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Abstract

Frequent itemset mining is a popular and important
first step in analyzing data sets across a broad range
of applications. The traditional, “exact” approach for
finding frequent itemsets requires that every item in the
itemset occurs in each supporting transaction. However,
real data is typically subject to noise, and in the presence
of such noise, traditional itemset mining may fail to de-
tect relevant itemsets, particularly those large itemsets
that are more vulnerable to noise.

In this paper we propose approximate frequent item-
sets (AFI), as a noise-tolerant itemset model. In addi-
tion to the usual requirement for sufficiently many sup-
porting transactions, the AFI model places constraints
on the fraction of errors permitted in each item col-
umn and the fraction of errors permitted in a supporting
transaction. Taken together, these constraints window
out the approximate itemsets that exhibit systematic er-
rors. In the context of a simple noise model, we demon-
strate that AFI is better at recovering underlying data
patterns, while identifying fewer spurious patterns than
either the exact frequent itemset approach or the exist-
ing error tolerant itemset approach of Yang et al. [11].

1 Introduction

Relational databases are ubiquitous, cataloging ev-
erything from market-basket data [1] to gene-expression
data [4]. Frequent itemset mining [1] is a key technique
in the analysis of such data, providing the basis for de-
riving association rules, clustering data, and building
classifiers.

The frequent itemset problem is generally charac-
terized in the following form: The available data take
the form of an n × m binary matrix D. Each row of
D corresponds to a transaction t and each column of
D corresponds to an item i. The t, i-th element of

D, denoted dt,i, is one if transaction t contains item
i, and zero otherwise. Let T0 = {t1, t2, . . . , tn} and
I0 = {i1, i2, . . . , im} be the set of transactions and items
associated with D, respectively. Under exact frequent
itemset mining a transaction supports an itemset if it
contains a 1 under each item in the itemset. An item-
set is deemed frequent if the number of its supporting
transactions exceeds the “support threshold,” a user de-
termined percentage of the total number of transactions.

While the classic exact frequent itemset definition
and the algorithms designed to generate such itemsets
have been well studied, the problems created by imper-
fect data have not. Error can be introduced when an
item fails to be recorded, or not purchased at all because
it was out of stock. In the presence of such “noise” (i.e.
actual errors as well as incorrect imputation of measure-
ments), classical frequent itemset algorithms will find a
large number of small fragments of the true itemset, and
may miss a pattern altogether if the frequency criterion
is not satisfied. This failure to detect the full pattern
compromises the usefulness of classic frequent itemset
mining for detecting associations, clustering items, or
building classifiers when such errors are present. As a
solution, we present here a noise-tolerant approach to
frequent itemset mining.

One natural approach for handling errors is to relax
the requirement that a supporting transaction contain
only 1s under the items in the itemset. Instead, a small
fraction of 0s is tolerated, e.g. the “presence” signal of
[11]. However, stipulating a small fraction of 0s row-
wise alone may not be sufficient: we would also like to
ensure that distribution of 0s is globally reasonable, e.g.
that they are also not concentrated in a small number
of columns.

For example, the fraction of 1’s is 80% in each of the
submatrices presented in panels (A)-(D) of Figure 1.
However, not all of the transactions in each panel sen-
sibly support the itemset I = {a, b, c, d, e}. In (A), the
row-wise constraint employed by Yang et. al. [11] cor-
rectly excludes transaction 5 from the support; however,
in (B) enforcing the row-wise constraint alone allows
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(B)

 a b c d e  

1 1 1 1 1 1 0 

2 1 1 1 1 1 0 

3 1 1 0 1 1 20 

4 1 1 0 1 1 20 

5 1 1 0 0 0 60 

 0 0 60 20 20 % 

 a b c d e  

1 1 1 1 1 0 20 

2 1 1 1 1 0 20 

3 1 1 1 1 0 20 

4 1 1 1 1 0 20 

5 1 1 1 1 0 20 

 0 0 0 0 100 % 

 a b c d e  

1 1 1 1 1 1 0 

2 1 1 1 1 1 0 

3 1 1 1 1 1 0 

4 1 1 1 1 1 0 

5 0 0 0 0 0 100 

 20 20 20 20 20 % 

(A)

 a b c d e  

1 1 1 1 0 1 20 

2 1 0 1 1 1 20 

3 1 1 1 1 0 20 

4 1 1 0 1 1 20 

5 0 1 1 1 1 20 

 20 20 20 20 20 % 

(C) (D)

Figure 1. Itemsets with global density of 80% but dif-
ferent distributions of noise in individual transactions
and items.

each transaction to support the addition of {e} to the
itemset. Panel (C) illustrates the problem with a purely
column-wise constraint, while (D) exhibits an error dis-
tribution where each transaction sensibly lends support
to the full itemset. In this latter case, each row and
column permits no more than 20% error.

