudent :

sid name age gpa sid name

1234 John Smith 21 3.5 = |PRY! John Smith 21

1123 | Mary Carter 19 | 3.8 / 1123 | Mary Carter 19
1011 Bob Lee 20 % S0 1011 Bob Lee 22

1204 | Susan Wong | 22 | 34 1204 | Susan Wong | 22
1306 | Kevin Kim EOs) 1306 | Kevin Kim 19

. < Group all rows
into one group

9/16/2008 Jinze Liu @ University of Kentucky 5

Restriction on SELECT

If a query uses aggregation/group by, then every
column referenced in SELECT must be either

Aggregated, or
A GROUP BY column

This restriction ensures that any SELECT expression
produces only on¢ value for each group

9/16/2008 Jinze Liu @ University of Kentucky

Examples of invalid queries

SELECT SID, age FROM Student GROUP BY age;

Recall there is one output row per group
There can be multiple SID values per group
SELECT S¥J, MAX(GPA) FROM Student;

Recall there is only one group for an aggregate query
with no GROUP BY clause

There can be multiple SID values

Wishful thinking (that the output SID value is the one
associated with the highest GPA) does NOT work

9/16/2008 Jinze Liu @ University of Kentucky

HAVING

Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

SELECT: v taSRONME.. WHERET: - GROUP-BY. ...
Compute FROM
Compute WHERE

Compute GROUP BY: group rows according to the values
of GROUP BY columns

Compute HAVING (another selection over the groups)
Compute SELECT for each group that passes HAV ING

9/16/2008 Jinze Liu @ University of Kentucky

HAVING examples

Find the average GPA for each age group over 10
SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;

Can be written using WHERE without table expressions

List the average GPA for each age group with more than a
hundred students

SELECT age, AVG(GPA)

FROM Student

GROUP BY age
HAVING COUNT(*) > 100;

Can be written using WHERE and table expressions

9/16/2008 Jinze Liu @ University of Kentucky

Table expression

Use query result as a table
In set and bag operations, FROM clauses, etc.

A way to “nest” queries

Example: names of students who are in more clubs
than classes

SELECT DISTINCT name
FROM Student,
(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)) AS S
WHERE Student.SID = S_SID;

9/16/2008 Jinze Liu @ University of Kentucky

Scalar subqueries

A query that returns a single row can be used as a value in
WHERE, SELECT, etc.

Example: students at the same age as Bart
SELE@ =
9 b (?
FROM Student What’s Bart’s age*
WHERE age = (SELECT age
FROM Student
WHERE name = “Barty;

e Runtime error if subquery returns more than one row

Under what condition will this runtime error never occur?
name is a key of Student

e What if subquery returns no rows?

The value returned is a special NULL value, and the comparison fails

9/16/2008 Jinze Liu @ University of Kentucky 11

IN subqueries

x IN (subquery) checks if x is in the result of
subquery

Example: students at the same age as (some) Bart

SEIFEE What’s Bart’s age?
FROM Student SELECT age

WHERE age IN €rom Student

WHERE name = ’Bart’ 5

9/16/2008 Jinze Liu @ University of Kentucky

EXISTS subqueries

EXISTS (subquery) checks if the result of subquery
1s non-empty

Example: students at the same age as (some) Bart

SELEC e
FROM Student AS
WHERE EXISTS (SELECT * FROM Student
WHERE name = “Bart’
AND age =) i
This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

9/16/2008 Jinze Liu @ University of Kentucky

Operational semantics of subqueries

SERES =

FROM Student AS s

WHERE EXISTS (SELECT * FROM Student
WHERE name = ’Bart’
AND age = s.age);

For each row s in Student
Evaluate the subquery with the appropriate value of s.age
If the result of the subquery is not empty, output S.>*

The DBMS query optimizer may choose to process the
query in an equivalent, but more efficient way (example?)

