CS 405G: Introduction to
Database Systems

Instructor: Jinze Liu

Review

e The unit of disk read and write Is
Block (or called Page)

e The disk access time Is composed by
Seek time
Rotation time
Data transfer time

11/19/2014 Jinze Liu @ University of Kentucky

Review

e A row In a table, when located on disks, is called
A record

e Two types of record:
Fixed-length
Variable-length

11/19/2014 Jinze Liu @ University of Kentucky

Review

In an abstract sense, a file Is
A set of “records” on a disk
In reality, a file Is
A set of disk pages
Each record lives on
A page
Physical Record ID (RID)
A tuple of <page#, slot#>

11/19/2014 Jinze Liu @ University of Kentucky

Today’s Topic

e How to locate data In a file fast?
e Introduction to indexing

e Tree-based indexes
ISAM: Indexed sequence access method
B*-tree

11/19/2014 Jinze Liu @ University of Kentucky

Basics

e Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

e Other search criteria, e.qg.

e Range search
SELECT * FROM R WHERE A > value;

o Keyword search

|database 1ndexing | Iﬁ

11/19/2014 Jinze Liu @ University of Kentucky

Tree-Structured Indexes: Introduction

e Tree-structured indexing techniques support both range
selections and equality selections.

e ISAM =Indexed Sequential Access Method
static structure; early index technology.

e B* tree: dynamic, adjusts gracefully under inserts and
deletes.

11/19/2014 Jinze Liu @ University of Kentucky 7

Motivation for Index

e Find all students with gpa > 3.0’
o |If data file is sorted, do binary search

o Cost of binary search in a database can be quite high,
Why?

e Simple idea: Create an "index’ file.

oGexcentiy— N Index File
PO//Kl Pl K2P2 o o o \ Kum

/ |
yd i N !
Page 1 Page 2 Page 3 Page N Data File

Can do binary search on (smaller) index file!

11/19/2014 Jinze Liu @ University of Kentucky

ISAM

e What if an index is still too big?
e Put a another (sparse) index on top of that!
= ISAM (Index Sequential Access Method), more or less

Index blocks 1joo, 123, .., 1

100, 104123, 129, 192, 1914200, 203, 901, 907, 19%6, 991,
119, 12

Data blocks

11/19/2014 Jinze Liu @ University of Kentucky 9

Updates with ISAM

4, 901, 907,

990,

997

Data blocks

e Overflow chains and empty data blocks degrade
performance

e Worst case: most records go into one long chain

11/19/2014 Jinze Liu @ University of Kentucky

10

A Note of Caution

e ISAM is an old-fashioned idea

B+-trees are usually better, as we’ll see

e But, ISAM is a good place to start to understand the
Idea of indexing
e Upshot

Don’t brag about being an ISAM expert on your
resume

Do understand how they work, and tradeoffs with B*-
trees

11/19/2014 Jinze Liu @ University of Kentucky 11

B*-tree

e A hierarchy of intervals
e Balanced (more or less): good performance guarantee
e Disk-based: one node per block; large fan-out

Max fan-out: 4

Sample B*-tree nodes

to keys
100 - k

Max fan-out: 4
Non-leaf

to keys to keys to keys to keys
100 <=k <120 120 <=k< 150 150<=k<180 180<=k

O O
Leaf | & to next leaf node in sequence

| |

to records with these k values;
or, store records directly in leaves

11/19/2014 Jinze Liu @ University of Kentucky 13

B*-tree balancing properties

e Height constraint: all leaves at the same lowest level

e Fan-out constraint: all nodes at least half full
(except root)

Max # Max # Min# Min #
pointers keys active pointers keys
Non-leaf f f—1 |_f /2_| |_f /2_‘—1
Root f f—1 2 1

Leaf f f-1 /2] /2]

11/19/2014 Jinze Liu @ University of Kentucky

Lookups

SELECT * FROM R WHERE

SELECT * FROM R WHERE k = 32;

100

Sl®)
N L0

“7TQ

O
00
Not found 4
oo oH22 HeSs HS S H=e
F1 1 R | |
11/19/2014 Jinze Liu @ University of Kentucky

—I Max fan-out: 4

—41 80
. —100

5

Range query

SELECT * FROM R WHERE Kk > 32 AND k <
179;

Max fan-out: 4

And follow next-leaf pointers

11/19/2014 Jinze Liu @ University of Kentucky

16

Insertion

e Insert a record with search key value 32

Max fan-out: 4

And Insert it right there

11/19/2014 Jinze Liu @ University of Kentucky 17

Another insertion example

e Insert a record with search key value 152

8. \ Max fan-out: 4

11/19/2014 Jinze Liu @ University of Kentucky 18

11/19/2014

100
101
110

Node splitting

Max fan-out: 4

O
O

—1120
—i1 30

Jinze Liu @ University of Kentucky

19

More node splitting

S J Max fan-out: 4
@) @)
S E
S 1 O o O @) NeaNe) o O
O O N ™M LO Tolln 0 O
o o — ol o -
e In the worst Case, node s!ﬂitt!ng can “propagate” all thel waly up to thelroo of

the tree (not illustrated here)

e Splitting the root introduces a new root of fan-out 2 and causes the tree to
11/19/20gr0W “up” by onc level Jinze Liu @ University of Kentucky 20

Insertion

e B*-tree Insert
e Find correct leaf L.
e Put data entry onto L.
If L has enough space, done!
Else, must L (into L and a new node L2)
Distribute entries evenly, middle key.

