
CS 405G: Introduction to

Database Systems

Instructor: Jinze Liu

11/19/2014 Jinze Liu @ University of Kentucky 2

Review

 The unit of disk read and write is

 Block (or called Page)

 The disk access time is composed by

 Seek time

 Rotation time

 Data transfer time

11/19/2014 Jinze Liu @ University of Kentucky 3

Review

 A row in a table, when located on disks, is called

 A record

 Two types of record:

 Fixed-length

 Variable-length

11/19/2014 Jinze Liu @ University of Kentucky 4

Review

 In an abstract sense, a file is

 A set of “records” on a disk

 In reality, a file is

 A set of disk pages

 Each record lives on

 A page

 Physical Record ID (RID)

 A tuple of <page#, slot#>

11/19/2014 Jinze Liu @ University of Kentucky 5

Today’s Topic

 How to locate data in a file fast?

 Introduction to indexing

 Tree-based indexes

 ISAM: Indexed sequence access method

 B+-tree

11/19/2014 Jinze Liu @ University of Kentucky 6

Basics

 Given a value, locate the record(s) with this value

 SELECT * FROM R WHERE A = value;

 SELECT * FROM R, S WHERE R.A = S.B;

 Other search criteria, e.g.

 Range search

 SELECT * FROM R WHERE A > value;

 Keyword search

database indexing Search

Tree-Structured Indexes: Introduction

 Tree-structured indexing techniques support both range
selections and equality selections.

 ISAM =Indexed Sequential Access Method

 static structure; early index technology.

 B+ tree: dynamic, adjusts gracefully under inserts and
deletes.

11/19/2014 7 Jinze Liu @ University of Kentucky

Motivation for Index

 ``Find all students with gpa > 3.0’’

 If data file is sorted, do binary search

 Cost of binary search in a database can be quite high,

Why?

 Simple idea: Create an `index’ file.

Can do binary search on (smaller) index file!

Page 1 Page 2 Page N Page 3 Data File

k2 kN k1
Index File

P
0

K
1 P

1
K 2 P

2
K m

P m

index entry

11/19/2014 8 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 9

ISAM

 What if an index is still too big?

 Put a another (sparse) index on top of that!

 ISAM (Index Sequential Access Method), more or less

100, 200, …, 901

100, 123, …, 192 901, …, 996 … Index blocks 200, …

100, 108,

119, 121

123, 129,

…

901, 907,

…

996, 997,

…
… … …

Data blocks

192, 197,

…

200, 202,

…

Example: look up 197

11/19/2014 Jinze Liu @ University of Kentucky 10

Updates with ISAM

 Overflow chains and empty data blocks degrade

performance

 Worst case: most records go into one long chain

Example: insert 107

107

Overflow block

Example: delete 129
100, 200, …, 901

100, 123, …, 192 901, …, 996 … Index blocks 200, …

100, 108,

119, 121

123, 129,

…

901, 907,

…

996, 997,

…
… … …

Data blocks

192, 197,

…

200, 202,

…

11/19/2014 Jinze Liu @ University of Kentucky 11

A Note of Caution

 ISAM is an old-fashioned idea

 B+-trees are usually better, as we’ll see

 But, ISAM is a good place to start to understand the

idea of indexing

 Upshot

 Don’t brag about being an ISAM expert on your

resume

 Do understand how they work, and tradeoffs with B+-

trees

11/19/2014 Jinze Liu @ University of Kentucky 12

B+-tree

 A hierarchy of intervals

 Balanced (more or less): good performance guarantee

 Disk-based: one node per block; large fan-out

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

11/19/2014 Jinze Liu @ University of Kentucky 13

Sample B+-tree nodes

Max fan-out: 4

1
2
0

1
5
0

1
8
0

to keys

100 <=k < 120

to keys

120 <=k < 150

to keys

150 <= k < 180

to keys

180 <= k

Non-leaf
1
2
0

1
3
0

to records with these k values;

or, store records directly in leaves

to next leaf node in sequence Leaf

to keys

100 · k

11/19/2014 Jinze Liu @ University of Kentucky 14

B+-tree balancing properties

 Height constraint: all leaves at the same lowest level

 Fan-out constraint: all nodes at least half full

(except root)

 Max # Max # Min # Min #

 pointers keys active pointers keys

Non-leaf f f – 1

Root f f – 1 2 1

Leaf f f – 1

 2/f 12/ f

 2/f 2/f

11/19/2014 Jinze Liu @ University of Kentucky 15

Lookups

SELECT * FROM R WHERE k = 179;

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
7
9

Not found

SELECT * FROM R WHERE k = 32;

11/19/2014 Jinze Liu @ University of Kentucky 16

Range query

SELECT * FROM R WHERE k > 32 AND k <

179;

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

Look up 32…

And follow next-leaf pointers

3
5

11/19/2014 Jinze Liu @ University of Kentucky 17

Insertion

 Insert a record with search key value 32

3

5

1
1

3
0

3
5

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

3
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Look up where the

inserted key

should go…

3
2

And insert it right there

11/19/2014 Jinze Liu @ University of Kentucky 18

Another insertion example

 Insert a record with search key value 152

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
5
2

Oops, node is already full!

11/19/2014 Jinze Liu @ University of Kentucky 19

Node splitting

1
2
0

1
3
0

1
5
0

1
5
2

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Yikes, this node is

also already full!

1
0
0

1
0
1

1
1
0

1
5
6

11/19/2014 Jinze Liu @ University of Kentucky 20

More node splitting

 In the worst case, node splitting can “propagate” all the way up to the root of
the tree (not illustrated here)

 Splitting the root introduces a new root of fan-out 2 and causes the tree to
grow “up” by one level

1
2
0

1
3
0

1
5
0

1
5
2

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
8
0

Max fan-out: 4

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

11/19/2014 Jinze Liu @ University of Kentucky 21

Insertion

 B+-tree Insert

 Find correct leaf L.