9/16/2008 Jinze Liu @ University of Kentucky

Next Topic

Functional Dependency.
Normalization

Decomposition
BCNF

Jinze Liu @ University of Kentucky 9/16/2008

Motivation

How do we tell if a design is bad, e.g.,
WorkOn(EID, Ename, PID, Pname, Hours)?

This design has redundancy, because the name of an
employee is recorded multiple times, once for each project

the employee is taking

10 John Smith | B2B platform 10
9 Ben Liu CRM 40

9 John Smith CRM 30
10 Susan Sidhuk | B2B platform 40

Jinze Liu @ University of Kentucky 9/16/2008

Why redundancy is bad?

Waste disk space.

What if we want to perform update operations to the

relation
INSERT an new project that no employee has been
assigned to it yet.
UPDATE the name of “John Smith” to “John L. Smith”

DELETE the last employee who works for a certain

project

10 John Smith | B2B platform 10
9 Ben Liu CRM 40
9 John Smith CRM 30

10 Susan Sidhuk | B2B platform 40
Jinze Liu @ University of Kentucky 9/16/2008

Functional dependencies

A functional dependency (FD) has the form X -> Y,
where X and Y are sets of attributes in a relation R

X -> Y means that whenever two tuples in R agree on
all the attributes in X, they must also agree on all
attributesin Y

6 [X] = £[X] = t[Y] = t,[Y]

Must be ccb” COU.ld be anything,
e.g. d

Jinze Liu @ University of Kentucky 9/16/2008 18

FD examples

street_address, city, state -> zip
Z1lp -> city, state

Z1p, state -> zip?
This is a trivial FD
Trivial FD: LHS RHS

zlp -> state, zip?
This is non-trivial, but not completely non-trivial
Completely non-trivial FD: LHS N RHS = ?

Jinze Liu @ University of Kentucky 9/16/2008

Keys redefined using FD'’s

Let attr(R) be the set of all attributes of R, a set of
attributes K is a (candidate) key for a relation R if

K -> attr(R) - K, and
That is, K is a “super key”
No proper subset of K satisfies the above condition
That is, K is minimal (full functional dependent)
Address (street_address, city, state, zip)
{street_address, city, state, zip}
{street_address, city, zip}
{street_address, zip}

{zip} Key
Non-key

Super key
Super key

Jinze Liu @ University of Kentucky 9/16/2008

Reasoning with FD'’s

Given a relation R and a set of FD’s F

Does another FD follow from F?

Are some of the FD’s in F redundant (i.e., they follow
from the others)?

Is K a key of R?
What are all the keys of R?

Jinze Liu @ University of Kentucky 9/16/2008

Attribute closure

Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The closure of Z (denoted Z*) with respect to F is the
set of all attributes {A, A, ...} functionally determined
by Z (thatis, Z-> A A, ...)
Algorithm for computing the closure

Start with closure = Z

If X->Yisin F and X is already in the closure, then also
add Y to the closure

Repeat until no more attributes can be added

Jinze Liu @ University of Kentucky 9/16/2008

A more complex example

WorkOn(EID, Ename, email, PID, Pname, Hours)

EID -> Ename, email
email -> EID

PID -> Pname

EID, PID -> Hours

(Not a good design, and we will see why later)

Jinze Liu @ University of Kentucky 9/16/2008

Example of computing closure

F includes:
EID -> Ename, email
email -> EID
PID -> Pname
EID, PID -> Hours

{ PID, email }* = ?
closure = { PID, email }
email -> EID
Add EID:; closure is now { PID, email, EID }

EID -> Ename, email
Add Ename, email; closure is now { PID, email, EID, Ename }

PID -> Pname
Add Pname; close is now { PID, Pname, email, EID, Ename }

EID, PID -> hours

Add hours; closure is now all the attributes in WorksOn
Jinze Liu @ University of Kentucky 9/16/2008

Using attribute closure

Given a relation R and set of FD’s F

Does another FD X -> Y follow from F?

Compute X* with respect to F

IfY X* then X->Y follow from F
[s K a super key of R?

