
A Framework for Ontology-Driven Subspace Clustering

Jinze Liu, Wei Wang
Department of Computer Science,

University of North Carolina at Chapel Hill
Chapel Hill,NC 27599, USA

{liuj, weiwang}@cs.unc.edu

Jiong Yang
Department of Computer Science,

University of Illinois
Urbana-Champaign, IL 61801, USA

jioyang@cs.uiuc.edu

ABSTRACT
Traditional clustering is a descriptive task that seeks to identify ho-
mogeneous groups of objects based on the values of their attributes.
While domain knowledge is always the best way to justify cluster-
ing, few clustering algorithms have ever take domain knowledge
into consideration. In this paper, the domain knowledge is rep-
resented by hierarchical ontology. We develop a framework by
directly incorporating domain knowledge into clustering process,
yielding a set of clusters with strong ontology implication. Dur-
ing the clustering process, ontology information is utilized to ef-
ficiently prune the exponential search space of the subspace clus-
tering algorithms. Meanwhile, the algorithm generates automati-
cal interpretation of the clustering result by mapping the natural
hierarchical organized subspace clusters with significant categori-
cal enrichment onto the ontology hierarchy. Our experiments on a
set of gene expression data using gene ontology demonstrate that
our pruning technique driven by ontology significantly improve
the clustering performance with minimal degradation of the clus-
ter quality. Meanwhile, many hierarchical organizations of gene
clusters corresponding to a sub-hierarchies in gene ontology were
also successfully captured.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: Data Mining H.2.8 [Database Applications]: Data Mining.

General Terms: Algorithms, Performance, Design.

Keywords: Subspace clustering, Ontology, Tendency Preserving.

1. INTRODUCTION
Clustering techniques have been studied extensively in statistics,

pattern recognition, and machine learning. Clustering in high di-
mensional space is often problematic as theoretical results [5] ques-
tioned the meaning of closest matching in high dimensional spaces,
which is known as the curse of dimensionality. Recent research
work [16, 1, 2, 3, 6, 11] has focused onsubspace clustering, dis-
covering clusters embedded in the subspaces of a high dimensional
data set.

Subspace clustering can be classified into two categories: partition-
based algorithms and exhaustive enumeration algorithms, The PRO-
CLUS [1] and the ORCLUS [2] algorithms partition the database
into a given number of projected clusters based on representative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

clusters centering in subspaces. The information-theoretic co-clust-
ering [8] approach simultaneously clusters the rows and columns to
maximize their mutual information. A common feature of partition-
based algorithm is that one object can appear in one and only one
cluster. The other branch of subspace clustering algorithms exhaus-
tively go through all subspaces potentially containing clusters and
cluster in each subspace in a bottom-up fashion [3, 16, 12]. Com-
pared with partition-based algorithms, one drawback of exhaustive
subspace clustering is that its complexity is exponentially asymp-
totic to the dimensionality of the data space. In addition, it can gen-
erate a huge set of overlapping clusters due to the exponential num-
ber of unique subspaces. However, besides its capability of captur-
ing all potential subspace clusters, the applicability of exhaustive
approach to many areas can never be replaced by partition-based al-
gorithm. The models of partition-based algorithms usually assume
that one object only belongs to one cluster, which do not cater to the
needs in many real-life applications. For example, a gene often par-
ticipates in more than one gene activity and is often annotated with
multiple function categories. Hence, the question with exhaustive
subspace clustering algorithms is how to improve the scalability of
the exhaustive subspace clustering algorithms while reducing the
clusters into a small but relevant set.

Clustering analysis is purely syntactical in the sense that it does
not take advantage of the existing knowledge in the learning pro-
cess. Eventually, the most challenging problem is how to approach
the matters ofinterpretability, i.e. why the objects in a cluster
should be clustered together. In many applications, people may
have significant amount of knowledge on the data set, which are
usually utilized to measure the significance of a cluster. Tradition-
ally, this knowledge is only used during the postprocessing step for
validation of the clustering results. The following are some exam-
ples.

