
CS 405G: Introduction to
Database Systems

Relational Algebra

Review

 Database
 Relation schemas, relation instances and relational

constraints.

 What’s next?
 Relational query language.

 Reading
 Chapter 6.1~6.5

9/22/2014 Jinze Liu @ University of Kentucky 2

Relational Query Languages

 Query languages: Allow manipulation and retrieval of
data from a database.

 Relational model supports simple, powerful QLs:
 Strong formal foundation based on logic.
 Allows for much optimization.

 Query Languages != programming languages!
 QLs not intended to be used for complex calculations

and inference (e.g. logical reasoning)
 QLs support easy, efficient access to large data sets.

9/22/2014 Jinze Liu @ University of Kentucky 3

Formal Relational Query Languages

Two mathematical Query Languages form the basis for
“real” languages (e.g. SQL), and for implementation:

Relational Algebra: More operational, very useful for
representing execution plans.

Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
procedural, declarative.)

9/22/2014 Jinze Liu @ University of Kentucky 4

 Understanding Algebra & Calculus is key to
 understanding SQL, query processing!

Relational algebra

 Core set of operators:
 Selection, projection, cross product, union, difference, and renaming

 Additional, derived operators:
 Join, natural join, intersection, etc.

 Compose operators to make complex queries

9/22/2014 Jinze Liu @ University of Kentucky 5

RelOp

RelOp

A language for querying relational databases based on operators:

Selection

 Input: a table R
 Notation: σp R
 p is called a selection condition/predicate

 Purpose: filter rows according to some criteria
 Output: same columns as R, but only rows of R that

satisfy p

9/22/2014 Jinze Liu @ University of Kentucky 6

Selection example

 Students with GPA higher than 3.0
 σGPA > 3.0 Student

9/22/2014 Jinze Liu @ University of Kentucky 7

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6
1204 Susan Wong 22 3.4
1306 Kevin Kim 21 2.9

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6
1204 Susan Wong 22 3.4
1306 Kevin Kim 21 2.9

σGPA > 3.0

More on selection

 Selection predicate in general can include any column of
R, constants, comparisons (=, ·, etc.), and Boolean
connectives (∧: and, ∨: or, and :: not)
 Example: straight A students under 18 or over 21
 σGPA = 4.0 ∧ (age < 18 ∨ age > 21) Student

 But you must be able to evaluate the predicate over a
single row of the input table
 Example: student with the highest GPA
 σGPA ¸ all GPA in Student table Student

9/22/2014 Jinze Liu @ University of Kentucky 8

Projection

 Input: a table R
 Notation: πL R
 L is a list of columns in R

 Purpose: select columns to output
 Output: same rows, but only the columns in L
 Order of the rows is preserved
 Number of rows may be less (depends on where we have

duplicates or not)

9/22/2014 Jinze Liu @ University of Kentucky 9

Projection example

 ID’s and names of all students
 πSID, name Student

9/22/2014 Jinze Liu @ University of Kentucky 10

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6
1204 Susan Wong 22 3.4
1306 Kevin Kim 21 2.9

πSID, name

sid name
1234 John Smith
1123 Mary Carter
1011 Bob Lee
1204 Susan Wong
1306 Kevin Kim

More on projection

 Duplicate output rows are removed (by definition)
 Example: student ages
 π age Student

9/22/2014 Jinze Liu @ University of Kentucky 11

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6
1204 Susan Wong 22 3.4
1306 Kevin Kim 21 2.9

π age

age
21
22
22
22
21

Cross product

 Input: two tables R and S
 Notation: R X S
 Purpose: pairs rows from two tables
 Output: for each row r in R and each row s in S, output a

row rs (concatenation of r and s)

9/22/2014 Jinze Liu @ University of Kentucky 12

Cross product example

 Student X Enroll

9/22/2014 Jinze Liu @ University of Kentucky 13

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6

sid cid grade
1234 647 A
1123 108 A

sid name age gpa sid cid grade
1234 John Smith 21 3.5 1234 647 A
1123 Mary Carter 22 3.8 1234 647 A
1011 Bob Lee 22 2.6 1234 647 A
1234 John Smith 21 3.5 1123 108 A
1123 Mary Carter 22 3.8 1123 108 A
1011 Bob Lee 22 2.6 1123 108 A

