
CS 405G: Introduction to
Database Systems

10/21/2013 Jinze Liu @ University of Kentucky 2

Today’s Topic

 Transaction

10/21/2013 Jinze Liu @ University of Kentucky 3

Transactions

 A program may carry out many operations on the data
retrieved from the database

 However, the DBMS is only concerned about what data
is read/written from/to the database.

 database - a fixed set of relations (A, B, C, …)
 transaction - a sequence of read and write operations

(read(A), write(B), …)
 DBMS’s abstract view of a user program

Correctness criteria: The ACID properties

 A tomicity: All actions in the Xact happen, or none happen.

 C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

 I solation: Execution of one Xact is isolated from that of other
Xacts.

 D urability: If a Xact commits, its effects persist.

10/21/2013 4Jinze Liu @ University of Kentucky

10/21/2013 Jinze Liu @ University of Kentucky 5

An Example about SQL Transaction
 Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• 1st xact transfers $100 from B’s account to A’s
• 2nd credits both accounts with 6% interest.
• Assume at first A and B each have $1000. What are the

legal outcomes of running T1 and T2???
• $1100 *1.06 = $1166

• There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together. But, the net
effect must be equivalent to these two transactions
running serially in some order.

10/21/2013 Jinze Liu @ University of Kentucky 6

Example (Contd.)
 Legal outcomes: A=1166,B=954 or A=1160,B=960
 Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 This is OK (same as T1;T2). But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• Result: A=1166, B=960; A+B = 2126, bank loses $6
• The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

10/21/2013 Jinze Liu @ University of Kentucky 7

SQL transactions
 Syntax in SQL:
BEGIN

<database operations>
COMMIT [ROLLBACK]

 A transaction is automatically started when a user executes an
SQL statement (begin is optional)

 Subsequent statements in the same session are executed as part of
this transaction
 Statements see changes made by earlier ones in the same transaction
 Statements in other concurrently running transactions do not see

these changes
 COMMIT command commits the transaction (flushing the update

to disk)
 ROLLBACK command aborts the transaction (all effects are

undone)

10/21/2013 Jinze Liu @ University of Kentucky 8

Atomicity
 Partial effects of a transaction must be undone when
 User explicitly aborts the transaction using ROLLBACK
 E.g., application asks for user confirmation in the last step

and issues COMMIT or ROLLBACK depending on the
response

 The DBMS crashes before a transaction commits
 Partial effects of a modification statement must be

undone when any constraint is violated
 However, only this statement is rolled back; the

transaction continues
 How is atomicity achieved?
 Logging (to support undo)

10/21/2013 Jinze Liu @ University of Kentucky 9

Isolation

 Transactions must appear to be executed in a serial
schedule (with no interleaving operations)

 For performance, DBMS executes transactions using a
serializable schedule
 In this schedule, only those operations that can be

interleaved are executed concurrently
 Those that can not be interleaved are in a serialized way
 The schedule guarantees to produce the same effects as a

serial schedule

10/21/2013 Jinze Liu @ University of Kentucky 10

SQL isolation levels
 Strongest isolation level: SERIALIZABLE
 Complete isolation
 Usually use as default

 Weaker isolation levels: REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED
 Increase performance by eliminating overhead and

allowing higher degrees of concurrency
 Trade-off: sometimes you get the “wrong” answer

10/21/2013 Jinze Liu @ University of Kentucky 11

READ UNCOMMITTED

 Can read “dirty” data
 A data item is dirty if it is written by an uncommitted transaction

 Problem: What if the transaction that wrote the dirty data
eventually aborts?

 Example: wrong average
 -- T1: -- T2:

UPDATE Student
SET GPA = 3.0
WHERE SID = 142; SELECT AVG(GPA)

FROM Student;
ROLLBACK;

COMMIT;

10/21/2013 Jinze Liu @ University of Kentucky 12

READ COMMITTED

 All reads see a snapshot of the database (including all committed
transactions) right before the beginning of the query
 No dirty reads, but non-repeatable reads possible
 Reading the same data item twice can produce different results

 Example: different averages
 -- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

UPDATE Student
SET GPA = 3.0
WHERE SID = 142;
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

10/21/2013 Jinze Liu @ University of Kentucky 13

REPEATABLE READ

 Reads are repeatable, but may see phantoms
 Do not allow the modification of existing values
 New rows may be inserted in the mean time

 Example: different average (still!)
 -- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

INSERT INTO Student
VALUES(789, ‘Nelson’, 10, 1.0);
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

10/21/2013 Jinze Liu @ University of Kentucky 14

SERIALIZABLE READ

 Reads see the snapshot of the database right before the
beginning of the transaction

 Example: the same average
 -- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

INSERT INTO Student
VALUES(789, ‘Nelson’, 10, 1.0);
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

10/21/2013 Jinze Liu @ University of Kentucky 15

Summary of SQL isolation levels

 Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL
isolation_level [READ ONLY|READ WRITE];
 READ UNCOMMITTED can only be READ ONLY

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms
READ UNCOMMITTED Possible Possible Possible
READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible
SERIALIZABLE Impossible Impossible Impossible

10/21/2013 Jinze Liu @ University of Kentucky 16

Summary of SQL features covered so far

 Query
 Modification
 Constraints
 Triggers
 Views
 Transaction

 Next: Database programming