• Gene Expression Profiles. The gene expression profile is
represented as a matrix where each row is a gene and each
column is a condition while the corresponding entry records
the expression level of the given gene under the given con-
dition. A large number of gene expression profile analysis
tools have been developed [16, 12]. However, all these work
ignore one fact that there exists extensive amount knowledge
of the genes. For instance, gene ontology (GO) [10] has been
developed to categorize the relationship among genes. The
GO can be used to identify biologically meaningful clusters.

• Customer Preference Profiles. In a user preference data set,
each user (customer) may rank a set of goods. In reality, var-
ious goods are not independent of each other. For instance,
VCR, DVD players, and VCD players are very similar while
they are quite different from clothing and sports equipments.
This type of knowledge could be utilized for analyzing the
customer preferences.

In this paper, we assume that the domain knowledge is captured
in the ontology. The ontology is flexible yet powerful to capture
the various degrees of relationship among objects (or attributes).
In addition, it is used in many real applications. For example, in
the bioinformatics community, the GO Consortium was formed to
converge the efforts to make the controlled vocabulary of various
genomic databases about diverse species in such a way that it can
show the essential features shared by all the organisms [10].

We propose a hierarchical framework to directly incorporate the
ontology knowledge into subspace clustering process. Our partic-
ular interest lies in searching subspace clusters that can be well
explained by its ontology categories. However, is there a natural
correspondence between the hierarchy of subspace clusters and the
hierarchy of ontology? To answer this question, we give the fol-
lowing example.

EXAMPLE 1.1. Table 1 presents a subset of zoo data in UCI
KDD repository.

animals head breathsmilk legs size meat
squirrel 1 1 1 4 0 1
puma 1 1 1 4 1 0
dove 1 1 0 2 0 1
flamingo 1 1 0 2 1 1
perch 1 0 0 0 0 1
shark 1 0 1 0 1 0

Table 1: A database for a subset of zoo animals

Animals

{squirrel, puma, dove, eagle, perch, shark}
[head]=[1]

Terrestrial

{squirrel, puma, dove, eagle}
[head, breaths]

=[1, 1]

Aquatic

{perch, shark}
[head, breaths, legs]

=[1, 1, 0]

Cat Bird

{squirrel, puma}
[head, breaths, milk, legs]

=[1, 1, 1, 4]

{dove, eagle}
[head, breaths, milk, legs]

=[1, 1, 0, 2]

Figure 1: An animal ontology and subspace clusters corre-
sponding to each category

A possible ontology for this small database is shown in Figure
1. Based on the ontology and the number of attributes shared by
the animals at each ontology level, we observe that the higher level
the category is in the hierarchy, the less attributes the objects in that
category may share. For example, in each of ”cat” and ”bird” cat-
egories, the set of attributes{head, breaths, legs, milk} have the
same values among all the animals belonging to its category respec-
tively, while all the animals in ”terrestrial” category which includes
both ”cat” and ”bird” share less attributes, i.e,{head, breaths}.
The ontology can not only be used to guide the clustering process,
but also can be used to validate the clustering results. If a cluster
contains terms very far apart on the ontology hierarchy, then the
cluster may not be very meaningful in that domain. Based on the
above example, it is intuitive to see that Given an ontology hierar-
chy, the objects in the higher level of the category might share less
attribute sets than the objects in the lower level of the hierarchy,
which is a natural correspondence of the arrangement of subspace
clusters along the subspace hierarchy.

Based on the above observation, given a database with a set of
objects featuring a set of attributes, it will be interesting to find out
which subset of objects can be clustered together over which subset
attributes that can be classified into the same category located in
the ontology hierarchy. We also want to find out for each category,
which subset of attributes might contribute to the split of the object
sets into more detailed classification categories.

We create a general framework for ontology-driven subspace
clustering. This framework can be most beneficial for the hierar-
chically organized subspace clustering algorithm and ontology hi-
erarchy, i.e., it is independent of the clustering algorithms and on-
tology application domain. To demonstrate the usefulness of this
framework, we choose TP-cluster algorithm [12] and the gene on-
tology as two representatives of exhaustive subspace clustering and
ontology respectively. Both of them have been proven useful in
clustering gene expression profiles and gene function annotation.

