Assignment 2 (Problem 1).

1.

1)

2)

3)

4)

5)

6)

7)

8)

9)

TCPname{PreSidentS}

TUname { O(LawSchool=Yale OR LawSchool=Harvard)(JUdQES) }

Yale_Pres <= Ttpname {[Tname { G (Lawschool=vate)(Judges) } * Appoints]
Harv_Pres <= Ttpname { [Tiname { O (Lawschool=Harvard)(JUAQES) } * Appoints]
Multi <= pnigramev)(Yale_Pres) (cross) pnagnameny(Harv_Pres)
Result <= Ttnamey {G(jnamev=jnameH)(Multi) }

Note: another way to do this is to use intersection.

num_judges <= {iaw_school Dcount(rame)(jUdges) }

pairS <= Pni(jnamel, Iawschooll)(TCJname,LawSchooI{JUdgeS}) (cross) Pn2(jname2,
IawschoolZ)(TCJname,LawSchooI{\]UdgeS})
result <= Tname1,JName2 { O (lawschool1=lawschool2)(PaIrS) }

Note: Make sure you use pairs with conditions that judges names are different but law school is
the same.

j_not yale <= TCJname{G(LawSchooI!:YaIe)(\]Udges)}

party not yale <= mpany{(j_not_yale * Appoints) * Presidents}
all_party <= mpany{Presidents}

party_only_yale <= all_party — party_not_yale

Note: Key words here is only Yale. Therefore, you will need to subtract “not yale” from “all”

nuijdge <= Pni(pname, count)(pnameacount(jname)(appointS))
Ttpname { O count=2)(NUMjudge) }

Note: When you use group functions, you may need to rename the columns in order to use it
again.

all_pres <= TCpname{preSidentS}

app_pres <= Tpnamef{appoints}
no_appoints = all_pres —app_pres

Note: You cannot use group function here and test the count is zero. Because if the count is zero,
it won’t even appear in the table.

judge_count <= pn(pname, count)(pnameDcount(jname)(APPOINtS))
Tlpname {G(count>2)(j Udge_COUnt)}



10) judges_republican <= Ttjname, jdateofbirth, lawschool { | O(party="republicany(Presidents) * appoints] * judges}
judges_not_oldest <= njudgel.jname{Pjudgel(j udges_republican) (jOin)(judgel.jdateofbirth > judge2 jdateofbirth
AND judgeL.lawschool = judge2.lawschool) Pjudge2(Judges_republican)}
judges_oldest_per_lawschool = mjname{judges_republican} — judges_not_oldest

Note: Another way to handle this is to use aggregate function when finding the oldest judge,
i.e., the one with the smallest birth date.