Compute K* with respect to F

[f K* contains all the attributes of R, K is a super key
[s a super key K a key of R?

Test where K’= K - { a | a €K} is a superkey of R for all
possible a

Jinze Liu @ University of Kentucky 9/16/2008

Rules of FD’s

Armstrong’s axioms
Reflexivity: If Y X, then X->Y
Augmentation: If X -> Y, then XZ -> YZ for any Z
Transitivity: If X-> Yand Y -> Z, then X -> Z
Rules derived from axioms
Splitting: If X -> YZ, then X-> Yand X -> Z
Combining: If X -> Yand X -> Z, then X -> YZ

Jinze Liu @ University of Kentucky 9/16/2008

Using rules of FD'’s

Given a relation R and set of FD’s F
Does another FD X -> Y follow from F?

Use the rules to come up with a proof

Example:

F includes:
EID -> Ename, email; email -> EID; EID, PID -> Hours,
Pid -> Pname
PID, email ->hours?

email -> EID (given in F)

PID, email -> PID, EID (augmentation)

PID, EID -> hours (given in F)

PID, email -> hours (transitivity)

Jinze Liu @ University of Kentucky 9/16/2008

Example of redundancy

WorkOn (EID, Ename, email, PID, hour)
Wesay X-> Yisa if there exista X’
— Xsuchthat X’->Y

e.g. EID, email-> Ename, email

Otherwise, X->Yisa
e.g. EID, PID -> hours

10 John Smith | jsmith@ac.com | B2B platform 10
9 Ben Liu CRM 40
9 John Smith | jsmith@ac.com CRM 30
10 Susan Sidhuk | ssidhuk@ac.com | B2B platform 40

Jinze Liu @ University of Kentucky 9/16/2008

Normalization

A is the process of decomposing
unsatisfactory "bad" relations by breaking up their
attributes into smaller relations

A is a certification that tells whether a
relation schema is in a particular state

Jinze Liu @ University of Kentucky 9/16/2008

>nd Normal Form

An attribute A of a relation R is a
if it is not part of any key in R, otherwise, A is a

R is in (general) 2" normal form if every nonprimary
attribute A in R is not partially functionally dependent
on key of R

W
e
f
g

>nd Normal Form

Note about 2™ Normal Form

by definition, every nonprimary attribute is functionally
dependent on every key of R

In other words, R is in its 2" normal form if we could
not find a partial dependency of a nonprimary key to a
key in R.

Jinze Liu @ University of Kentucky 9/16/2008

Decomposition

John Smith | jsmith@ac.com | B2B platform
Ben Liu CRM
John Smith | jsmith@ac.com CRM

Susan Sidhuk | ssidhuk@ac.com | B2B platform

1234 John Smith | jsmith@ac.com 1234 10 B2B platform 10
1123 Ben Liu 1123 9 CRM 40

1023 | Susan Sidhuk | ssidhuk@ac.com || 1234 9 CRM 30
1023 10 B2B platform 40

Decomposition eliminates redundancy

To get back to the original relation:
Jinze Liu @ University of Kentucky 9/16/200%<

Decomposition

Decomposition may be applied recursively

B2B platform
CRM
CRM

B2B platform

Pname EID

B2B platform 1234

CRM 1123
1234

1023

Jinze Liu @ University of Kentucky 9/16/2008

Unnecessary decomposition

EID Ename email

1234 John Smith | jsmith@ac.com
1123 Ben Liu
1023 Susan Sidhuk | ssidhuk@ac.com

EID Ename
1234 John Smith 1234 | jsmith@ac.com
1123 Ben Liu 1123

1023 | Susan Sidhuk 1023 | ssidhuk@ac.com

Fine: join returns the original relation

Unnecessary: no redundancy is removed, and now EID is
stored twice->

Jinze Liu @ University of Kentucky 9/16/2008

Bad decomposition

EID PID Hours
1234 10 10
1123 9 40
1234 9 30
1023 10 40

1234 10 1234 10
12123 9 572 40

1234 9 1234 30
1023 10 1023 40

Association between PID and hours is lost

Join returns more rows than the original relation

Jinze Liu @ University of Kentucky 9/16/2008

Lossless join decomposition

Decompose relation R into relations S and T
attrs(R) = attrs(S) attrs(T)
S= Trattrs(S) (R)