Contribution
• We formally define an ontology hierarchy. Based on this, we

use a substructure of the ontology hierarchy to interpret the
categorical meaning of a cluster.

• We build a framework to incorporate domain knowledge (rep-
resented as ontology) into subspace clustering. This novel
clustering algorithm automatically generates meaningful clus-
ters (with respect to the ontology) while improving the per-
formance.

• We design a new model to assess the objects’ distribution
of each ontology category in a cluster. Based on this, we
developed a ontology-based pruning technique to minimize
the redundancy in the subspace clusters.

• Our experiment results demonstrate that the ontology paths
are well corresponded to certain local structure of hierarchi-
cally organized subspace clusters. Meanwhile, the perfor-
mance of ontology-driven subspace clustering algorithm has
great improvement with minimum loss of clustering quality.

The remainder of the paper is organized as follows. Section 2 de-
fines the model of Ontology and Tendency Preserving cluster. Sec-
tion 3 presents the ontology-driven subspace clustering algorithm
in detail. An extensive performance study on Microarray data is
reported in Section 4. Section 5 concludes the paper and discusses
some future work.

2. MODEL
2.1 Ontology Framework

We start with the formal definition of the ontology.

DEFINITION 2.1. An ontology is a sign systemO:=(L,H,R),
which consists of

• A lexicon: The lexiconL contains a set of natural language
terms.

• A hierarchyH: Terms inL are taxonomically related by the
directed , acyclic, transitive, reflexive relationH. (H ⊂ L×L);

A top termR ∈ L. For all l ∈ L, it holds:H(l,R).

The ontology essentially defines a hierarchy where each node
corresponds to alexicon or a categorical term. Each categorical
term contains a set of objects and the set of objects in a descen-
dent term is always a subset of the objects in its ancestor category.
Figure 1 presents an example of animal ontology.

a b c

ab ac ba bc cb ca

abc acb bac bca cba cab

 -1

Cell Growth
log(P-value)=-7

Cell Expansion
log(P-value)=-3

Regulation of
Cell Growth
log(P-value)=-3

Cell Communication
log(P-value)=-2

Cellular Process
log(P-value)=-3

Cellular Process
log(P-value)=-6

Cell Death
log(P-value)=-5

Cell Growth
log(P-value)=-4

(A) H1

Cell Growth
log(P-value)=-7

Cell Expansion
log(P-value)=-3

Regulation of
Cell Growth
log(P-value)=-3

(B)H2

(a) A complete TP-Cluster tree (b) An example ofOST (c) TwoOSTs
A={a, b, c} (under the curve) H2 � H1.

Figure 2: An example ofOST representing a Cluster. The categories and P-value are shown at each node. TheOST is the subtree
under the curve.

2.2 Tendency Preserving Cluster Model
Let D be a database containing the object setO under a set of

attributesA. The whole database can be represented in a data ma-
trix M, whereMij is the entry value of objecti under attributesj
(0 < i ≤ |O|, 0 < j ≤ |A|).

We are interested in the TP-Clusters, in which the subset of ob-
jects inO exhibits a coherent tendency on the subset of attributes
T of A.

DEFINITION 2.2. LetO be a subset of objects in the database
D, O ⊆ D. Let T be a subset of attributes,T ⊆A. Let R:
T × O × 2|A| → I be the function that assigns the rank of an
object i’s attribute j to be r, if the expression value of the ob-
ject i under attributesj is the rth lowest value among that un-
der all the conditions inT . (O, T) forms aTP-Cluster (Ten-
dency Preserving Cluster), if ∀ i, j (i, j ∈ O), ∀ a (a ∈ T),
R(i, a, T) = R(j, a, T) and∀ k (k ∈ D − O), ∀l(l ∈ O), ∃b
(b ∈ T),R(k, b, T) 6= R(l, b, T).