×

A note on column ordering

 The ordering of columns in a table is considered
unimportant (as is the ordering of rows)

9/22/2014 Jinze Liu @ University of Kentucky 14

 That means cross product is commutative, i.e.,
R X S = S X R for any R and S

=
sid name age gpa

1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6

sid name gpa age
1234 John Smith 3.5 21
1123 Mary Carter 3.8 22
1011 Bob Lee 2.6 22

Derived operator: join

 Input: two tables R and S
 Notation: R p S
 p is called a join condition/predicate

 Purpose: relate rows from two tables according to some
criteria

 Output: for each row r in R and each row s in S, output a
row rs if r and s satisfy p

9/22/2014 Jinze Liu @ University of Kentucky 15

 Shorthand for σp (R X S)

Join example
 Info about students, plus CID’s of their courses
 Student Student.SID = Enroll.SID Enroll

9/22/2014 Jinze Liu @ University of Kentucky 16

Use table_name. column_name syntax
to disambiguate
identically named
columns from
different input
tables

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6

sid cid grade
1234 647 A
1123 108 A

sid name age gpa sid cid grade
1234 John Smith 21 3.5 1234 647 A
1123 Mary Carter 22 3.8 1234 647 A
1011 Bob Lee 22 2.6 1234 647 A
1234 John Smith 21 3.5 1123 108 A
1123 Mary Carter 22 3.8 1123 108 A
1011 Bob Lee 22 2.6 1123 108 A

Student.SID =

Enroll.SID

Derived operator: natural join

 Input: two tables R and S
 Notation: R∗ S
 Purpose: relate rows from two tables, and
 Enforce equality on all common attributes
 Eliminate one copy of common attributes

9/22/2014 Jinze Liu @ University of Kentucky 17

 Shorthand for πL (R p S), where
 p equates all attributes common to R and S
 L is the union of all attributes from R and S, with duplicate

attributes removed

Natural join example

 Student ∗ Enroll = πL (Student p Enroll)
 = πSID, name, age, GPA, CID (Student !Student.SID = Enroll.SID Enroll)

9/22/2014 Jinze Liu @ University of Kentucky 18

sid name age gpa
1234 John Smith 21 3.5
1123 Mary Carter 22 3.8
1011 Bob Lee 22 2.6

sid cid grade
1234 647 A
1123 108 A

sid name age gpa sid cid grade
1234 John Smith 21 3.5 1234 647 A
1123 Mary Carter 22 3.8 1234 647 A
1011 Bob Lee 22 2.6 1234 647 A
1234 John Smith 21 3.5 1123 108 A
1123 Mary Carter 22 3.8 1123 108 A
1011 Bob Lee 22 2.6 1123 108 A

∗

Union

 Input: two tables R and S
 Notation: R S
 R and S must have identical schema

 Output:
 Has the same schema as R and S
 Contains all rows in R and all rows in S, with duplicate

rows eliminated

9/22/2014 Jinze Liu @ University of Kentucky 19

∪

Difference

 Input: two tables R and S
 Notation: R - S
 R and S must have identical schema

 Output:
 Has the same schema as R and S
 Contains all rows in R that are not found in S

9/22/2014 Jinze Liu @ University of Kentucky 20

Derived operator: intersection

 Input: two tables R and S
 Notation: R \ S
 R and S must have identical schema

 Output:
 Has the same schema as R and S
 Contains all rows that are in both R and S

9/22/2014 Jinze Liu @ University of Kentucky 21

 Shorthand for R - (R - S)
 Also equivalent to S - (S - R)
 And to R ∗ S

Renaming

 Input: a table R
 Notation: ρS R, ρ(A1, A2, …) R or ρS(A1, A2, …) R
 Purpose: rename a table and/or its columns
 Output: a renamed table with the same rows as R
 Used to
 Avoid confusion caused by identical column names
 Create identical columns names for natural joins

9/22/2014 Jinze Liu @ University of Kentucky 22

Renaming Example

 ρEnroll1(SID1, CID1,Grade1) Enroll

9/22/2014 Jinze Liu @ University of Kentucky 23

sid cid grade
1234 647 A
1123 108 A

sid1 cid1 grade1
1234 647 A
1123 108 A

ρEnroll1(SID1,
CID1,Grade1)

