
CS 405G: Introduction to

Database Systems

Instructor: Jinze Liu

11/19/2014 Jinze Liu @ University of Kentucky 2

Review

 The unit of disk read and write is

 Block (or called Page)

 The disk access time is composed by

 Seek time

 Rotation time

 Data transfer time

11/19/2014 Jinze Liu @ University of Kentucky 3

Review

 A row in a table, when located on disks, is called

 A record

 Two types of record:

 Fixed-length

 Variable-length

11/19/2014 Jinze Liu @ University of Kentucky 4

Review

 In an abstract sense, a file is

 A set of “records” on a disk

 In reality, a file is

 A set of disk pages

 Each record lives on

 A page

 Physical Record ID (RID)

 A tuple of <page#, slot#>

11/19/2014 Jinze Liu @ University of Kentucky 5

Today’s Topic

 How to locate data in a file fast?

 Introduction to indexing

 Tree-based indexes

 ISAM: Indexed sequence access method

 B+-tree

11/19/2014 Jinze Liu @ University of Kentucky 6

Basics

 Given a value, locate the record(s) with this value

 SELECT * FROM R WHERE A = value;

 SELECT * FROM R, S WHERE R.A = S.B;

 Other search criteria, e.g.

 Range search

 SELECT * FROM R WHERE A > value;

 Keyword search

database indexing Search

Tree-Structured Indexes: Introduction

 Tree-structured indexing techniques support both range
selections and equality selections.

 ISAM =Indexed Sequential Access Method

 static structure; early index technology.

 B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

11/19/2014 7 Jinze Liu @ University of Kentucky

Motivation for Index

 ``Find all students with gpa > 3.0’’

 If data file is sorted, do binary search

 Cost of binary search in a database can be quite high,

Why?

 Simple idea: Create an `index’ file.

Can do binary search on (smaller) index file!

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1
Index File

P
0

K
1 P

1
K 2 P

2
K m

P m

index entry

11/19/2014 8 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 9

ISAM

 What if an index is still too big?

 Put a another (sparse) index on top of that!

 ISAM (Index Sequential Access Method), more or less

100, 200, …, 901

100, 123, …, 192 901, …, 996 … Index blocks 200, …

100, 108,

119, 121

123, 129,

…

901, 907,

…

996, 997,

…
… … …

Data blocks

192, 197,

…

200, 202,

…

Example: look up 197

11/19/2014 Jinze Liu @ University of Kentucky 10

Updates with ISAM

 Overflow chains and empty data blocks degrade

performance

 Worst case: most records go into one long chain

Example: insert 107

107

Overflow block

Example: delete 129
100, 200, …, 901

100, 123, …, 192 901, …, 996 … Index blocks 200, …

100, 108,

119, 121

123, 129,

…

901, 907,

…

996, 997,

…
… … …

Data blocks

192, 197,

…

200, 202,

…

11/19/2014 Jinze Liu @ University of Kentucky 11

A Note of Caution

 ISAM is an old-fashioned idea

 B+-trees are usually better, as we’ll see

 But, ISAM is a good place to start to understand the

idea of indexing

 Upshot

 Don’t brag about being an ISAM expert on your

resume

 Do understand how they work, and tradeoffs with B+-

trees

11/19/2014 Jinze Liu @ University of Kentucky 12

B+-tree

 A hierarchy of intervals

 Balanced (more or less): good performance guarantee

 Disk-based: one node per block; large fan-out

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

11/19/2014 Jinze Liu @ University of Kentucky 13

Sample B+-tree nodes

Max fan-out: 4

1
2
0

1
5
0

1
8
0

to keys

100 <=k < 120

to keys

120 <=k < 150

to keys

150 <= k < 180

to keys

180 <= k

Non-leaf
1
2
0

1
3
0

to records with these k values;

or, store records directly in leaves

to next leaf node in sequence Leaf

to keys

100 · k

11/19/2014 Jinze Liu @ University of Kentucky 14

B+-tree balancing properties

 Height constraint: all leaves at the same lowest level

 Fan-out constraint: all nodes at least half full

(except root)

 Max # Max # Min # Min #

 pointers keys active pointers keys

Non-leaf f f – 1

Root f f – 1 2 1

Leaf f f – 1

 2/f   12/ f

 2/f  2/f

11/19/2014 Jinze Liu @ University of Kentucky 15

Lookups

SELECT * FROM R WHERE k = 179;

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
7
9

Not found

SELECT * FROM R WHERE k = 32;

11/19/2014 Jinze Liu @ University of Kentucky 16

Range query

SELECT * FROM R WHERE k > 32 AND k <

179;

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

Look up 32…

And follow next-leaf pointers

3
5

11/19/2014 Jinze Liu @ University of Kentucky 17

Insertion

 Insert a record with search key value 32

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Look up where the

inserted key

should go…

3
2

And insert it right there

11/19/2014 Jinze Liu @ University of Kentucky 18

Another insertion example

 Insert a record with search key value 152

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
5
2

Oops, node is already full!

11/19/2014 Jinze Liu @ University of Kentucky 19

Node splitting

1
2
0

1
3
0

1
5
0

1
5
2

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Yikes, this node is

also already full!

