Association Rule Mining

Generating assoc. rules from

frequent itemsets

O Assume that we have discovered the
frequent itemsets and their support

0 How do we generate association rules?

O Frequent itemsets:
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For each frequent itemset | find all
nonempty subsets s. For each s
generate rule s = I-s if
sup(l)/sup(s)=min_conf

Example: for {2,3,5}, min_conf = 75%

{23}=5

{25} =3 X

{35}=2 4




Discovering Rules

0 Naive Algorithm
for each frequent itemset | do
for each subset ¢ of | do
if (support(l) / support(l - ¢) >= minconf) then
output the rule (I—c) =c,
with confidence = support(l ) / support (I - ¢ )
and support = support(l)

Discovering Rules (2)

o Lemma. If consequent c generates a valid rule,
so do all subsets of c. (e.g. X =YZ, then XY =Z
and XZ =)

o Example: Consider a frequent itemset ABCDE

If ACDE = B and ABCE = D are the only one-consequent
rules with minimum support confidence,

ACE = BD is the only other rule that needs to be tested




Is Apriori Fast Enough? —
Performance Bottlenecks

O The core of the Apriori algorithm:

= Use frequent (k — 1)-itemsets to generate candidate frequent k-
itemsets

= Use database scan and pattern matching to collect counts for
the candidate itemsets

o The bottleneck of Apriori: candidate generation

® Huge candidate sets:

104 frequent 1-itemset will generate 107 candidate 2-
itemsets

To discover a frequent pattern of size 100, e.g., {a,, a,, ...,
a,00), ONe needs to generate 2190~ 103° candidates.

= Multiple scans of database:
Needs (n +1 ) scans, n is the length of the longest pattern

FP-growth: Mining Frequent Patterns
Without Candidate Generation

o Compress a large database into a compact,
Frequent-Pattern tree (EP-tree) structure

= highly condensed, but complete for frequent pattern
mining

= avoid costly database scans

o Develop an efficient, FP-tree-based frequent
pattern mining method

= A divide-and-conquer methodology: decompose mining
tasks into smaller ones

= Avoid candidate generation: sub-database test only!




FP-tree Construction from a
Transactional DB

TID

Items bought (ordered) frequent items

min_support = 3

100
200
300
400
500

Steps:

{f,a,c,d, g,i,m,p}
{a, b, c, f, 1, m, 0}
{b, f, h, j, o}

{b,c, k,s, p}
{a,f,c,e 1, p, mn}

item patterns)

{f, c,a, m, p}
{f, c,a, b, m}

{f,c,a, m, p}

Item frequency

WwWwWwwwhhp

T3IoO®O0 o

1. Scan DB once, find frequent 1-itemsets (single

2. Order frequent items in descending order of
their frequency

3. Scan DB again, construct FP-tree

FP-tree Construction

min_support = 3

ltem frequency

TID

freqg. Items bought

200
300
400
500

{f,c,a, b, m}
{f, b}

{c, p, b}

{f, c,a, m, p}
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FP-tree Construction

min_support = 3

ltem frequency

TID freq. Items bought

300 {f,b}
400 {c, p, b}

500 {f,c,a,m, p}
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FP-tree Construction

min_support = 3

ltem frequency

TID freqg. Items bought
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FP-tree Construction min_support = 3
ltem frequency

TID freq. Items bought
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Header Table
Item frequency head
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Benefits of the FP-tree Structure

o Completeness:
= never breaks a long pattern of any transaction
m preserves complete information for frequent pattern mining

o Compactness
= reduce irrelevant information—infrequent items are gone
= frequency descending ordering: more frequent items are
more likely to be shared
= never be larger than the original database (if not count
node-links and counts)

m Example: For Connect-4 DB, compression ratio could be
over 100




Mining Frequent Patterns Using
FP-tree

0 General idea (divide-and-conquer)
= Recursively grow frequent pattern path using the FP-tree

o Method
m For each item, construct its conditional pattern-base, and
then its conditional FP-tree
= Repeat the process on each newly created conditional FP-
tree

= Until the resulting FP-tree is empty, or it contains only
one path (single path will generate all the combinations of its
sub-paths, each of which is a frequent pattern)

Mining Frequent Patterns Using the FP-tree
(cont’d)

o Start with last item in order (i.e., p).
o Follow node pointers and traverse only the paths containing p.

o Accumulate all of transformed prefix paths of that item to form
a conditional pattern base

Conditional pattern base for p
fcam:2, cb:1

Construct a new FP-tree based
on this pattern, by merging all
paths and keeping nodes that
appear 2sup times. This leads to
only one branch ¢:3

Thus we derive only one frequent
pattern cont. p. Pattern cp




Mining Frequent Patterns Using the FP-tree
(cont’d)

o Move to next least frequent item in order, i.e., m
O Follow node pointers and traverse only the paths containing m.

o Accumulate all of transformed prefix paths of that item to form
a conditional pattern base
m-conditional
pattern base:
fca:2, fcab:1
All frequent patterns
{i} that include m
ma
2 3 D
| fm, cm, am,
c:3 fcm, fam, cam,
I
a3 fcam

m-conditional FP-tree (contains only path fca:3)

Properties of FP-tree for Conditional Pattern
Base Construction

o Node-link property
= For any frequent item a;, all the possible frequent patterns

that contain g can be obtained by following a;'s node-links,
starting from a;'s head in the FP-tree header

o Prefix path property

= To calculate the frequent patterns for a node g in a path P,
only the prefix sub-path of a; in P need to be accumulated,
and its frequency count should carry the same count as
node a,.




Conditional Pattern-Bases for the example

Item | Conditional pattern-base | Conditional FP-tree
p {(fcam:2), (cb:1)} {(C:3)}p
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}Im
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}]a
c {(f:3)} {(f:3)}1c
f Empty Empty

Principles of Frequent Pattern Growth

o Pattern growth property

= Let o be a frequent itemset in DB, B be a's conditional
pattern base, and B be an itemsetin B. Thena U is
a frequent itemset in DB iff § is frequent in B.

o “abcdef ” is a frequent pattern, if and only if

= “abcde ” is a frequent pattern, and

= “f 7 is frequent in the set of transactions containing
“abcde ”




Why Is Frequent Pattern Growth Fast?

o Performance studies show

m FP-growth is an order of magnitude faster than Apriori,
and is also faster than tree-projection

O Reasoning

No candidate generation, no candidate test

Uses compact data structure

Eliminates repeated database scan

Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With
the Support Threshold
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