Instructor: Jinze Liu

Fall 2008

Phases of Database Design

Data
Requirements

Specification of requirements
and results

Conceptual

Logical
Design

Logical Schema

Physical
Design

Physical Schema

Conceptual design begins with the
collection of requirements and results
needed from the database (ER Diag.)

Logical schema is a description of the

structure of the database (Relational,
Network, etc.)

Physical schema is a description of
the implementation (programs, tables,
dictionaries, catalogs

Models

A data model is a collection of objects that can be used

to represent a set of data and operations to manipulate
the data

Conceptual models are tools for representing reality at a

very high-level of abstraction

Logical models are data descriptions that can be
processed by computers

Conceptual model:
Entity-Relationship Diagrams

Entities represent classes of real-world objects.
Person, Students, Projects, Courses are entities
of a University database

Relationships represent interactions between two
or more entities

Example:

Every employee works in at least one project
Every project has employees working on it.

EMPLOYEE
SSN
Name
Salary

PROJECT
WORKS_ON Name
Code

Higher-Order Relationships

A relationship may involve more than two entities

Classroom

Recursive relationships

Relationships could be mapped from one entity to
itself

Manager_Of

Employee Manages

Subordinate To

Attributes

Attributes represent elementary properties of the
entities or relationships. The stored data will be kept as
values of the attributes

PERSON |\(IZITY
Ssn ame

Name Birth_Date Countl‘

Profession Elevatlgn
Population

Moving_Date

Generalizations

« An entity could be seen from many different viewpoints
 Each viewpoint defines a set of roles in a generalization

« Example below uses SEX to classify the object “Person”

PERSON
Ssn
Name
Address

MAN FEMALE
Draft_Status Maiden_Name

Generalizations

A classification could be disjoint or overlapping
An entity could have more than one classification

PERSON
Ssn
Name
Address

Full_Time Part_Time
Annual_Salary Hour_Rate
Department Weekly Hours

MAN FEMALE
Draft_Status Maiden_Name

Case study : first design

Cities States

County area information is repeated for every city in
the county

Redundancy is bad.
What else?

State capital should really be a city
Should “reference” entities through explicit relationships

9/5/2008 11

Case study : second design

Cities

oo

Zountie 5@ States

Technically, nothing in this design could prevent a city
in state X from being the capital of another state Y, but
oh well...

9/5/2008

A Relation is a Table

Attributes N
(column \n\ : =

Vinterbrew Petes
headers)

Pis A
1 UILL

sttt
=IC

ray A I
C 7 XITT

>

Tuples ~ Beers
(rows)

Schemas

Relation schema = relation name + attributes, in order

(+ types of attributes).
Example: Beers(name, manf) or Beers(name: string,
manf: string)

Database = collection of relations.

Database schema = set of all relation schemas in the
database.

Why Relations?

Very simple model.
Often matches how we think about data.

Abstract model that underlies SQL, the most
important database language today.

But SQL uses bags, while the relational model is a set-

based model.

From E/R Diagrams to Relations

Entity sets become relations with the same set of
attributes.

Relationships become relations whose attributes are
only:

The keys of the connected entity sets.

Attributes of the relationship itself.

Entity Set -> Relation

T

Relation: Beers(name, manf)

Relationship -> Relation

e
Drinkers %ke}
husband

Likes(drinker, beer)

Favorite(drinker, beer)
Buddies(namel, name?2)
Married(husband, wife)

Combining Relations

It is OK to combine the relation for an entity-set E with
the relation R for a many-one relationship from E to
another entity set.

Example: Drinkers(name, addr) and Favorite(drinker,
beer) combine to make Drinkeri(name, addr, favBeer).

Risk with Many-Many Relationships

Combining Drinkers with Likes would be a mistake. It
leads to redundancy, as:

name | _adsmmes | beer
Sal Iy</123 Maﬂ@>8ud

Sally\123 Mapl9 Miller

A

Redundancy

Handling Weak Entity Sets

Relation for a weak entity set must include attributes
for its complete key (including those belonging to
other entity sets), as well as its own, nonkey attributes.

A supporting (double-diamond) relationship is

redundant and yields no relation.

o

©

Hosts(hostName)
Logins(loginName, hostName, time)
At(logmiName hostiNamehostiName

\ /

Must be the same

At becomes part of
Logins

A (Slightly) Formal Definition

A is a collection of (or tables)

Each is identified by a name and a list of
(or columns)

Each has a name and a (or type)
Set-valued attributes not allowed

9/5/2008

Schema versus instance

Schema (metadata)
Specification of how data is to be structured logically
Defined at set-up
Rarely changes

Instance
Content
Changes rapidly, but always conforms to the schema

Compare to type and objects of type in a programming
language

9/5/2008

Example

Schema

Student (SID integer, name string, age integer, GPA
float)

Course (CID string, title string)
Enroll (SID integer, CID integer)

Instance
{ hi42, Bart, 10, 2.3i, h123, Milhouse, 10, 3.1i, ...}
{ hCPSu6, Intro. to Database Systemsi, ...}
{ hig42, CPSu6i, hi42, CPSu4i, ...}

9/5/2008

Relational Integrity Constraints

Constraints are conditions that must hold on all
valid relation instances. There are four main types of
constraints:

Domain constraints
The value of a attribute must come from its domain

Key constraints
Entity integrity constraints
Referential integrity constraints

9/5/2008

Primary Key Constraints

A set of fields is a for a relation if :
1. No two distinct tuples can have same values in all key

fields, and
2. This is not true for any subset of the key.
Part 2 false? A

[f there’s >1 key for a relation, one of the keys is chosen
(by DBA) to be the

E.g., given a schema Student(sid: string, name: string,
gpa: float) we have:

sid is a key for Students. (What about name?) The set
{sid, gpa} is a superkey.

9/5/2008 Jinze Liu @ University of Kentucky

Key Example

CAR (licence_num: string, Engine_serial_num: string,
make: string, model: string, year: integer)

What is the candidate key(s)

Which one you may use as a primary key

What are the super keys

9/5/2008

Entity Integrity

Entity Integrity: The primary key attributes PK of
each relation schema R in S cannot have null values
in any tuple of r(R).

Other attributes of R may be similarly constrained to

disallow null values, even though they are not
members of the primary key.

9/5/2008

Foreign Keys, Referential Integrity

Set of fields in one relation that is used
to ‘refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a "logical pointer’.

E.g. isa foreign key referring to
Student(sid: string, name: string, gpa: float)
Enrolled(string, cid: string, grade: string)

If all foreign key constraints are enforced,
is achieved, i.e., no dangling references.

Can you name a data model w/o referential integrity?
Links in HTML!

9/5/2008 Jinze Liu @ University of Kentucky

Foreign Keys

Only students listed in the Students relation should be
allowed to enroll for courses.

i

e Or, use NULL as the value for the foreign key in the
referencing tuple when the referenced tuple does not
exist

9/5/2008 Jinze Liu @ University of Kentucky

Other Types of Constraints

Semantic Integrity Constraints:

based on application semantics and cannot be
expressed by the model per se

e.g., “the max. no. of hours per employee for all
projects he or she works on is 56 hrs per week”

A constraint specification language may have to
be used to express these

SQL-99 allows triggers and ASSERTIONS to allow
for some of these

9/5/2008