Review: Summary of core operators

 Selection:
 Projection:
 Cross product:
 Union:
 Difference:
 Renaming:
 Does not really add

“processing” power

9/22/2014 Jinze Liu @ University of Kentucky 24

σp R
πL R
R X S
R S
R - S
ρ S(A1, A2, …) R

∪

Review Summary of derived operators

 Join:
 Natural join:
 Intersection:

9/22/2014 Jinze Liu @ University of Kentucky 25

R p S
R ∗ S
R S

 Many more
 Outer join, Division,
 Semijoin, anti-semijoin, …

∩

9/22/2014 Jinze Liu @ University of Kentucky 26

Using Join
 Which classes is Lisa taking?
 Student(sid: string, name: string, gpa: float)
 Course(cid: string, department: string)
 Enrolled(sid: string, cid: string, grade: character)

 An Answer:
 Student_Lisa ← σname = “Lisa”Student
 Lisa_Enrolled ← Student_Lisa ∗Enrolled
 Lisa’s classes ← πCID Lisa_Enrolled

 Or:
 Student_Enrolled ← Student ∗Enrolled
 Lisa_Enrolled ← σname = “Lisa” Student_Enrolled
 Lisa’s classes ← πCID Lisa_Enrolled

9/22/2014 Jinze Liu @ University of Kentucky 27

Join Example

sid name age gpa
1234 John 21 3.5
1123 Mary 22 3.8
1012 Lisa 22 2.6

sid name age gpa

1012 Lisa 22 2.6

sid cid grade
1123 108 A
1012 647 A
1012 108 B

sid name age gpa cid grade
1012 Lisa 22 2.6 647 A
1012 Lisa 22 2.6 108 B

σname = “Lisa”

∗

πcid

cid
647
108

9/22/2014 Jinze Liu @ University of Kentucky 28

Lisa’s Class

 π CID((σname = “Lisa”Student) ∗Enrolled)

Enroll
∗

πCID Lisa’s classes

Student
σname = “Lisa”

Who’s Lisa?

9/22/2014 Jinze Liu @ University of Kentucky 29

Students in Lisa’s Classes
 SID of Students in Lisa’s classes
 Student_Lisa ← σname = “Lisa”Student
 Lisa_Enrolled ← Student_Lisa ∗Enrolled
 Lisa’s classes ← πCID Lisa_Enrolled
 Enrollment in Lisa’s classes ← Lisa’s classes ∗Enrolled
 Students in Lisa’s class ← πSID Enrollment in Lisa’s classes
 Students in

Lisa’s classes

Enroll
∗

πSID

Enroll
∗

πCID Lisa’s classes

Student
σname = “Lisa”

Who’s Lisa?

9/22/2014 Jinze Liu @ University of Kentucky 30

Tips in Relational Algebra

 Use temporary variables
 Use foreign keys to join tables

9/22/2014 Jinze Liu @ University of Kentucky 31

An exercise

 Names of students in Lisa’s classes

Students in
Lisa’s classes Student

∗

πname Their names

Enroll
∗

πSID

Enroll
∗

πCID Lisa’s classes

Student
σname = “Lisa”

Who’s Lisa?

9/22/2014 Jinze Liu @ University of Kentucky 32

Set Minus Operation

 CID’s of the courses that Lisa is NOT taking

CID’s of the courses
that Lisa IS taking

All CID’s
-

πCID

Course

Enroll

Student

∗

σname = “Lisa”

πCID

9/22/2014 Jinze Liu @ University of Kentucky 33

Renaming Operation

 ρEnrolled1(SID1, CID1,Grade1) Enrolled

sid cid grade
1234 647 A
1123 108 A

sid1 cid1 grade1
1234 647 A
1123 108 A

ρEnroll1(SID1,
CID1,Grade1)

9/22/2014 Jinze Liu @ University of Kentucky 34

Example

 We have the following relational schemas
 Student(sid: string, name: string, gpa: float)
 Course(cid: string, department: string)
 Enrolled(sid: string, cid: string, grade: character)

 SID’s of students who take at least two courses
Enrolled Enrolled
πSID (Enrolled Enrolled.SID = Enrolled.SID & Enrolled.CID ≠ Enrolled.CID Enrolled)

9/22/2014 Jinze Liu @ University of Kentucky 35

Example (cont.)
ρEnroll1(SID1, CID1,Grade1) Enrolled
ρEnroll2(SID2, CID2,Grade2) Enrolled
πSID (Enroll1 SID1 = SID2 & CID1 ≠ CID2Enroll2)

ρEnroll1(SID1, CID1,Grade1) ρEnroll2(SID2, CID2, Grade2)

Enroll Enroll

SID1 = SID2 & CID1 ≠ CID2

π
SID1

Expression tree syntax:

How does it work?