I'= Trattrs(T) (R)

The decomposition is a lossless join decomposition if,
given known such as FD’s, we can
guarantee that R=S * T

Any decomposition gives R SEAT (why?)
A decomposition isone with R SEaT

Jinze Liu @ University of Kentucky 9/16/2008

Loss? But I got more rows->

“Loss” refers not to the loss of tuples, but to the loss of

information
Or, the ability to distinguish different original tuples

1234 10 10
1123 9 40
1234 9 30

023 | 18 | 40

1234 10
17423 40
1234 30
1023 40

Q/16/2
IT TOTZ=

Jinze Liu @ University of Kentucky

Questions about decomposition

When to decompose

How to come up with a correct decomposition (i.e.,
lossless join decomposition)

Jinze Liu @ University of Kentucky 9/16/2008

Non-key FD’s

Consider a non-trivial FD X -> Y where X is not a super
key

Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

X Y Z
a o) C
a o) d

That b 1s always associated with a is recorded by multiple rows:
redundancy, update anomaly, deletion anomaly

Jinze Liu @ University of Kentucky 9/16/2008 39

Dealing with Nonkey Dependency: BCNF

A relation R is in Boyce-Codd Normal Form if
For every non-trivial FD X -> Y'in R, X is a super key
That is, all FDs follow from “key -> other attributes”

When to decompose
As long as some relation is not in BCNF

How to come up with a correct decomposition
Always decompose on a BCNF violation (details next)

Then it is guaranteed to be a lossless join
decomposition->

Jinze Liu @ University of Kentucky 9/16/2008

BCNF decomposition algorithm

Find a BCNF violation

That is, a non-trivial FD X -> Y in R where X is not a
super key of R

Decompose R into R and R, where
R hasattributes X Y

R, has attributes X Z, where Z contains all attributes
of R that are in neither X nor Y (i.e. Z=attr(R) - X -Y)

Repeat until all relations are in BCNF

Jinze Liu @ University of Kentucky 9/16/2008

BCNF decomposition example

WorkOn (EID, Ename, email, PID, hours)
BCNF violation: EID -> Ename, email

P

Student (EID, Ename, email) Grade (EID, PID, hours)
BCNF BCNF

Jinze Liu @ University of Kentucky 9/16/2008

Another example

WorkOn (EID, Ename, email, PID, hours)
BCNF violation: email -> EID

T

StudentID (email, EID)
BCNF StudentGrade’ (email, Ename, PID, hours
BCNF violation: email -> Ename

e

StudentName (email, Ename)
BCNF Grade (email, PID, hours)

BCNF

Jinze Liu @ University of Kentucky 9/16/2008 43

Exercise

Property(Property_id#, County_name, Lot#, Area,
Price, Tax_rate)

Property_id#-> County_name, Lot#, Area, Price,
Tax rate

County_name, Lot# -> Property_id#, Area, Price,
Tax_rate

County_name -> Tax_rate
area -> Price

Jinze Liu @ University of Kentucky 9/16/2008

Exercise

Property(Property_id#, County _name, Lot#, Area, Price,
Tax_rate) . J
%@I\F % violation: County name -> Tax_rate

i

LOTS1 (County _name, Tax_rate)
BCNF

LOTS2 (Property id#, County _name, Lot#, Area, Price)
BCNF violation: Area -> Price

L

LOTS2A (Area, Price)

BCNF :
LOTS2B (Property id#, County _name, Lot#, Area)
BCNF

Jinze Liu @ University of Kentucky 9/16/2008

Why is BCNF decomposition lossless

Given non-trivial X -> Y in R where X is not a super key
of R, need to prove:

Anything we project always comes back in the join:
R 1y (R)=my, (R)

Sure; and it doesn't depend on the FD
Anything that comes back in the join must be in the
original relation:
R Ty (R)ZmmT,,(R)

Proof makes use of the fact that X -> Y

Jinze Liu @ University of Kentucky 9/16/2008

Recap

Functional dependencies: a generalization of the key
concept

Partial dependencies: a source of redundancy
Use 2™ Normal form to remove partial dependency

Non-key functional dependencies: a source of
redundancy

BCNF decomposition: a method for removing ALL
functional dependency related redundancies

Plus, BCNF decomposition is a lossless join
decomposition

Jinze Liu @ University of Kentucky 9/16/2008

Today's Topic

Database Architecture
Database programming

Jinze Liu @ University of Kentucky 9/16/2008

Centralized Architectures

Centralized DBMS: combines everything into single
system including- DBMS software, hardware,
application programs and user interface processing

software.

Terminals Disp.lay Disp.lay L. Disp.lay
Monitor Monitor Monitor

Network

Application Terminal Text o
Programs Display Control Editors

DEMS

Software
Operating System
System Bus

Controller Controller Controller | - - -

I/0O Devices
(Printers,

Hardware/Firmware Tape Drives, . .)

Jinze Liu @ University of Kentucky 9/16/2008

Two Tier Client-Server Architectures

eServer: providesgiEEE Diskless Client Server

Physical two-tier Client with Disk Server and Client
query and chent/server

services to client Eeaiasic

e(Client: provide

appropriate inter

sServer. Server T Server

|
Run User Inte Client Client Client

Programs and Site 1 Site 2 Site 3 Site n

Application Pr
Communication
Network

Connect to se
network.

Jinze Liu @ University of Kentucky 9/16/2008

Client-Server Interface

The interface between a server and a client is
commonly specified by ODBC (Open Database
Connectivity)
Provides an Application program interface (API)
Allow client side programs to call the DBMS.

Jinze Liu @ University of Kentucky 9/16/2008

Three (n) Tier Client-Server Architecture

The intermediate layer is
called Application Server
or Web Server, or both:

Stores the web

connectivity software

and business logic for
Web , applications

server e Acts like a conduit for
sending partially
processed data between

Clients

e
Application) — — | . the database server and
servers =~ J‘ the client.

l 1 Additional Features

Security: encrypt the
data at the server and

Database -. client before
servers N transmission

Jinze Liu @ University of Kentucky 9/16/2008

Database Programming: Overview

Pros and cons of SQL

Very high-level, possible to optimize
Specifically designed for databases and is called

Not intended for general-purpose computation, which is
usually done by a

Solutions
Augment SQL with constructs from general-purpose
programming languages (SQL/PSM)
Use SQL together with general-purpose programming
languages
Database APIs, embedded SQL, JDBC, etc.

Jinze Liu @ University of Kentucky 9/16/2008

Clarification of Terms

John has a mySQL database server installed in his

laptop. He wrote a perl script to connect to the local

mySQL database, retrieve data, and print out reports
about his house innovation plan.

Client-server model

Use APIs provided by mySQL to access the database
Perl supports mySQL API

Jinze Liu @ University of Kentucky 9/16/2008

Clarification of Terms (cont.)

John went to his office. He has a JAVA program, which
connects to a SqlServer database in his company’s

intranet. He use the program to retrieve data and print
out reports for his business partner.

Client-server model

Use APIs provided by SqlServer to access the database
Java supports SqlServer API using JDBC

rin DBMS
Server

Jinze Liu @ University of Kentucky 9/16/2008

Clarification of Terms (cont.)

After job, John went to youtube.com, searched for a
video of Thomas train for his children, and
downloaded one

Client-mediate level-sever model

“SQL experience a plus” from a job ad linked from
youtube’s web site.

