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Review 

 The unit of disk read and write is  

 Block (or called Page) 

 The disk access time is composed by 

 Seek time 

 Rotation time 

 Data transfer time 
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Review 

 A row in a table, when located on disks, is called  

 A record 

 Two types of record: 

 Fixed-length 

 Variable-length  
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Review 

 In an abstract sense, a file is  

 A set of “records” on a disk 

 In reality, a file is 

 A set of disk pages 

 Each record lives on  

 A page 

 Physical Record ID (RID) 

 A tuple of <page#, slot#> 
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Today’s Topic 

 How to locate data in a file fast? 

 Introduction to indexing 

 Tree-based indexes 

 ISAM: Indexed sequence access method 

 B+-tree 
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Basics 

 Given a value, locate the record(s) with this value 

   SELECT * FROM R WHERE A = value; 

   SELECT * FROM R, S WHERE R.A = S.B; 

 Other search criteria, e.g. 

 Range search 

   SELECT * FROM R WHERE A > value; 

 Keyword search 

database indexing Search 



Tree-Structured Indexes: Introduction 

 Tree-structured indexing techniques support both range 
selections and equality selections. 

 ISAM =Indexed Sequential Access Method  

 static structure; early index technology. 

 B+ tree:  dynamic, adjusts gracefully under inserts and 
deletes. 
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Motivation for Index 

 ``Find all students with gpa > 3.0’’ 

 If data file is sorted, do binary search 

 Cost of binary search in a database can be quite high, 

Why? 

 Simple idea:  Create an `index’ file. 

 

Can do binary search on (smaller) index file! 

Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 
Index File 

P 
0 

K 
1 P 

1 
K 2 P 

2 
K m 

P m 

index entry 
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ISAM 

 What if an index is still too big? 

 Put a another (sparse) index on top of that! 

 ISAM (Index Sequential Access Method), more or less 

100, 200, …, 901 

100, 123, …, 192 901, …, 996 … Index blocks 200, …     

100, 108, 

119, 121 

123, 129, 

… 

901, 907, 

… 

996, 997, 

… 
… … … 

Data blocks 

192, 197, 

… 

200, 202, 

… 

Example: look up 197 



11/19/2014 Jinze Liu @ University of Kentucky 10 

Updates with ISAM 

 Overflow chains and empty data blocks degrade 

performance 

 Worst case: most records go into one long chain 

Example: insert 107 

107 

 
Overflow block 

Example: delete 129 
100, 200, …, 901 

100, 123, …, 192 901, …, 996 … Index blocks 200, …     

100, 108, 

119, 121 

123, 129, 

… 

901, 907, 

… 

996, 997, 

… 
… … … 

Data blocks 

192, 197, 

… 

200, 202, 

… 
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A Note of Caution 

 ISAM is an old-fashioned idea 

 B+-trees are usually better, as we’ll see 

 But, ISAM is a good place to start to understand the 

idea of indexing 

 Upshot 

 Don’t brag about being an ISAM expert on your 

resume 

 Do understand how they work, and tradeoffs with B+-

trees 
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B+-tree 

 A hierarchy of intervals 

 Balanced (more or less): good performance guarantee 

 Disk-based: one node per block; large fan-out 
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Sample B+-tree nodes 

Max fan-out: 4 
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to keys  

100 <=k < 120 

to keys 

120 <=k < 150 

to keys 

150 <= k < 180 

to keys 

180 <= k 

Non-leaf 
1
2
0
 

1
3
0
 

to records with these k values; 

or, store records directly in leaves 

to next leaf node in sequence Leaf 

to keys 

100 · k 



11/19/2014 Jinze Liu @ University of Kentucky 14 

B+-tree balancing properties 

 Height constraint: all leaves at the same lowest level 

 Fan-out constraint: all nodes at least half full  

(except root) 

 

       Max #   Max #  Min # Min # 

     pointers keys     active pointers  keys  

Non-leaf f f – 1    

Root  f f – 1  2  1 

Leaf  f f – 1    

 2/f   12/ f

 2/f  2/f
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Lookups 

SELECT * FROM R WHERE k = 179; 
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Not found 

SELECT * FROM R WHERE k = 32; 
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Range query 

SELECT * FROM R WHERE k > 32 AND k < 

179; 
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Look up 32… 

And follow next-leaf pointers 

3
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Insertion 

 Insert a record with search key value 32 
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Look up where the 

inserted key 

should go… 
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And insert it right there 
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Another insertion example 

 Insert a record with search key value 152 
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Oops, node is already full! 



11/19/2014 Jinze Liu @ University of Kentucky 19 

Node splitting 
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More node splitting 

 In the worst case, node splitting can “propagate” all the way up to the root of 
the tree (not illustrated here) 

 Splitting the root introduces a new root of fan-out 2 and causes the tree to 
grow “up” by one level 
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Insertion 

 B+-tree Insert 

 Find correct leaf L.  