Insert index entry pointing to L2 into parent of L.

e This can happen recursively
e Tree growth: gets and (sometimes)

11/19/2014 Jinze Liu @ University of Kentucky

21

Deletion

e Delete a record with search key value 130

Max fan-out: 4

If a sibling has more
than enough keys,

ook up the key steal one!

to be deleted...

And delete it
Oops, node Is too empty!

11/19/2014 Jinze Liu @ University of Kentucky 22

Stealing from a sibling

Max fan-out: 4

Remember to fix the key
IN the least common ancesto

11/19/2014 Jinze Liu @ University of Kentucky 23

Another deletion example

e Delete a record with search key value 179

Max fan-out: 4

11/19/2014 Jinze Liu @ University of Kentucky 24

Coalescing

Max fan-out: 4

o O

o O A

TTT

e Deletion can “propagate” all the way up to the root of the tree (not illustrated
here)

e When the root becomes empty, the tree “shrinks” by one level
11/19/2014 Jinze Liu @ University of Kentucky 25

B+-tree Delete

Deletion

Start at root, find leaf L where entry belongs.

Remove the entry.

If L is at least half-full, done!
If L has only d-1 entries,

Try to

, borrowing from sibling (adjacent node

with same parent as L).

If re-distribution falils, L and sibling.

If merge occurred, must delete entry (pointing to L or sibling)

from parent of L.
Tree shrink: gets

11/19/2014

and (sometimes)

Jinze Liu @ University of Kentucky

26

Example B+ Tree - Inserting 8*

Root

5 13 24 30
4 N b y ~
2% 3* St 7| 8* 14*| 16* 1979 20% 22* 24| 27%29* 33* 34*

Notice that root was split, leading to increase in height.

In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

11/19/2014 Jinze Liu @ University of Kentucky

Example Tree (including 8%*)
Delete 19* and 20* ...

5 13 24 30
N b y ~

11/19/2014 Jinze Liu @ University of Kentucky

Example Tree (including 8%*)
Delete 19* and 20* ...

Roo\

17
5 13 27 30
4 N b / ~
2% | 3* 5| 7*| 8* 14*| 16* 2274 24% 27*| 29* 33*| 34* 38*| 39*

e Deleting 19* Is easy.

e Deleting 20* iIs done with re-distribution. Notice
now middle key 1s

11/19/2014 Jinze Liu @ University of Kentucky 29

e Must merge.
e Observe toss’ of index

... And Then Deleting 24*

\

entry (key 27 on right), and | 30
“pull down’ of index entry /

(below). s T

22* | 27* | 29* 33* | 34* | 38* | 39*
RON
13 17 30
VN VR VR VR

2% | 3* 5 [7* | 8* 14* | 16* 22%| 27*| 20* 33*| 34*|38* | 39*

11/19/2014

Jinze Liu @ University of Kentucky

30

Performance analysis

e How many I/O’s are required for each operation?
h, the height of the tree (more or less)
Plus one or two to manipulate actual records
Plus O(h) for reorganization (should be very rare if f is large)
Minus one if we cache the root in memory
e How big is h?
Roughly log:,, ..« N, where N is the number of records

B*-tree properties guarantee that fan-out is least f / 2 for all non-root
nodes

Fan-out is typically large (in hundreds)—many keys and pointers
can fit into one block

A 4-level B*-tree Is enough for typical tables

11/19/2014 Jinze Liu @ University of Kentucky 31

B*-tree Iin practice

e Complex reorganization for deletion often is not
Implemented (e.g., Oracle, Informix)

Leave nodes less than half full and periodically reorganize

e Most commercial DBMS use B*-tree instead of hashing-
based indexes because B*-tree handles range queries

11/19/2014 Jinze Liu @ University of Kentucky 32

The Halloween Problem

e Story from the early days of System R...

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

There is a B*-tree index on Payroll(salary)
The update never stopped (why?)
e Solutions?
Scan index in reverse
Before update, scan index to create a complete “to-do” list
During update, maintain a “done” list
Tag every row with transaction/statement id

11/19/2014 Jinze Liu @ University of Kentucky

33

B*-tree versus ISAM

e ISAM is more static; B*-tree is more dynamic
e ISAM is more compact (at least initially)
Fewer levels and 1/0’s than B*-tree
e Overtime, ISAM may not be balanced
Cannot provide guaranteed performance as B*-tree does

11/19/2014 Jinze Liu @ University of Kentucky

34

B*-tree versus B-tree

e B-tree: why not store records (or record pointers) in
non-leaf nodes?

These records can be accessed with fewer I/0O’s

e Problems?

Storing more data in a node decreases fan-out and
Increases h

Records in leaves require more 1/0O’s to access
Vast majority of the records live in leaves!

11/19/2014 Jinze Liu @ University of Kentucky 35

Beyond ISAM, B-, and B*-trees

Other tree-based indexes: R-trees and variants, GIST,
etc.

Hashing-based indexes: extensible hashing, linear
hashing, etc.

Text indexes: inverted-list index, suffix arrays, etc.

Other tricks: bitmap index, bit-sliced index, etc.
How about indexing subgraph search?

11/19/2014 Jinze Liu @ University of Kentucky

36

Summary

e Two types of queries
Key-search
Range-query

e B*-tree operations
Search
Insert

Split child
Delete
Redistribution

e B*-tree sorting

Next: disk-based sorting algorithms

11/19/2014 Jinze Liu @ University of Kentucky

37