Thus to attain noise-tolerant itemsets free from sys-
tematic errors, we propose the joint use of two criteria.
We define an approximate itemset to be one where the
fraction of 0’s in each row and each column is restricted
to εr and εc, respectively. If the approximate itemset
has sufficiently many rows, it is an approximate frequent
itemset (AFI ).

Definition 1.1 Let D be as above, and let εr, εc ∈ [0, 1].
An itemset I ⊆ I0 is an AFI, if there exists a set of
transactions T ⊆ T0 with |T | ≥ minsup|T0| such that
the following two conditions hold: (i) for each t ∈ T the
fraction of items in I that appear in t is at least (1− εr)
and (2) for each i ∈ I, the fraction of transactions in T
that appear in each item i is at least (1− εc).

Example 1.1 Consider the transaction database D in
Figure 1(A) with AFI parameters minsup = 0.5, εr =
1/3 and εc = 1/3. Then the maximal AFI contained
in D is I = {a, b, c}, which is supported at least four
transactions (T = {t1, t2, t3, t4, t5}). For each item i ∈
I, at least 80% > 100(1 − εc)% of the transactions in
T contain it; each transaction t ∈ T is missing at most
one of the items in I, so the fraction of zeros in each
row is at most 1/3 = εr.

a b c d
1 1 1 1 0
2 1 1 0 0
3 1 0 1 0
4 0 1 1 0
5 1 1 1 1
6 0 0 0 1
7 0 1 0 1
8 1 0 0 0

Table 1. An example dataset

The rest of the paper is organized as follows. Sec-
tion 2 presents a formal definition of our problem and
outlines related work in the area of noise-tolerant item-
set minings. Section 3 presents a brute-force algorithm.
Evaluation of the AFI algorithm using both synthetic
and real datasets is presented in Section 4. Section 5
concludes the paper.

2 Background and Related Work

Noise-tolerant itemsets were first discussed by Yang
et. al [11], who proposed two error tolerant models,
termed weak error-tolerant itemsets (ETIs) and strong
ETIs. An itemset is a weak ETI if the fraction of noise
in the entire set of supporting transactions is below a
certain threshold, with no constraint on where the noise
may occur. An itemset is a strong ETI if it satisfies
the row, but not necessarily the column, constraint of
the AFI definition above. As noted in the discussion of
Figure 1, neither of the ETI models precludes columns
of zeros. Yang et. al [11] describe algorithms for finding
weak and strong ETIs based on a variety of heuristics
and sampling techniques.

In [8] Seppanen et al. seeks weak ETIs by adding the
constraint that all of their subsets must also be weak
ETIs. The resulting itemsets belong to the category of
weak ETIs but their overall characteristics are hard to
derive. In some cases, this additional constraint elim-
inates irrelevant transactions as in Figure 1(B), but in
others it permits Figure 1(C).

Another alternative, the support envelope[9] identi-
fies regions of the data matrix where each transaction
contains at least m′ items and each item appears in at
least n′ transactions, where n′ and m′ are fixed integers.
Support envelope mining can only recover one big sub-
matrix at a time, prohibiting the discovery of multiple
embedded dense regions. Furthermore, if the matrix is
large, the one approximate itemset found by the support
envelope approach tends to be very sparse.

Fault-tolerant frequent itemsets [7] allow a fixed num-
ber of errors δ within an itemset. This criterion is not
consistent with our expectation that the number of er-
rors should be permitted to scale with the size of the
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result.

3 A Brute Force Algorithm To Discover
AFIs

As implied by its definition, an AFI(εr, εc) is also an
ETI(εr), where only the row-wise constraint is enforced.
Thus, a natural brute-force method to find the set of
AFI(εr, εc) can be obtained two steps:

1. Generate the set of all ETIs(εr)

2. For each ETI(εr), check its validity as an
AFI(εr, εc).

The first step of the algorithm was studied by Cheng
et al. [11]. The exhaustive algorithm proposed in their
paper starts with single items and develops them into
longer itemsets by adding one of the remaining items
at each step. The lattice of itemsets is traversed in a
breadth-first manner. As may be obvious, the Apriori
property of classical frequent itemset mining will not
hold for either ETI or AFI. Thus an itemset cannot be
pruned if one of its (k − 1) sub-itemset is not a valid
itemset. Instead, an length-k itemset cannot be elim-
inated as a valid ETI until it is established that none
of its (k − 1) subsets is a weak ETI. The second step
in the algorithm is a postprocessing step. For each of
the submatrices of itemsets and transactions discovered
in the first step, determine which transactions meet the
AFI column constraint and if the number of qualifying
transactions is still large enough to meet the support
constraint.