9/22/2014 Jinze Liu @ University of Kentucky 36

sid cid grade
1123 108 A
1012 647 A
1012 108 B

sid2 cid2 grade2
1123 108 A
1012 647 A
1012 108 B

Enroll1 SID1 = SID2 Enroll2

sid cid grade sid2 cid2 grade2
1123 108 A 1123 108 A
1012 647 A 1012 647 A
1012 647 A 1012 108 B
1012 108 B 1012 647 A
1012 108 B 1012 108 B

9/22/2014 Jinze Liu @ University of Kentucky 37

sid cid grade
1123 108 A
1012 647 A
1012 108 B

sid2 cid2 grade2
1123 108 A
1012 647 A
1012 108 B

Enroll1 SID1 = SID2 & CID1 ≠ CID2Enroll2

sid cid grade sid2 cid2 grade2
1123 108 A 1123 108 A
1012 647 A 1012 647 A
1012 647 A 1012 108 B
1012 108 B 1012 647 A
1012 108 B 1012 108 B

9/22/2014 Jinze Liu @ University of Kentucky 38

A trickier exercise

 Who has the highest GPA?
 Who has a GPA?
 Who does NOT have the highest GPA?
 Whose GPA is lower than somebody else’s?

πSID

Student

-

Student Student

ρStudent1 ρStudent2

 Student1.GPA < Student2.GPA

πStudent1.SID

A deeper question:
When (and why) is “-” needed?

9/22/2014 Jinze Liu @ University of Kentucky 39

Tips in Relational Algebra

 A comparison is to identify a relationship

9/22/2014 Jinze Liu @ University of Kentucky

Review: Summary of core operators

 Selection:
 Projection:
 Cross product:
 Union:
 Difference:
 Renaming:
 Does not really add

“processing” power

σp R
πL R
R X S
R S
R - S
ρ S(A1, A2, …) R

∪

9/22/2014 Jinze Liu @ University of Kentucky

Review: Summary of derived operators

 Join:
 Natural join:
 Intersection:

R p S
R ∗ S
R S

∩

9/22/2014 Jinze Liu @ University of Kentucky

Review

 Relational algebra
 Use temporary variable
 Use foreign key to join relations
 A comparison is to identify a relationship

Exercises of R. A.

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

bid bname color
101 Interlake Blue
102 Interlake Red
103 Clipper Green
104 Marine Red

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailors Boats

Jinze Liu @ University of Kentucky

Problem 1 Find names of sailors who’ve
reserved boat #103

 Solution:

)*)Re((103 Sailorsservesbidsname =
σπ

Sailors
∗

πsname Who reserved boat
#103?

Reserves σbid = “103”

Boat #103

Jinze Liu @ University of Kentucky

 Information about boat color only available in Boats; so
need an extra join:

Problem 2: Find names of sailors who’ve
reserved a red boat

Names of sailors who
 reserved red boat

Sailors
∗

πsname

Reserve
∗

πSID Who reserved red
boats?

Boat
σcolor = “red”

Red boats

Jinze Liu @ University of Kentucky

Problem 3: Find names of sailors who’ve
reserved a red boat or a green boat

 Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

Names of sailors who
 reserved red boat

Sailors
∗

πsname

Reserve
∗

πSID Who reserved red
boats?

Boat
σcolor = “red” ∨
 color = “green”

Red boats

Jinze Liu @ University of Kentucky

Problem 4: Find names of sailors who’ve
reserved only one boat

Jinze Liu @ University of Kentucky

9/22/2014 Jinze Liu @ University of Kentucky 48

Monotone operators

 If some old output rows may need to be removed
 Then the operator is non-monotone

 Otherwise the operator is monotone
 That is, old output rows always remain “correct” when

more rows are added to the input
 Formally, for a monotone operator op:

R µ R’ implies op(R) µ op(R’)

RelOp
Add more rows

to the input...

What happens
to the output?