Definition 2.2 first defines the rank functionR. Based on the
rank function, a TP-Cluster is defined as a maximum subset of ob-
jects which have consistent ranks along a subset of attributes.

2.3 The TP-Cluster tree
The TP-Cluster tree is generally analogous to a prefix tree of a

predefined set of sequences. However, it is also different because
of its unique interpretation of each node and the parent-child rela-
tionship. Each node in a TP-Cluster tree represents a unique TP-
Cluster. The root node corresponds to the null space. The nodes at
levelm correspond tom dimensional TP-Clusters. The TP-Cluster
at a node is related to its immediate parent by being part of the
cluster. Each TP-Cluster other than the null root is a 1-dimensional
extension of its parent cluster. In order to elucidate the structure of
TP-Cluster tree, we give a complete TP-Cluster tree of three con-
ditions in Figure 2 (a), where each TP-Cluster is represented by a
sequence.

DEFINITION 2.3. The TP-Cluster tree is a hierarchical arrange-
ment of TP-Clusters with the following properties: 1) The tree is
rooted at level 0 with−1. 2) Each node at levelm corresponds to
an m-dimensional TP-Cluster represented by a length-m sequence.
3) Each node at level(m + 1) is a 1-dimensional extension of its
immediate ancestor, which corresponds to a length(m + 1) se-
quence.

What we are interested in is the hierarchical relationship among
a set of TP-Clusters. Investigating the relationships may help us
with the prediction of the behavior of higher dimensional clusters
based on the lower dimensional ones.

2.4 Annotation of a Cluster by Ontology
The hypergeometric distribution is used to model the probability

of observing at leastk objects from a cluster ofn objects by chance
in a category containingf objects from a total database size ofg

objects. The P-value is given byP = 1−
∑k

i=0

(f
i)(

g−f
n−i)

(g
n)

. The test

measures whether a cluster is enriched with objects from a particu-
lar category to a greater extent than that which would be expected
by chance. If the majority of objects in a cluster belong to the same
category, then it is unlikely that this happens by chance and the
category’s P-value would be close to 0.

We use an appropriate subtree in the ontology hierarchy to anno-
tate a cluster. The subtree is rooted at the node of the most signif-
icant category and includes all of its significant reachable subcate-
gories.

DEFINITION 2.4. Given a clusterC, its significant categories
V = {v1, v2, ...vt}, and the directed ontology treeG=< V, E >,
the Ontology SubTree (OST) H=< V ′, E ′ > representing clus-
ter C is defined as the following: 1.The root ofH is the function
categoryvr, 0 < r≤t, whereP (vr, C)=min0<i≤t(P (vi, C)). 2.
∀v′ ∈V ’, there exists a pathL (L ⊆ E) leading fromvr to v’.
3. ∀v′1, v′2 ∈ V ′, if ∃e′, e′ ∈ V and e′ connectsv′1 and v′2, then
e′ ∈ E ′.

Figure 2 (b) shows a set of significant GO function categories of
a gene cluster organized in a tree structure. To determine theOST
representing this cluster, we first find out the location of the most
significant function group, which in this case is cell growth, with
log(P-value)=-7. We then discard its parent category —cellular
process, and sibling—cell communication, which have higher P-
value. The resultingOST is the subtree rooted at cell growth.

DEFINITION 2.5. Given twoOSTsH1 andH2, we callH1 �
H2 if the root node ofH1 appears as a node ofH2.

For example, Figure 2 (c) contains two gene clusters’OSTs. We
call H2 � H1 since we can find the root node cellular growth of
H2 in H1.

Problem Statement:LetD be a database with object setO and
attribute setA. Given a thresholdθp for category enrichment and
the ontology hierarchy, our goal is to extract a hierarchy of enriched
TP-Clusters consistent with the whole or partial ontology hierarchy.

3. CONSTRUCTION OF ONTOLOGY
RELEVANT TP-CLUSTER TREE

In this section, we present the algorithm to build an ontology
relevant TP-Cluster tree.