 Put data entry onto L. 

 If L has enough space, done! 

 Else, must split  L (into L and a new node L2) 

 Distribute entries evenly, copy up middle key. 

 Insert index entry pointing to L2 into parent of L. 

 This can happen recursively 

 Tree growth: gets wider and (sometimes) one level taller at top. 
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Deletion 

 Delete a record with search key value 130 
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Look up the key 

to be deleted… 

And delete it 

Oops, node is too empty! 

If a sibling has more 

than enough keys, 

steal one! 
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Stealing from a sibling 
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Remember to fix the key 

in the least common ancestor 
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Another deletion example 

 Delete a record with search key value 179 
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Max fan-out: 4 

Cannot steal from siblings 

Then coalesce (merge) with a sibling! 
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Coalescing 
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Remember to delete the 

appropriate key from parent 

 Deletion can “propagate” all the way up to the root of the tree (not illustrated 
here) 

 When the root becomes empty, the tree “shrinks” by one level 
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Deletion 

 B+-tree Delete 

 Start at root, find leaf L where entry belongs. 

 Remove the entry. 

 If L is at least half-full, done!  

 If L has only d-1 entries, 

 Try to redistribute, borrowing from sibling (adjacent node 

with same parent as L). 

 If re-distribution fails, merge L and sibling. 

 If merge occurred, must delete entry (pointing to L or sibling) 

from parent of L. 

 Tree shrink: gets narrower and (sometimes) one level lower at 

top. 



Example B+ Tree - Inserting 8* 

In this example, we can avoid split by re-distributing             
entries; however, this is usually not done in practice. 

Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Notice that root was split, leading to increase in height. 
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Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 

Example Tree (including 8*)  

Delete 19* and 20* ... 
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Example Tree (including 8*)  

Delete 19* and 20* ... 

 Deleting 19* is easy. 

 Deleting 20* is done with re-distribution. Notice 

how middle key is copied up. 

2* 3* 

Root 

17 

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

7* 5* 8* 
2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 
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        ... And Then Deleting 24* 

 Must merge. 

 Observe `toss’ of index 

entry (key 27 on right), and 

`pull down’ of index entry 

(below). 

30 

22* 27* 29* 33* 34* 38* 39* 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 

Root 

30 13 5 17 
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Performance analysis 

 How many I/O’s are required for each operation? 

 h, the height of the tree (more or less) 

 Plus one or two to manipulate actual records 

 Plus O(h) for reorganization (should be very rare if f is large) 

 Minus one if we cache the root in memory 

 How big is h? 

 Roughly logfan-out N, where N is the number of records 

 B+-tree properties guarantee that fan-out is least f / 2 for all non-root 

nodes  

 Fan-out is typically large (in hundreds)—many keys and pointers 

can fit into one block 

 A 4-level B+-tree is enough for typical tables 
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B+-tree in practice 

 Complex reorganization for deletion often is not 

implemented (e.g., Oracle, Informix) 

 Leave nodes less than half full and periodically reorganize 

 Most commercial DBMS use B+-tree instead of hashing-

based indexes because B+-tree handles range queries 
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The Halloween Problem 

 Story from the early days of System R… 

 UPDATE Payroll 

SET salary = salary * 1.1 

WHERE salary >= 100000; 

 There is a B+-tree index on Payroll(salary) 

 The update never stopped (why?) 

 Solutions? 

 Scan index in reverse 

 Before update, scan index to create a complete “to-do” list 

 During update, maintain a “done” list 

 Tag every row with transaction/statement id 
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B+-tree versus ISAM 

 ISAM is more static; B+-tree is more dynamic 

 ISAM is more compact (at least initially) 

 Fewer levels and I/O’s than B+-tree 

 Overtime, ISAM may not be balanced 

 Cannot provide guaranteed performance as B+-tree does 
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B+-tree versus B-tree 

 B-tree: why not store records (or record pointers) in 

non-leaf nodes? 

 These records can be accessed with fewer I/O’s 

 Problems? 

 Storing more data in a node decreases fan-out and 

increases h 

 Records in leaves require more I/O’s to access 

 Vast majority of the records live in leaves! 
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Beyond ISAM, B-, and B+-trees 

 Other tree-based indexes: R-trees and variants, GiST, 

etc.  

 Hashing-based indexes: extensible hashing, linear 

hashing, etc. 

 Text indexes: inverted-list index, suffix arrays, etc. 

 Other tricks: bitmap index, bit-sliced index, etc. 

 How about indexing subgraph search? 
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Summary 

 Two types of queries 

 Key-search 

 Range-query 

 B+-tree operations  

 Search 

 Insert 

 Split child 

 Delete 

 Redistribution 

 B+-tree sorting  

 Next: disk-based sorting algorithms 


