Assignment 2 (Problem 1).

1.

- 1) $\pi_{\text{Pname}}\{\text{Presidents}\}$
- 2) $\pi_{Jname} \{ \sigma_{(LawSchool=Yale OR LawSchool=Harvard)}(Judges) \}$
- 3) Yale_Pres <= $\pi_{Pname} \{ [\pi_{Jname} \{ \sigma_{(LawSchool=Yale)}(Judges) \} * Appoints]$ Harv_Pres <= $\pi_{Pname} \{ [\pi_{Jname} \{ \sigma_{(LawSchool=Harvard)}(Judges) \} * Appoints]$ Multi <= $\rho_{n1(jnameY)}(Yale_Pres) (cross) \rho_{n2(jnameH)}(Harv_Pres)$ Result <= $\pi_{JnameY} \{ \sigma_{(jnameY=jnameH)}(Multi) \}$

Note: another way to do this is to use intersection.

- 4) num_judges $\leq \{ law_school} \Im_{count(jname)}(judges) \}$
- 5) pairs <= $\rho_{n1(jname1, lawschool1)}(\pi_{Jname,LawSchool} \{Judges\})$ (cross) $\rho_{n2(jname2, lawschool2)}(\pi_{Jname,LawSchool} \{Judges\})$ result <= $\pi_{Jname1,JName2} \{\sigma_{(lawschool2)}(pairs)\}$

Note: Make sure you use pairs with conditions that judges names are different but law school is the same.

6) j_not_yale <= π_{Jname} {σ_(LawSchool!=Yale)(Judges)} party_not_yale <= π_{Party}{(j_not_yale * Appoints) * Presidents} all_party <= π_{Party}{Presidents} party_only_yale <= all_party - party_not_yale</p>

Note: Key words here is only Yale. Therefore, you will need to subtract "not yale" from "all"

7) numjudge $\leq \rho_{n1(pname, count)}(pname \Im_{count(jname)}(appoints))$ $\pi_{pname} \{\sigma_{(count=2)}(numjudge)\}$

Note: When you use group functions, you may need to rename the columns in order to use it again.

8) all_pres <= π_{pname}{presidents} app_pres <= π_{pname}{appoints} no_appoints = all_pres - app_pres

Note: You cannot use group function here and test the count is zero. Because if the count is zero, it won't even appear in the table.

9) $judge_count \le \rho_{n1(pname, count)}(pname \exists count(jname)(appoints))$ $\pi_{pname} \{\sigma_{(count>2)}(judge_count)\}$ 10) judges_republican <= $\pi_{jname, jdateofbirth, lawschool} \{ [\sigma_{(party='republican')}(presidents) * appoints] * judges}$ judges_not_oldest <= $\pi_{judge1,jname} \{ \rho_{judge1}(judges_republican) (join)_{(judge1,jdateofbirth > judge2,jdateofbirth}$ AND judge1.lawschool = judge2.lawschool) $\rho_{judge2}(judges_republican) \}$ judges_oldest_per_lawschool = $\pi_{jname} \{ judges_republican \} - judges_not_oldest \}$

Note: Another way to handle this is to use aggregate function when finding the oldest judge, i.e., the one with the smallest birth date.