3.1 Construction of the TP-Cluster tree
The TP-clustering process can be summarized in two steps:

1. Preprocess the data. Each row in the data matrix will be
converted to an ordered sequence of column labels corre-
sponding to increasing entry values. Those sequences will
be the inputs to the next step. An initial prefix tree contain-
ing the sequence of every object in the database will be con-
structed.The ontology information of genes is feeded into the
initial tree at the root level.

2. Depth-first traversal to develop ontology relevant TP-Cluster.
The initial prefix tree is recursively visited in the depth-first
order. During each node visit, the cluster corresponding to
that node is evaluated against ontology enrichment and on-
tology consistency. Once it passes the ontology assessment,
further development of its subtree are processed by suffix
concatenation. Otherwise, its subtree will be pruned.

gID a b c d sequence
1 4002 284 4108 228 dbac
2 401 281 120 298 cbda
3 401 292 109 238 cdba
4 280 318 37 215 cdab

Table 2: An example dataset.

We use the dataset in Table 2 in the following example to il-
lustrate the suffix concatenation step during the tree construction
process.

-1

c

b

d

a :2

d

b :4

a b

a :3 c :1

a

b

d

(A) Initial tree

-1

c

b

d

a :2

d

b :4

a b

a :3 c :1

a :3

b

d b

a

c :1

d

a :2b :4

a

(B) First suffix concatenations at level 1

Figure 3: The illustration of suffix tree concatenation.

EXAMPLE 3.1. For sequences in Table 2, the initial prefix tree
representing the whole database is presented in Figure 3 (A) and
the suffix concatenation upon visiting the first node ”-1” is illus-
trated in Figure 3 (B).

Let’s denote the node currently being visited as the active node.
Given an active node in the TP-Cluster tree construction process,
for example, at the root ”-1” in Figure 3 (B), the suffixes to be
inserted to ”-1”’s subtree are those inside the rectangle box shown
in Figure 3 (A). The concatenation of the suffixes to the current
active node is done by merging the suffix tree of the active node
with the corresponding subtree one level below the active node.
For example, suffix tree ”-1cd” in (A) is merged with ”-1d”. The
generated subtree is shown as the ”-1d” subtree in (B). (B) is the

subsequent tree after the visit of the node ”-1”. The same procedure
will be applied recursively in the depth-first order to construct the
TP-Cluster tree. For example, after the first node visit at the root
”−1”, the next node to be visited is ”-1c” and the suffixes inside
the rectangle box in Figure 3(B) are the next set of suffixes to be
inserted.

3.2 Ontology-based Pruning Techniques
The ontology information serves the following two purposes: (1)

the assessment of category enrichments of a cluster. (2) the guid-
ance to select the subset of attributes critical to a category. These
two functionalities of ontology information are transformed into
two pruning techniques in the ONTP-clustering algorithm.

The first pruning technique is based on the distribution of ob-
jects in different categories in a cluster. Since the first one focuses
on the computation of P-value in each category, we omit the de-
tailed description and only explain the second technique, which is
to useOST extracted in a parent cluster to guide the selection of
its descendent TP-Cluster clusters, by favoring ontology relevant
children clusters defined in Definition 3.1. Our criterion is based
on the hypothesis that, the TP-Clusters in the higher dimensional
space are enriched in more specific categories.

DEFINITION 3.1. Let C be a TP-Cluster andC′ be one ofC’s
descendants. LetH beC’s OST , and letH′ beC′’s OST . C′ is an
ontology relevant descendent ofC if H′ � H.

CRITERION 3.1. Let C be a TP-Cluster andC′ be one ofC’s
descendants, we say the development ofC′ is not viable if it is not
an ontology relevant descendent ofC.

