

Assignment 2 (Problem 1).

1.

1) πPname{Presidents}

2) πJname{σ(LawSchool=Yale OR LawSchool=Harvard)(Judges)}

3) Yale_Pres <= πPname{[πJname{σ(LawSchool=Yale)(Judges)} * Appoints]
Harv_Pres <= πPname{[πJname{σ(LawSchool=Harvard)(Judges)} * Appoints]
Multi <= ρn1(jnameY)(Yale_Pres) (cross) ρn2(jnameH)(Harv_Pres)
Result <= πJnameY{σ(jnameY=jnameH)(Multi)}

 Note: another way to do this is to use intersection.

4) num_judges <= {law_schoolЭcount(jname)(judges)}

5) pairs <= ρn1(jname1, lawschool1)(πJname,LawSchool{Judges}) (cross) ρn2(jname2,

lawschool2)(πJname,LawSchool{Judges})
result <= πJname1,JName2{σ(lawschool1=lawschool2)(pairs)}

Note: Make sure you use pairs with conditions that judges names are different but law school is
the same.

6) j_not_yale <= πJname{σ(LawSchool!=Yale)(Judges)}
party_not_yale <= πParty{(j_not_yale * Appoints) * Presidents}
all_party <= πParty{Presidents}
party_only_yale <= all_party – party_not_yale

Note: Key words here is only Yale. Therefore, you will need to subtract “not yale” from “all”

7) numjudge <= ρn1(pname, count)(pnameЭcount(jname)(appoints))
πpname{σ(count=2)(numjudge)}

Note: When you use group functions, you may need to rename the columns in order to use it
again.

8) all_pres <= πpname{presidents}
app_pres <= πpname{appoints}
no_appoints = all_pres – app_pres

Note: You cannot use group function here and test the count is zero. Because if the count is zero,
it won’t even appear in the table.

9) judge_count <= ρn1(pname, count)(pnameЭcount(jname)(appoints))
πpname{σ(count>2)(judge_count)}

10) judges_republican <= πjname, jdateofbirth, lawschool{[σ(party='republican')(presidents) * appoints] * judges}

judges_not_oldest <= πjudge1.jname{ρjudge1(judges_republican) (join)(judge1.jdateofbirth > judge2.jdateofbirth

AND judge1.lawschool = judge2.lawschool) ρjudge2(judges_republican)}
judges_oldest_per_lawschool = πjname{judges_republican} – judges_not_oldest

Note: Another way to handle this is to use aggregate function when finding the oldest judge,
i.e., the one with the smallest birth date.

