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Review 

 The unit of disk read and write is  

 Block (or called Page) 

 The disk access time is composed by 

 Seek time 

 Rotation time 

 Data transfer time 
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Review 

 A row in a table, when located on disks, is called  

 A record 

 Two types of record: 

 Fixed-length 

 Variable-length  
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Review 

 In an abstract sense, a file is  

 A set of “records” on a disk 

 In reality, a file is 

 A set of disk pages 

 Each record lives on  

 A page 

 Physical Record ID (RID) 

 A tuple of <page#, slot#> 
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Today’s Topic 

 How to locate data in a file fast? 

 Introduction to indexing 

 Tree-based indexes 

 ISAM: Indexed sequence access method 

 B+-tree 
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Basics 

 Given a value, locate the record(s) with this value 

   SELECT * FROM R WHERE A = value; 

   SELECT * FROM R, S WHERE R.A = S.B; 

 Other search criteria, e.g. 

 Range search 

   SELECT * FROM R WHERE A > value; 

 Keyword search 

database indexing Search 



Tree-Structured Indexes: Introduction 

 Tree-structured indexing techniques support both range 
selections and equality selections. 

 ISAM =Indexed Sequential Access Method  

 static structure; early index technology. 

 B+ tree:  dynamic, adjusts gracefully under inserts and 
deletes. 
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Motivation for Index 

 ``Find all students with gpa > 3.0’’ 

 If data file is sorted, do binary search 

 Cost of binary search in a database can be quite high, 

Why? 

 Simple idea:  Create an `index’ file. 

 

Can do binary search on (smaller) index file! 

Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 
Index File 
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index entry 

11/19/2014 8 Jinze Liu @ University of Kentucky 



11/19/2014 Jinze Liu @ University of Kentucky 9 

ISAM 

 What if an index is still too big? 

 Put a another (sparse) index on top of that! 

 ISAM (Index Sequential Access Method), more or less 

100, 200, …, 901 

100, 123, …, 192 901, …, 996 … Index blocks 200, …     

100, 108, 

119, 121 

123, 129, 

… 

901, 907, 

… 

996, 997, 

… 
… … … 

Data blocks 

192, 197, 

… 

200, 202, 

… 

Example: look up 197 
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Updates with ISAM 

 Overflow chains and empty data blocks degrade 

performance 

 Worst case: most records go into one long chain 

Example: insert 107 

107 

 
Overflow block 

Example: delete 129 
100, 200, …, 901 

100, 123, …, 192 901, …, 996 … Index blocks 200, …     

100, 108, 

119, 121 

123, 129, 

… 

901, 907, 

… 

996, 997, 

… 
… … … 

Data blocks 

192, 197, 

… 

200, 202, 

… 
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A Note of Caution 

 ISAM is an old-fashioned idea 

 B+-trees are usually better, as we’ll see 

 But, ISAM is a good place to start to understand the 

idea of indexing 

 Upshot 

 Don’t brag about being an ISAM expert on your 

resume 

 Do understand how they work, and tradeoffs with B+-

trees 
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B+-tree 

 A hierarchy of intervals 

 Balanced (more or less): good performance guarantee 

 Disk-based: one node per block; large fan-out 
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Sample B+-tree nodes 

Max fan-out: 4 
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to keys  

100 <=k < 120 

to keys 

120 <=k < 150 

to keys 

150 <= k < 180 

to keys 

180 <= k 

Non-leaf 
1
2
0
 

1
3
0
 

to records with these k values; 

or, store records directly in leaves 

to next leaf node in sequence Leaf 

to keys 

100 · k 
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B+-tree balancing properties 

 Height constraint: all leaves at the same lowest level 

 Fan-out constraint: all nodes at least half full  

(except root) 

 

       Max #   Max #  Min # Min # 

     pointers keys     active pointers  keys  

Non-leaf f f – 1    

Root  f f – 1  2  1 

Leaf  f f – 1    

 2/f   12/ f

 2/f  2/f
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Lookups 

SELECT * FROM R WHERE k = 179; 
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Not found 

SELECT * FROM R WHERE k = 32; 



11/19/2014 Jinze Liu @ University of Kentucky 16 

Range query 

SELECT * FROM R WHERE k > 32 AND k < 

179; 
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Look up 32… 

And follow next-leaf pointers 

3
5
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Insertion 

 Insert a record with search key value 32 
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Look up where the 

inserted key 

should go… 
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And insert it right there 
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Another insertion example 

 Insert a record with search key value 152 
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Oops, node is already full! 
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Node splitting 
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More node splitting 

 In the worst case, node splitting can “propagate” all the way up to the root of 
the tree (not illustrated here) 

 Splitting the root introduces a new root of fan-out 2 and causes the tree to 
grow “up” by one level 
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Insertion 

 B+-tree Insert 

 Find correct leaf L.  