We present the ONTP-clustering algorithm of extracting ontol-
ogy relevant TP-Clusters in AlgorithmsmartGrowTree.
Algorithm smartGrowTree(H, nc, nr,depth,parentOST)
Input: H: the root of the initial tree.
Output: TP-Cluster existed inH, the originalOST .
(∗ Grow patterns on the initial TP-ClusterH. ∗)
1. if H = nil
2. return ;
3. Hchild←H’s first child;
4. for any sub-treesubH ofH
5. do insertSubTree(subH,H);
6. curOST= extractOST(H);
7. if (curOST is not empty)
8. if (curOST�parentOST)
9. growTree(Hchild, nc, nr , depth + 1, curOST);
10. else growTree(Hsib, nc, nr , depth + 1, parentOST);
11. else
12. potential = evalFunction(H, parentOST)
13. if (potential = good)
14. growTree(Hchild, nc, nr , depth + 1, curOST);
15. else growTree(Hsib, nc, nr , depth, parentOST);
16. return .

Analysis of ONTP-clustering construction: For ONTP-Clus-
tering, only one scan of the entire data matrix is needed during the
clustering. Each row is first converted into a sequence of column
labels. The sequences are then inserted into the prefix tree. In
the initial tree structure, sequences with the same prefix naturally
fall onto the same path from the root to the node corresponding
to the end of prefix. To be memory efficient, the row/object IDs
associated with each path are only recorded at the node marking
the end of the longest common prefix shared by these sequences.
The depth-first pre-order traversal is then applied to the prefix tree
to generate a ONTP-clustering. The techniques based on ontol-
ogy knowledge further prune the potential clusters. Both the time
and space complexities of the two algorithms are exponential de-
termined by the nature of being an NP-hard problem. The pruning
effects are largely determined by the relationship between a TP-
Cluster and the significance of its underlying functional categories.

4. EVALUATION
Our experiments demonstrate the applicability of ONTP-clustering

algorithm to clustering biologically related genes with effective
pruning techniques based on GO. We denote the algorithm without
ontology-based pruning as TP-clustering and the one with prunning
as TP-Cluster tree. The results are evaluated through the compari-
son of TP-clustering and TP-Cluster tree and the mapping between
the TP-Cluster tree to the GO hierarchy. The algorithm was im-
plemented in C and executed on a Linux machine with a 700 MHz
CPU and 2G main memory.

Our algorithms are tested on the yeast cell cycle data of Spell-
manet al. The study monitored the expression levels of 6,218 S.
cerevisiae putative gene transcripts (genes) measured at 10-minute
intervals over two cell cycles (160 minutes) with 18 time points.
Spellmanet al. identified 799 genes that are cell cycle regulated.
We used the expression levels of the 799 genes across 18 time
points as the original input matrix. The clustering procedure groups
together genes on the basis of their common expression tendency
across a subset of time points.

To assess the biological relevance of the clusters, we use GO and
P-value to evaluate whether the cluster has significant enrichment
in one or more function groups. The ontology of the 799 yeast
genes is downloaded from gene ontology consortium [10] in Feb,
2004. We use functions from the three categories: molecular func-
tion(MF), cell component(CC) and biological process(BP). We ex-
tract categories between ontology level 2 and level 5 with a family
size of at least 5. The discovered TP-Clusters in each level of the
hierarchy are evaluated for enrichment with any of those function
categories.

Types #Known
genes

#Categories
(#genes > 5)

#Anno per
gene

MF 370 16 0.77
CC 616 48 3.4
BP 538 38 5.72

Table 3: Statistics for the three categories.

The first set of experiments was done using the ONTP-clustering
algorithm and cellular component ontology category to evaluate the
performance by varying parametersnr andθp. As shown in Figure
4 a), the response time of the ONTP-clustering algorithm decreases
as the significance threshold decreases and as the minimum number
of rows increases. high significance threshold allows early drop
of cluster with poor functional implication. More early pruning
enables shorter response time. Thenr helps to prune clusters with
the size limitation. The application of the same algorithm to the
other two categories exhibits the same trend when varyingnr and
θp.