 Put data entry onto L.

 If L has enough space, done!

 Else, must split L (into L and a new node L2)

 Distribute entries evenly, copy up middle key.

 Insert index entry pointing to L2 into parent of L.

 This can happen recursively

 Tree growth: gets wider and (sometimes) one level taller at top.

11/19/2014 Jinze Liu @ University of Kentucky 22

Deletion

 Delete a record with search key value 130

1
0
0

1
0
1

1
1
0

1
2
0

1
3
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

Look up the key

to be deleted…

And delete it

Oops, node is too empty!

If a sibling has more

than enough keys,

steal one!

11/19/2014 Jinze Liu @ University of Kentucky 23

Stealing from a sibling

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
0

1
8
0

Max fan-out: 4

1
5
6

Remember to fix the key

in the least common ancestor

11/19/2014 Jinze Liu @ University of Kentucky 24

Another deletion example

 Delete a record with search key value 179

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
0
0

1
2
0

1
5
6

1
8
0

Max fan-out: 4

Cannot steal from siblings

Then coalesce (merge) with a sibling!

11/19/2014 Jinze Liu @ University of Kentucky 25

Coalescing

1
0
0

1
0
1

1
1
0

1
2
0

1
5
0

1
0
0

1
2
0

1
5
6

1
8
0

Max fan-out: 4

Remember to delete the

appropriate key from parent

 Deletion can “propagate” all the way up to the root of the tree (not illustrated
here)

 When the root becomes empty, the tree “shrinks” by one level
1
5
6

1
8
0

2
0
0

11/19/2014 Jinze Liu @ University of Kentucky 26

Deletion

 B+-tree Delete

 Start at root, find leaf L where entry belongs.

 Remove the entry.

 If L is at least half-full, done!

 If L has only d-1 entries,

 Try to redistribute, borrowing from sibling (adjacent node

with same parent as L).

 If re-distribution fails, merge L and sibling.

 If merge occurred, must delete entry (pointing to L or sibling)

from parent of L.

 Tree shrink: gets narrower and (sometimes) one level lower at

top.

Example B+ Tree - Inserting 8*

In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Notice that root was split, leading to increase in height.

11/19/2014 27 Jinze Liu @ University of Kentucky

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*

Example Tree (including 8*)

Delete 19* and 20* ...

11/19/2014 28 Jinze Liu @ University of Kentucky

Example Tree (including 8*)

Delete 19* and 20* ...

 Deleting 19* is easy.

 Deleting 20* is done with re-distribution. Notice

how middle key is copied up.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13 5

7* 5* 8*
2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

11/19/2014 29 Jinze Liu @ University of Kentucky

 ... And Then Deleting 24*

 Must merge.

 Observe `toss’ of index

entry (key 27 on right), and

`pull down’ of index entry

(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8*

Root

30 13 5 17

11/19/2014 30 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 31

Performance analysis

 How many I/O’s are required for each operation?

 h, the height of the tree (more or less)

 Plus one or two to manipulate actual records

 Plus O(h) for reorganization (should be very rare if f is large)

 Minus one if we cache the root in memory

 How big is h?

 Roughly logfan-out N, where N is the number of records

 B+-tree properties guarantee that fan-out is least f / 2 for all non-root

nodes

 Fan-out is typically large (in hundreds)—many keys and pointers

can fit into one block

 A 4-level B+-tree is enough for typical tables

11/19/2014 Jinze Liu @ University of Kentucky 32

B+-tree in practice

 Complex reorganization for deletion often is not

implemented (e.g., Oracle, Informix)

 Leave nodes less than half full and periodically reorganize

 Most commercial DBMS use B+-tree instead of hashing-

based indexes because B+-tree handles range queries

11/19/2014 Jinze Liu @ University of Kentucky 33

The Halloween Problem

 Story from the early days of System R…

 UPDATE Payroll

SET salary = salary * 1.1

WHERE salary >= 100000;

 There is a B+-tree index on Payroll(salary)

 The update never stopped (why?)

 Solutions?

 Scan index in reverse

 Before update, scan index to create a complete “to-do” list

 During update, maintain a “done” list

 Tag every row with transaction/statement id

11/19/2014 Jinze Liu @ University of Kentucky 34

B+-tree versus ISAM

 ISAM is more static; B+-tree is more dynamic

 ISAM is more compact (at least initially)

 Fewer levels and I/O’s than B+-tree

 Overtime, ISAM may not be balanced

 Cannot provide guaranteed performance as B+-tree does

11/19/2014 Jinze Liu @ University of Kentucky 35

B+-tree versus B-tree

 B-tree: why not store records (or record pointers) in

non-leaf nodes?

 These records can be accessed with fewer I/O’s

 Problems?

 Storing more data in a node decreases fan-out and

increases h

 Records in leaves require more I/O’s to access

 Vast majority of the records live in leaves!

11/19/2014 Jinze Liu @ University of Kentucky 36

Beyond ISAM, B-, and B+-trees

 Other tree-based indexes: R-trees and variants, GiST,

etc.

 Hashing-based indexes: extensible hashing, linear

hashing, etc.

 Text indexes: inverted-list index, suffix arrays, etc.

 Other tricks: bitmap index, bit-sliced index, etc.

 How about indexing subgraph search?

11/19/2014 Jinze Liu @ University of Kentucky 37

Summary

 Two types of queries

 Key-search

 Range-query

 B+-tree operations

 Search

 Insert

 Split child

 Delete

 Redistribution

 B+-tree sorting

 Next: disk-based sorting algorithms