1
0
0

1
0
1

1
1
0

1
5
6

11/19/2014 Jinze Liu @ University of Kentucky 20

More node splitting

 In the worst case, node splitting can “propagate” all the way up to the root of
the tree (not illustrated here)

 Splitting the root introduces a new root of fan-out 2 and causes the tree to
grow “up” by one level

1
2
0

1
3
0

1
5
0

1
5
2

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
8
0

Max fan-out: 4

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

11/19/2014 Jinze Liu @ University of Kentucky 21

Insertion

 B+-tree Insert

 Find correct leaf L.

 Put data entry onto L.

 If L has enough space, done!

 Else, must split L (into L and a new node L2)

 Distribute entries evenly, copy up middle key.

 Insert index entry pointing to L2 into parent of L.

 This can happen recursively

 Tree growth: gets wider and (sometimes) one level taller at top.

11/19/2014 Jinze Liu @ University of Kentucky 22

Deletion

 Delete a record with search key value 130

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Look up the key

to be deleted…

And delete it

Oops, node is too empty!

If a sibling has more

than enough keys,

steal one!

11/19/2014 Jinze Liu @ University of Kentucky 23

Stealing from a sibling

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
5
6

Remember to fix the key

in the least common ancestor

11/19/2014 Jinze Liu @ University of Kentucky 24

Another deletion example

 Delete a record with search key value 179

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
6

1
8
0

Max fan-out: 4

Cannot steal from siblings

Then coalesce (merge) with a sibling!

11/19/2014 Jinze Liu @ University of Kentucky 25

Coalescing

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
0
0

1
2
0

1
5
6

1
8
0

Max fan-out: 4

Remember to delete the

appropriate key from parent

 Deletion can “propagate” all the way up to the root of the tree (not illustrated
here)

 When the root becomes empty, the tree “shrinks” by one level
1
5
6

1
8
0

2
0
0

11/19/2014 Jinze Liu @ University of Kentucky 26

Deletion

 B+-tree Delete

 Start at root, find leaf L where entry belongs.

 Remove the entry.

 If L is at least half-full, done!

 If L has only d-1 entries,

 Try to redistribute, borrowing from sibling (adjacent node

with same parent as L).

 If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L or sibling)

from parent of L.

 Tree shrink: gets narrower and (sometimes) one level lower at

top.

Example B+ Tree - Inserting 8*

In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Notice that root was split, leading to increase in height.

11/19/2014 27 Jinze Liu @ University of Kentucky

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Example Tree (including 8*)

Delete 19* and 20* ...

11/19/2014 28 Jinze Liu @ University of Kentucky

Example Tree (including 8*)

Delete 19* and 20* ...

 Deleting 19* is easy.

 Deleting 20* is done with re-distribution. Notice

how middle key is copied up.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*
2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

11/19/2014 29 Jinze Liu @ University of Kentucky

 ... And Then Deleting 24*

 Must merge.

 Observe `toss’ of index

entry (key 27 on right), and

`pull down’ of index entry

(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root

30 13 5 17

11/19/2014 30 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 31

Performance analysis

 How many I/O’s are required for each operation?

 h, the height of the tree (more or less)

 Plus one or two to manipulate actual records

 Plus O(h) for reorganization (should be very rare if f is large)

 Minus one if we cache the root in memory

 How big is h?

 Roughly logfan-out N, where N is the number of records

 B+-tree properties guarantee that fan-out is least f / 2 for all non-root

nodes

 Fan-out is typically large (in hundreds)—many keys and pointers

can fit into one block

 A 4-level B+-tree is enough for typical tables

11/19/2014 Jinze Liu @ University of Kentucky 32

B+-tree in practice

 Complex reorganization for deletion often is not

implemented (e.g., Oracle, Informix)

 Leave nodes less than half full and periodically reorganize

 Most commercial DBMS use B+-tree instead of hashing-

based indexes because B+-tree handles range queries

11/19/2014 Jinze Liu @ University of Kentucky 33

The Halloween Problem

 Story from the early days of System R…

 UPDATE Payroll

SET salary = salary * 1.1

WHERE salary >= 100000;

 There is a B+-tree index on Payroll(salary)

 The update never stopped (why?)

 Solutions?

 Scan index in reverse

 Before update, scan index to create a complete “to-do” list

 During update, maintain a “done” list

 Tag every row with transaction/statement id

11/19/2014 Jinze Liu @ University of Kentucky 34

B+-tree versus ISAM

 ISAM is more static; B+-tree is more dynamic

 ISAM is more compact (at least initially)

 Fewer levels and I/O’s than B+-tree

 Overtime, ISAM may not be balanced

 Cannot provide guaranteed performance as B+-tree does

11/19/2014 Jinze Liu @ University of Kentucky 35

B+-tree versus B-tree

 B-tree: why not store records (or record pointers) in

non-leaf nodes?

 These records can be accessed with fewer I/O’s

 Problems?

 Storing more data in a node decreases fan-out and

increases h

 Records in leaves require more I/O’s to access

 Vast majority of the records live in leaves!

11/19/2014 Jinze Liu @ University of Kentucky 36

Beyond ISAM, B-, and B+-trees

 Other tree-based indexes: R-trees and variants, GiST,

etc.

 Hashing-based indexes: extensible hashing, linear

hashing, etc.

 Text indexes: inverted-list index, suffix arrays, etc.

 Other tricks: bitmap index, bit-sliced index, etc.

 How about indexing subgraph search?

11/19/2014 Jinze Liu @ University of Kentucky 37

Summary

 Two types of queries

 Key-search

 Range-query

 B+-tree operations

 Search

 Insert

 Split child

 Delete

 Redistribution

 B+-tree sorting

 Next: disk-based sorting algorithms