 Put data entry onto L. 

 If L has enough space, done! 

 Else, must split  L (into L and a new node L2) 

 Distribute entries evenly, copy up middle key. 

 Insert index entry pointing to L2 into parent of L. 

 This can happen recursively 

 Tree growth: gets wider and (sometimes) one level taller at top. 
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Deletion 

 Delete a record with search key value 130 
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Look up the key 

to be deleted… 

And delete it 

Oops, node is too empty! 

If a sibling has more 

than enough keys, 

steal one! 
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Stealing from a sibling 
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Remember to fix the key 

in the least common ancestor 
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Another deletion example 

 Delete a record with search key value 179 
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Cannot steal from siblings 

Then coalesce (merge) with a sibling! 
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Coalescing 
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Remember to delete the 

appropriate key from parent 

 Deletion can “propagate” all the way up to the root of the tree (not illustrated 
here) 

 When the root becomes empty, the tree “shrinks” by one level 
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Deletion 

 B+-tree Delete 

 Start at root, find leaf L where entry belongs. 

 Remove the entry. 

 If L is at least half-full, done!  

 If L has only d-1 entries, 

 Try to redistribute, borrowing from sibling (adjacent node 

with same parent as L). 

 If re-distribution fails, merge L and sibling. 

 If merge occurred, must delete entry (pointing to L or sibling) 

from parent of L. 

 Tree shrink: gets narrower and (sometimes) one level lower at 

top. 



Example B+ Tree - Inserting 8* 

In this example, we can avoid split by re-distributing             
entries; however, this is usually not done in practice. 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Notice that root was split, leading to increase in height. 
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Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Example Tree (including 8*)  

Delete 19* and 20* ... 
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Example Tree (including 8*)  

Delete 19* and 20* ... 

 Deleting 19* is easy. 

 Deleting 20* is done with re-distribution. Notice 

how middle key is copied up. 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 
2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 
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        ... And Then Deleting 24* 

 Must merge. 

 Observe `toss’ of index 

entry (key 27 on right), and 

`pull down’ of index entry 

(below). 

30 

22* 27* 29* 33* 34* 38* 39* 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 

Root 

30 13 5 17 
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Performance analysis 

 How many I/O’s are required for each operation? 

 h, the height of the tree (more or less) 

 Plus one or two to manipulate actual records 

 Plus O(h) for reorganization (should be very rare if f is large) 

 Minus one if we cache the root in memory 

 How big is h? 

 Roughly logfan-out N, where N is the number of records 

 B+-tree properties guarantee that fan-out is least f / 2 for all non-root 

nodes  

 Fan-out is typically large (in hundreds)—many keys and pointers 

can fit into one block 

 A 4-level B+-tree is enough for typical tables 
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B+-tree in practice 

 Complex reorganization for deletion often is not 

implemented (e.g., Oracle, Informix) 

 Leave nodes less than half full and periodically reorganize 

 Most commercial DBMS use B+-tree instead of hashing-

based indexes because B+-tree handles range queries 
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The Halloween Problem 

 Story from the early days of System R… 

 UPDATE Payroll 

SET salary = salary * 1.1 

WHERE salary >= 100000; 

 There is a B+-tree index on Payroll(salary) 

 The update never stopped (why?) 

 Solutions? 

 Scan index in reverse 

 Before update, scan index to create a complete “to-do” list 

 During update, maintain a “done” list 

 Tag every row with transaction/statement id 
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B+-tree versus ISAM 

 ISAM is more static; B+-tree is more dynamic 

 ISAM is more compact (at least initially) 

 Fewer levels and I/O’s than B+-tree 

 Overtime, ISAM may not be balanced 

 Cannot provide guaranteed performance as B+-tree does 
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B+-tree versus B-tree 

 B-tree: why not store records (or record pointers) in 

non-leaf nodes? 

 These records can be accessed with fewer I/O’s 

 Problems? 

 Storing more data in a node decreases fan-out and 

increases h 

 Records in leaves require more I/O’s to access 

 Vast majority of the records live in leaves! 
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Beyond ISAM, B-, and B+-trees 

 Other tree-based indexes: R-trees and variants, GiST, 

etc.  

 Hashing-based indexes: extensible hashing, linear 

hashing, etc. 

 Text indexes: inverted-list index, suffix arrays, etc. 

 Other tricks: bitmap index, bit-sliced index, etc. 

 How about indexing subgraph search? 



11/19/2014 Jinze Liu @ University of Kentucky 37 

Summary 

 Two types of queries 

 Key-search 

 Range-query 

 B+-tree operations  

 Search 

 Insert 

 Split child 

 Delete 

 Redistribution 

 B+-tree sorting  

 Next: disk-based sorting algorithms 