4 Experiments

We performed two experiments to evaluate the per-
formance of AFI. A synthetic data matrix corrupted
with noise was used to compare the results of AFI min-
ing to both exact frequent itemset mining and the ETI
approach. In addition, we applied AFI to a data set
drawn from a real biogeographic problem, where the
AFI algorithm identified interesting patterns more suc-
cinctly than the competing algorithms.

4.1 Quality Testing with Synthetic Data

In order to test the quality of the AFI model, we
created data with both embedded patterns and overlaid
random errors. By knowing the true patterns, we were
able to assess the quality of AFI’s results. To each syn-
thetic dataset created, the exact method, ETI and AFI
were each applied.

To evaluate the performance of an algorithm on a
given dataset, we employed two measures that jointly

describe quality: “recoverability” and “spuriousness”
(in the spirit, but not exact detail of [6]). Recoverabil-
ity is the fraction of the embedded patterns recovered
by an algorithm, while spuriousness is the fraction of
the mined results that fail to correspond to any planted
cluster. A truly useful data mining algorithm should
achieve high recoverability with little spuriousness to
dilute the results.

Multiple datasets were created and analyzed to ex-
plore the relationship between increasing noise levels
and the quality of the result. Noise was introduced by
bit-flipping each entry of the full matrix with a prob-
ability equal to p. The probability p was varied from
0.01 to 0.2. The number of pattern blocks embedded
also varied, but the results were consistent across this
parameter. Here we present the results when 1 or 3
blocks were embedded in the data matrix (Figure 2(A)
and (B), respectively).

In both cases, the exact method performed poorly as
noise increased. Beyond p = 0.05 the original pattern
cannot be recovered, and all of the discovered patterns
are spurious. In contrast, the error-tolerant algorithms,
ETI and AFI, were much better at recovering the em-
bedded matrices at the higher error rates. However,
the ETI algorithm reported many more spurious results
than AFI. Though it may discover the embedded pat-
terns, ETI generates many more patterns that are not
of interest, which may overshadow the real patterns of
interest. The AFI algorithm consistently demonstrates
higher recoverability of embedded pattern while main-
taining a low level of spuriousness.

(A) Single Cluster (B) Multiple Clusters

Figure 2. Algorithm quality versus noise level

4.2 An Application in Biogeography

One novel, but natural, application of frequent item-
set mining is in the field of biogeography, the study of
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the geographical distributions of organisms. The pat-
terns discovered in species distributions are used to in-
fer either connections or barriers between regions, which
in turn lead to hypotheses concerning the biogeographic
tracks of organisms in historical time. Here we apply
AFI to data from a study of freshwater fish across Aus-
tralia (from Unmack [10]). The presence or absence of
167 species was recorded for each of 31 regions covering
the continent. This type of data is subject to error in
its collection, and “soft” (i.e. approximate) patterns are
of interest.

Application of exact frequent itemset mining using
minsup = 5 produced a total of 31 itemsets and a rea-
sonable result: the broadest cluster in terms of regions
covered corresponds to one of data author’s results. Its
11 regions form a contiguous coastal band across North-
ern and Eastern Australia (shown as the dark-colored
provinces in Figure 3). However, application of AFI
not only recovered the exact result (with fewer spurious
blocks), but at εc = εr = 0.2, it adds two more regions
to the item-wise largest block. These regions have been
acknowledged by Unmack as sensible additions: they
are contiguous with the previously identified cluster in
the northern portion of Australia, and appear to be the
next most closely related regions in Unmack’s analysis.
These regions appear in Figure 3 as the light gray re-
gions.

Figure 3. Map of Australia with shading representing
provinces in the cluster

5 Conclusion

In this paper we have defined criteria for mining ap-
proximate frequent itemsets from noisy data. The AFI
model places constraints on the fraction of noise in each
row and column, and so ensures a relatively reasonable
distribution of error in any patterns found. According to
investigation, AFI generates more reasonable and use-
ful itemsets than classical frequent itemset mining and
existing noise-tolerant frequent itemset mining.

Several computational challenges remain unsolved,
however, and are currently under investigation. Noise
tolerance creates substantial algorithmic challenges not
present in exact frequent itemset mining. First, the AFI
criteria do not have the anti-monotone (Apriori) prop-
erty enjoyed by exact frequent itemsets. Second, one
cannot derive the support set of an AFI from the com-
mon support sets of its sub-patterns, as is done in exact

frequent itemset mining. Both of these considerations
make the traditional breadth-first, and the projection-
based depth-first algorithm hard for the generation of
approximate frequent itemsets. Development of an ef-
ficient algorithm and pruning method will be the main
focus of our future work.

This research was partially supported through NIH
Integrative Research Resource grant 1-P20-RR020751-
01, NSF grant DMS-0406361 and NSF grant IIS-
0448392.
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