
CS 405G: Introduction to
Database Systems

Storage

11/19/2014 Jinze Liu @ University of Kentucky 2

Outline

 It’s all about disks!
 That’s why we always draw databases as
 And why the single most important metric in database

processing is the number of disk I/O’s performed
 Storing data on a disk
 Record layout
 Block layout

The Storage Hierarchy

Source: Operating Systems Concepts 5th Edition

Main memory (RAM) for
currently used data
Disk for the main database
(secondary storage).
Tapes for archiving older
versions of the data (tertiary
storage).

Smaller, Faster

Bigger, Slower

11/19/2014 3 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 4

Jim Gray’s Storage Latency Analogy:
 How Far Away is the Data?

Registers
On Chip Cache
On Board Cache

Memory

Disk

1
2

10

100

Tape /Optical
 Robot

10 9

10 6

Lexington

This Lecture Hall
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years
Andromeda

11/19/2014 Jinze Liu @ University of Kentucky 5

A typical disk

Spindle rotation

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow

11/19/2014 Jinze Liu @ University of Kentucky 6

Top view

Track
Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

Presenter
Presentation Notes
So why use a block as a unit of transfer?
Why not just bits? Write a bit at location a, another at location b, etc?
Want economy of scale.
Recall that it’s pluto. Maybe just grocery shop. Compare this with getting a book from a bookshelf in your room.
This happens throughout the memory hierarchy.
When fetching from cache, probably just one address.
When fetching from memory, what really happens is that an entire cache line is transferred.

11/19/2014 Jinze Liu @ University of Kentucky 7

Disk access time

Sum of:
 Seek time: time for disk heads to move to the correct

cylinder
 Rotational delay: time for the desired block to rotate

under the disk head
 Transfer time: time to read/write data in the block (=

time for disk to rotate over the block)

11/19/2014 Jinze Liu @ University of Kentucky 8

Random disk access

Seek time + rotational delay + transfer time
 Average seek time
 Time to skip one half of the cylinders?
 Not quite; should be time to skip a third of them (why?)

 “Typical” value: 5 ms
 Average rotational delay
 Time for a half rotation (a function of RPM)
 “Typical” value: 4.2 ms (7200 RPM)

 Typical transfer time
 .08msec per 8K block

11/19/2014 Jinze Liu @ University of Kentucky 9

Sequential Disk Access Improves Performance

Seek time + rotational delay + transfer time
 Seek time
 0 (assuming data is on the same track)

 Rotational delay
 0 (assuming data is in the next block on the track)

 Easily an order of magnitude faster than random disk
access!

11/19/2014 Jinze Liu @ University of Kentucky 10

Performance tricks
 Disk layout strategy
 Keep related things (what are they?) close together: same

sector/block ! same track ! same cylinder ! adjacent
cylinder

 Double buffering
 While processing the current block in memory, prefetch

the next block from disk (overlap I/O with processing)
 Disk scheduling algorithm
 Track buffer
 Read/write one entire track at a time

 Parallel I/O
 More disk heads working at the same time

Files

 Blocks are the interface for I/O, but…
 Higher levels of DBMS operate on records, and files of

records.
 FILE: A collection of pages, each containing a collection of

records. Must support:
 insert/delete/modify record
 fetch a particular record (specified using record id)
 scan all records (possibly with some conditions on the records

to be retrieved)

11/19/2014 11 Jinze Liu @ University of Kentucky

Unordered (Heap) Files

 Simplest file structure contains records in no particular
order.

 As file grows and shrinks, disk pages are allocated and
de-allocated.

 To support record level operations, we must:
 keep track of the pages in a file
 keep track of free space on pages
 keep track of the records on a page

 There are many alternatives for keeping track of this.
 We’ll consider 2

11/19/2014 12 Jinze Liu @ University of Kentucky

Heap File Implemented as a List

 The header page id and Heap file name must be stored
someplace.
 Database “catalog”

 Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

11/19/2014 13 Jinze Liu @ University of Kentucky

Heap File Using a Page Directory

 The entry for a page can include the number of free bytes
on the page.