9/22/2014 Jinze Liu @ University of Kentucky 49

Why is “-” needed for highest GPA?

 Composition of monotone operators produces a
monotone query
 Old output rows remain “correct” when more rows are

added to the input
 Highest-GPA query is non-monotone
 Current highest GPA is 4.1
 Add another GPA 4.2
 Old answer is invalidated

 So it must use difference!

9/22/2014 Jinze Liu @ University of Kentucky 50

Classification of relational operators
 Selection: σp R
 Projection: πL R
 Cross product: R X S
 Join: R p S
 Natural join: R ∗ S
 Union: R U S
 Difference: R - S
 Intersection: R ∩ S

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. R; non-monotone w.r.t S

Monotone

9/22/2014 Jinze Liu @ University of Kentucky 51

Why do we need core operator X?

 Cross product
 The only operator that adds columns

 Difference
 The only non-monotone operator

 Union
 The only operator that allows you to add rows?

 Selection? Projection?

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a
single value as a result.

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

 Aggregate operation in relational algebra
 G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)
 E is any relational-algebra expression
 G1, G2 …, Gn is a list of attributes on which to group (can be

empty)
 Each Fi is an aggregate function
 Each Ai is an attribute name

Aggregate Operation – Example

 Relation
r:

A B

α
α
β
β

α
β
β
β

C

7
7
3

10

g sum(c) (r)
sum-C

27

Aggregate Operation – Example

 Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700

Null Values

 It is possible for tuples to have a null value, denoted by
null, for some of their attributes

 null signifies an unknown value or that a value does not
exist.

 The result of any arithmetic expression involving null is
null.

 Aggregate functions simply ignore null values
 For duplicate elimination and grouping, null is treated like

any other value, and two nulls are assumed to be the same

Null Values

 Comparisons with null values return the special truth value
unknown
 If false was used instead of unknown, then not (A < 5)

 would not be equivalent to A >= 5
 Three-valued logic using the truth value unknown:
 OR: (unknown or true) = true,

 (unknown or false) = unknown
 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown
 Result of select predicate is treated as false if it evaluates

to unknown

9/22/2014 Jinze Liu @ University of Kentucky 57

Additional Operators

 Outer join
 Division

9/22/2014 Jinze Liu @ University of Kentucky 58

(Left) Outer Join

 Input: two tables R and S
 Notation: R P S
 Purpose: pairs rows from two tables
 Output: for each row r in R and each row s in S,
 if p satisfies, output a row rs (concatenation of r and s)
 Otherwise, output a row r with NULLs

 Right outer join and full outer join are defined similarly

9/22/2014 Jinze Liu @ University of Kentucky 59

Left Outer Join Example

 Employee Eid = Mid Department
Eid Name

1234 John Smith
1123 Mary Carter
1011 Bob Lee

Did Mid Dname
4 1234 Research
5 1123 Finance

Eid Name Did Mid Dname
1234 John Smith 4 1234 Research
1123 Mary Carter 5 1123 Finance
1011 Bob Lee NULL NULL NULL

 Eid = Mid

9/22/2014 Jinze Liu @ University of Kentucky 60

Division Operator

 Input: two tables R and S
 Notation: R ÷ S
 Purpose: Find the subset of items in one set R that are

related to all items in another set

Division Operator

9/22/2014 Jinze Liu @ University of Kentucky 61

 Find professors who have taught courses in all
departments
 Why does this involve division?

ProfId DeptId DeptId
All department Ids Contains row

<p,d> if professor
p has taught a
course in
department d

Modification of the Database

 The content of the database may be modified
using the following operations:
 Deletion
 Insertion
 Updating

 All these operations are expressed using the
assignment operator.

Deletion
 A delete request is expressed similarly to a query, except

instead of displaying tuples to the user, the selected tuples
are removed from the database.

 Can delete only whole tuples; cannot delete values on only
particular attributes

 A deletion is expressed in relational algebra by:
 r ← r – E
 where r is a relation and E is a relational algebra query.

r1 ← σ branch_city = “Needham” (account branch)

r2 ← ∏branch_name, account_number, balance (r1)

r3 ← ∏ customer_name, account_number (r2 depositor)

account ← account – r2
depositor ← depositor – r3

Deletion Examples

 Delete all account records in the Perryridge branch.

 Delete all accounts at branches located in Needham.