Jinze Liu @ University of Kentucky 9/16/2008

Impedance mismatch and a solution

SQL operates on a set of records at a time

Typical low-level general-purpose programming
languages operates on one record at a time

Solution: cursor

Open (a result table): position the cursor before the first
row

Get next: move the cursor to the next row and return
that row; raise a flag if there is no such row

Close: clean up and release DBMS resources

Found in virtually every database language/API
- With slightly different syntaxes

Jinze Liu @ University of Kentucky 9/16/2008

A Typical Flow of Interactions

A client (user interface, web server, application server)
opens a connection to a database server

A client interact with the database server to perform
query, update, or other operations.

A client terminate the connection

Jinze Liu @ University of Kentucky 9/16/2008

Interfacing SQL with another language

API approach
SQL commands are sent to the DBMS at runtime
Examples: JDBC, ODBC (for C/C++/VB), Perl DBI
These API’s are all based on the SQL/CLI (Call-Level
Interface) standard

Embedded SQL approach

SQL commands are embedded in application code

A precompiler checks these commands at compile-time
and converts them into DBMS-specific API calls

Examples: embedded SQL for C/C++, SQLJ (for Java)

Jinze Liu @ University of Kentucky 9/16/2008

Example API: JDBC

JDBC (Java DataBase Connectivity) is an API that allows a
Java program to access databases

public class .. {

static {

try {

} catch (ClassNotFoundException e) {

Jinze Liu @ University of Kentucky 9/16/2008

Connections

String url =
’jdbc:oracle:thin:@oracle.cs.uky.edu:1521:0rcl”’ ;

conn
=DriverManager .getConnection(url ,username,password)

con.close();

For clarity we are ignoring
exception handling for now

Jinze Liu @ University of Kentucky 9/16/2008 61

Statements

Statement stmt = con.createStatement();

ResultSet rs =
stmt.executeQuery(’SELECT name, passwd FROM
regiusers™);

int rowsUpdated =

stmt.executeUpdate

(UPDATE regiusers SET passwd = *1234° WHERE name =
“SJohRGEs)s

stmt.close();
Jinze Liu @ University of Kentucky 9/16/2008

Query results

ResultSet rs =

stmt.executeQuery(’SELECT name, passwd FROM
regiusers™);

while (rs.next()) {

String name = rs.string(1);
String passwd = rs.getString(2);

rs.close();

Jinze Liu @ University of Kentucky 9/16/2008

Other ResultSet features

Move the cursor (pointing to the current row) backwards

and forwards, or position it anywhere within the
ResultSet

Update/delete the database row corresponding to the
current result row

Analogous to the view update problem

Insert a row into the database
Analogous to the view update problem

Jinze Liu @ University of Kentucky 9/16/2008

Prepared statements: motivation

Statement stmt = con.createStatement();
for (int age=0; age<l100; age+=10) {
ResultSet rs = stmt.executeQuery
(’SELECT AVG(GPA) FROM Student” +
> WHERE age >= ” + age + ” AND age < ” + (age+10));

}

Every time an SQL string is sent to the DBMS, the DBMS
must perform parsing, semantic analysis, optimization,
compilation, and then finally execution

These costs are incurred 10 times in the above example

A typical application issues many queries with a small
number of patterns (with different parameter values)

Jinze Liu @ University of Kentucky 9/16/2008

Transaction processing

Set isolation level for the current transaction
con.setTransactionlsolationLevel ());

Where [is one of TRANSACTION_SERIAL 1ZABLE (default),
TRANSACTION_REPEATABLE READ,

TRANSACTION_READ COMITTED, and
TRANSACTION_READ_UNCOMMITTED

Set the transaction to be read-only or read/write (default)
con.setReadOnly(true|false);

Turn on/off AUTOCOMMIT (commits every single

statement)
con.setAutoCommit(true|false);

Commit/rollback the current transaction (when
AUTOCOMMIT is off)
con.commit();

con.rollback(); . @ University of Kentucky ~ 9/16/2008