 The directory is a collection of pages; linked list
implementation is just one alternative.
 Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

11/19/2014 14 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 15

Record layout

Record = row in a table
 Variable-format records
 Rare in DBMS—table schema dictates the format
 Relevant for semi-structured data such as XML

 Focus on fixed-format records
 With fixed-length fields only, or
 With possible variable-length fields

Record Formats: Fixed Length

 All field lengths and offsets are constant
 Computed from schema, stored in the system catalog

 Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

11/19/2014 16 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 17

Fixed-length fields

 Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT);

142
0 4

Bart (padded with space)
24
10 2.3

28 36

 Watch out for alignment
 May need to pad; reorder columns if that helps

 What about NULL?
 Add a bitmap at the beginning of the record

Record Formats: Variable Length

 Two alternative formats (# fields is fixed):

 Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

$ $ $ $
Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

11/19/2014 18 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 19

LOB fields

 Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

 Student records get “de-clustered”
 Bad because most queries do not involve picture

 Decomposition (automatically done by DBMS and
transparent to the user)
 Student(SID, name, age, GPA)
 StudentPicture(SID, picture)

11/19/2014 Jinze Liu @ University of Kentucky 20

Block layout

How do you organize records in a block?
 Fixed length records
 Variable length records
 NSM (N-ary Storage Model) is used in most commercial

DBMS

Page Formats: Fixed Length Records

 Record id = <page id, slot #>. In first alternative, moving
records for free space management changes rid; may not be
acceptable.

Slot 1
Slot 2

Slot N

.

N M 1 0 . . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
1 1

number
of records

number
of slots

11/19/2014 21 Jinze Liu @ University of Kentucky

11/19/2014 Jinze Liu @ University of Kentucky 22

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3

NSM

 Store records from the beginning of each block
 Use a directory at the end of each block
 To locate records and manage free space
 Necessary for variable-length records

Why store data and directory
at two different ends?
Both can grow easily

11/19/2014 Jinze Liu @ University of Kentucky 23

Options

 Reorganize after every update/delete to avoid
fragmentation (gaps between records)
 Need to rewrite half of the block on average

 What if records are fixed-length?
 Reorganize after delete
 Only need to move one record
 Need a pointer to the beginning of free space

 Do not reorganize after update
 Need a bitmap indicating which slots are in use

System Catalogs

 For each relation:
 name, file location, file structure (e.g., Heap file)
 attribute name and type, for each attribute
 index name, for each index
 integrity constraints

 For each index:
 structure (e.g., B+ tree) and search key fields

 For each view:
 view name and definition

 Plus statistics, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

11/19/2014 24 Jinze Liu @ University of Kentucky

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

11/19/2014 25 Jinze Liu @ University of Kentucky

Indexes (a sneak preview)

 A Heap file allows us to retrieve records:
 by specifying the rid, or
 by scanning all records sequentially

 Sometimes, we want to retrieve records by
specifying the values in one or more fields, e.g.,
 Find all students in the “CS” department
 Find all students with a gpa > 3

 Indexes are file structures that enable us to answer
such value-based queries efficiently.

11/19/2014 26 Jinze Liu @ University of Kentucky

Summary

 Disks provide cheap, non-volatile storage.
 Random access, but cost depends on the location of page

on disk; important to arrange data sequentially to
minimize seek and rotation delays.

11/19/2014 27 Jinze Liu @ University of Kentucky

Summary (Contd.)

 DBMS vs. OS File Support
 DBMS needs features not found in many OS’s, e.g.,

forcing a page to disk, controlling the order of page
writes to disk, files spanning disks, ability to control
pre-fetching and page replacement policy based on
predictable access patterns, etc.

 Variable length record format with field offset
directory offers support for direct access to i’th field
and null values.

11/19/2014 28 Jinze Liu @ University of Kentucky

	CS 405G: Introduction to Database Systems
	Outline
	The Storage Hierarchy
	Jim Gray’s Storage Latency Analogy: � How Far Away is the Data?
	A typical disk
	Top view
	Disk access time
	Random disk access
	Sequential Disk Access Improves Performance
	Performance tricks
	Files
	Unordered (Heap) Files
	Heap File Implemented as a List
	Heap File Using a Page Directory
	Record layout
	Record Formats: Fixed Length
	Fixed-length fields
	Record Formats: Variable Length
	LOB fields
	Block layout
	Page Formats: Fixed Length Records
	NSM
	Options
	System Catalogs
	Attr_Cat(attr_name, rel_name, type, position)
	Indexes (a sneak preview)
	Summary
	Summary (Contd.)