• Delete all loan records with amount in the range of 0 to 50
loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)

account ← account – σ branch_name = “Perryridge” (account)

Insertion
 To insert data into a relation, we either:
 specify a tuple to be inserted
 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:
 r ← r ∪ E
 where r is a relation and E is a relational algebra

expression.
 The insertion of a single tuple is expressed by letting E be

a constant relation containing one tuple.

Insertion Examples

 Insert information in the database specifying that Smith
has $1200 in account A-973 at the Perryridge branch.

 Provide as a gift for all loan customers in the Perryridge
 branch, a $200 savings account. Let the loan number serve
 as the account number for the new savings account.

account ← account ∪ {(“Perryridge”, A-973, 1200)}
depositor ← depositor ∪ {(“Smith”, A-973)}

r1 ← (σbranch_name = “Perryridge” (borrower loan))
account ← account ∪ ∏branch_name, loan_number,200 (r1)
depositor ← depositor ∪ ∏customer_name, loan_number (r1)

Updating

 A mechanism to change a value in a tuple without changing
all values in the tuple

 Use the generalized projection operator to do this task

 Each Fi is either
 the i th attribute of r, if the ith attribute is not updated, or,
 if the attribute is to be updated Fi is an expression,

involving only constants and the attributes of r, which
gives the new value for the attribute

)(,,,, 21
rr

lFFF ∏←

Update Examples

 Make interest payments by increasing all balances by 5 percent.

 Pay all accounts with balances over $10,000 6 percent
interest and pay all others 5 percent

 account ← ∏ account_number, branch_name, balance * 1.06 (σ BAL > 10000 (account))
 ∪ ∏ account_number, branch_name, balance * 1.05 (σBAL ≤ 10000 (account))

account ← ∏ account_number, branch_name, balance * 1.05 (account)

What is “algebra”

 Mathematical model consisting of:
 Operands --- Variables or values;
 Operators --- Symbols denoting procedures that

construct new values from a given values

 Relational Algebra is algebra whose operands are
relations and operators are designed to do the most
commons things that we need to do with relations

9/22/2014 Jinze Liu @ University of Kentucky 71

Why is r.a. a good query language?

 Simple
 A small set of core operators who semantics are easy to

grasp
 Declarative?
 Yes, compared with older languages like CODASYL
 Though operators do look somewhat “procedural”

 Complete?
 With respect to what?

9/22/2014 Jinze Liu @ University of Kentucky 72

Review

 Expression tree
 Tips in writing R.A.
 Use temporary variables
 Use foreign keys to join tables
 A comparison is to identify a relationship
 Use set minus in non-monotonic results

	CS 405G: Introduction to Database Systems
	Review
	Relational Query Languages
	Formal Relational Query Languages
	Relational algebra
	Selection
	Selection example
	More on selection
	Projection
	Projection example
	More on projection
	Cross product
	Cross product example
	A note on column ordering
	Derived operator: join
	Join example
	Derived operator: natural join
	Natural join example
	Union
	Difference
	Derived operator: intersection
	Renaming
	Renaming Example
	Review: Summary of core operators
	Review Summary of derived operators
	Using Join
	Join Example
	Lisa’s Class
	Students in Lisa’s Classes
	Tips in Relational Algebra
	An exercise
	Set Minus Operation
	Renaming Operation
	Example
	Example (cont.)
	How does it work?
	Slide Number 37
	A trickier exercise
	Tips in Relational Algebra
	Review: Summary of core operators
	Review: Summary of derived operators
	Review
	Exercises of R. A.
	Problem 1 Find names of sailors who’ve reserved boat #103�
	Slide Number 45
	Problem 3: Find names of sailors who’ve reserved a red boat or a green boat
	Slide Number 47
	Monotone operators
	Why is “-” needed for highest GPA?
	Classification of relational operators
	Why do we need core operator X?
	Aggregate Functions and Operations
	Aggregate Operation – Example
	Aggregate Operation – Example
	Null Values
	Null Values
	Additional Operators
	(Left) Outer Join
	Left Outer Join Example
	Division Operator
	Division Operator
	Modification of the Database
	Deletion
	Deletion Examples
	Insertion
	Insertion Examples
	Updating
	Update Examples
	What is “algebra”
	Why is r.a. a good query language?
	Review