Figure 4 b) presents the distribution of the generated clusters
in three categories: not enriched cluster, enriched cluster, and en-
riched cluster not following its parent’sOST according to Crite-
rion 3.1. The percentage of not enriched cluster increases signif-
icantly asθp decreases. It also explains the performance gain of
ONTP-clustering at the same time. Also the percentage of clusters
being pruned due to Criterion 3.1 drops significantly compared to
the percentage of the enriched clusters as the significance thresh-
old decreases. This may also indicate that the more significant the
enrichment of the clusters, the higher the probability that itsOST
leads to the right direction of selecting the biologically appropriate
biclusters.

The second set of experiments in Figure 4 c) is a comparison
between ONTP-clustering algorithm and TP-clustering algorithm.
For each algorithm, we have done two tests with different settings

of nr. ONTP-clustering algorithm consistently outperforms TP-
clustering especially whenθp is relatively low. The response time
of ONTP-clustering can be as short as 1/4 of that of the TP-clustering
algorithm. The TP-clustering algorithm generates a large num-
ber of TP-Clusters, of which only 10% are enriched whenθp =
−5. Compared with TP-clustering, ONTP-clustering generates less
than half of the number of TP-Clusters and almost the same num-
ber of enriched TP-Clusters. Overall, ONTP-clustering improves
the performance with minimum loss of the enriched clusters.

Figure 4 d) gives the comparison of the response times vary-
ing the three available ontology files, i.e, MF, CC, BF. We can
observe a clear trend that the experiments using biological pro-
cess category consistently spend more time than the rest two. This
can be explained by the data in Table 3. The average number of
categories that a gene might have is 5.7, which is much higher
than that of either the cellular component or the molecular func-
tion files. With fewer categories but more gene annotations, the
distribution of function groups in a cluster has a higher probabil-
ity being more concentrated in one or more function groups rather
than being evenly distributed. As a result, fewer functional clusters
might be pruned, and hence, the response time is longer. In addi-
tion, this may also be coincident with the hypothesis that similar
gene expression profiles may indicate a function relation in biolog-
ical process As a result, more time will be taken for generating a
larger number of significantly enriched clusters compared with the
rest two ontology files.

Overall, our experiment shows that the ontology-based pruning
is effective in reducing the search space of biclustering. In addition,
the response time of our algorithm is influenced by the two input
parameters and the distribution of genes in each category of the
ontology.

4.1 Mapping between GO and the TP-Cluster
Tree

We present a generic example of hierarchically organized clus-
ters that map to a hierarchical substructure of GO.

In Figure 5, (A) presents a three-level hierarchy of TP-Clusters,
while (B) shows the correspondingOSTs. The gene ontology
summarizing the relationships among all the function categories
appearing in (B) is ”Necleoside→ DNA metabolism→ DNA re-
pair”.

The root clusterC01 in (A) is the largest cluster with 71 genes.
However, it has the smallest number of conditions shared by all
genes in its cluster, i.e.(4, 15, 13, 8). Its OST shown at the top
of the hierarchy in (B) is rooted at the category, Necleoside. As we
go down the hierarchy of clusters in (A), clusters tend to contain
a smaller number of genes but share a larger number of consistent
conditions. In addition, theOSTs is likely to exist in the subtree
of theOST of its parent cluster. For example, the root clusterC01

is split into two smaller overlapping clustersC11 andC12 featuring
enriched function ”DNA metabolism”, which is a subcategory of
necleoside. OSTC11 andOSTC12 suggest that the two clusters in
level one have more significant grouping at a deeper level in GO
hierarchy than clusterC01. A further clustering of clusterC12 into
C21 with six conditions again signifies the a even deeper function
group, i.e. ”DNA repair”.

This example illustrates the connection between the ontology hi-
erarchy and the TP-Cluster tree. Our experiments demonstrate that
it is possible that only a subset of conditions matter for a ontology
category. In addition, the deeper the level of a category within the
GO hierarchy, the more the conditions under which the genes in
that category have the similar expression profiles.

20 30 40 50 60 70
40

50

60

70

80

90

100

110

120

130

140

n
r

Re
sp

o
n

se
 T

im
e(

s)

θ
p
=10−3

θ
p
=10−4

θ
p
=10−5

θ
p
=10−6

θ
p
=10−7

−3 −4 −5 −6 −7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

log(θ
p

)

Pe
rc

en
ta

g
e

OST−pruned
Enriched
Poor

−3 −4 −5 −6 −7
40

60

80

100

120

140

160

log(θ
p

)

Re
sp

o
n

se
 T

im
e(

s)

HTP, n
r
=50

HTP, n
r
=70

SHTP, n
r
=50

SHTP, n
r
=70

−3 −4 −5 −6 −7
20

40

60

80

100

120

140

160

180

200

log(θ
p

)

Re
sp

o
n

se
 T

im
e(

s)

BP
CC
MF

a) Response Time b)Clusters Distribution c) Response time d)

Figure 4: The performance of the ONTP-clustering varyingnr and θp.

(A) Expression profiles of the TP-Cluster subtrees (B) CorrespondingOSTs of clusters in (A)

Figure 5: An example of mapping from a hierarchy of TP-Clusters to their OSTs. For each cluster in (A), the rows correspond to
the genes while the columns correspond to the conditions.

5. CONCLUSIONS AND FUTURE WORK
The clustering analysis is traditionally syntactical in the sense

that it does not take advantage of the existing knowledge in the
learning process. In the paper, we present a general framework by
incorporating ontology hierarchy into the process of hierarchical
subspace clustering. We extract the set of ontology explainable
clusters during the clustering process in one run. Meanwhile, we
also discuss an ontology pruning technique that enhances clustering
algorithm and clustering result. Our experiments on yeast gene
expression data demonstrates the effectiveness of ontology-based
pruning. We also successfully extract the partial ontology hierarchy
from the subspace clusters. Our future work will use clustering
results and domain ontology for efficient and effective classification
for the unknown objects.

6. REFERENCES
[1] C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J. S. Park. Fast

algorithms for projected clustering. InSIGMOD, 1999.
[2] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in

high dimensional spaces. InSIGMOD, pages 70-81, 2000.
[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining
applications. InSIGMOD, 1998.

[4] A. Ben-Dor, B. Chor, R.Karp, and Z.Yakhini. Discovering Local
Structure in Gene Expression Data: The Order-Preserving Submatrix
Problem. InRECOMB2002.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is
nearest neighbors meaningful. InProc. of the Int. Conf. Database
Theories, pages 217-235, 1999.

[6] C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace
clustering for mining numerical data. InSIGKDD, pages 84-93, 1999.

[7] Y. Cheng and G. Church. Biclustering of expression data. InProc. of
8th International Conference on Intelligent System for Molecular
Biology, 2000.

[8] I. S. Dhillon, Co-Clustering Documents and Words Using Bipartite
Spectral Graph Partitioning. InSIGKDD, 2001.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-bsed algorithm
for discovering clusters in large spatial databases with noise. In
SIGKDD, pages 226-231, 1996.

[10] Gene Ontology Consortium, www.geneontology.org.
[11] H.V.Jagadish, J.Madar, and R. Ng. Semantic compression and pattern

extraction with fasicicles. InVLDB, pages 186-196, 1999.
[12] J.Liu and W.Wang. Flexible clustering by tendency in high

dimensional spaces. Technical Report TR03-009, Computer Science
Department, UNC-CH, 2003.

[13] P.T. Spellman, G.Sherlock, M.Q.Zhang, V.R.Lyer, K.Anders,
M.B.Eisen, P.O.Brown, D.Botstein, and Futcher. Comprehensive
identification of cell cycle-regulated genes of the yeast sacccharomyces
cerevisiae by microaray hybidization.Molecular Biology of the Cell,
9:3273-3297, 1998.

[14] S.Tavazoie, Jason D.Hughes, M.J.Campbell, R.J.Cho, G.M.Church.
Systematic determination of genetic network architecture,Nature
Genetics, 22: 281-285, 1999.

[15] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church. Yeast
microarry data set. In
http://arep.med.harvard.edu/biclustering/yeast.matrix, 2000.

[16] H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern
similarity in large data sets, inSIGMOD, pp. 394-405, 2002.

