
1

Routing and Forwarding with Flexible Addressing
Leonid B. Poutievski, Kenneth L. Calvert, and James N. Griffioen

Laboratory for Advanced Networking, University of Kentucky, Lexington, KY 40506-0046

Abstract: We present a new network-layer architecture that pro-
vides generalized addressing. The forwarding infrastructure is in-
dependent of the addressing architecture, so multiple addressing
architectures can be used simultaneously. We compare our solution
with the existing Internet protocols for unicast and multicast ser-
vices, given the address assignment used in the Internet. By means
of an extensive simulation study, we determine the range of param-
eters for which the overhead costs (delay, state, and network load)
of our service are comparable to those of the Internet. 1

Index Terms: Addressing, clustering, forwarding, routing.

The current Internet architecture has several characteristics
that are widely believed to limit its flexibility. Addressing, rout-
ing and forwarding are tightly intertwined, making it difficult
to change or improve any one of them in isolation. Identity is
tied to location, making it difficult to support advanced routing
paradigms, such as publish-subscribe systems and mobile sys-
tems. Furthermore, the Internet Protocol provides few (andthe
current infrastructure implements even fewer) mechanismsfor
controlling or manipulating the paths followed by packets end-
to-end. To circumvent these limitations, many have proposed
new routing and forwarding services implemented as overlay
networks [1], [2], [3], [4], [5]. Such solutions suffer fromthe
overlay-to-underlay mapping problem, resulting in inefficien-
cies. For instance, the latency in overlays is often higher than
the network-layer solution, because the path taken across over-
lay nodes (end systems) is rarely the shortest path at the network
layer. These considerations suggest that investigating the bene-
fits of redesigning the network layer may be worthwhile.

We are developing a new network-layer design that provides
a routing and forwarding infrastructure that is, to a large de-
gree, independent of the addressing architecture; in fact,multi-
ple addressing architectures can be used simultaneously with the
same forwarding architecture. This makes it possible to provide
addressing modes, such as unicast and multicast, using a sin-
gle forwarding subsystem. Indeed, the addressing architecture
could evolve over time to create multiple addressing schemes,
without changing the forwarding infrastructure.

In our new network layer datagram-oriented service, called
speccast, each node is identified by anode specificationthat
is not dictated by the node’s location in the network and, in
general, might be independent of the topology. Of course, the
absence of any correlation between node specifications and the
topology comes at a cost in terms of scalability. Each packetcar-
ries adestination specification, along with a partialforwarding
tree. The latter describes the path(s) along which the network
is to carry the packet, while the former defines the destinations
that are supposed to receive the packet. Both are placed in the

1This work supported in part by the US National Science Foundation under
grants CNS-0626918, CNS-0435272, and EIA-0101242.

packet by the source. The routers in the network forward the
packet along the indicated path(s), duplicating and delivering it
to all nodes that match the destination specification. Because
it is not possible for sources to know the entire network topol-
ogy, the original forwarding tree, in general, is only an “outline”
of the path. As the packet is forwarded through the network,
routers along the wayrefine the tree, filling in gaps caused by
the source’s lack of knowledge using their own (more detailed)
knowledge of the local topology and specifications. We posit
a hierarchical link-state routing approach to go along withthis
forwarding mechanism.

Our approach offers a good deal of flexibility with respect
to path selection: sources may either delegate the questionen-
tirely to their service provider or keep the control. We believe
such flexibility is not only appropriate, but necessary in anInter-
net in which the “cost” to originate a packet may vary substan-
tially from node to node—cf. wireless sensor nodes to large web
servers. Because paths can be cached and re-used, the effortre-
quired to select a path can be amortized over many packets. (As
opposed to the current Internet, which amortizes the cost ofall
routing decisions over all packets equally.)

On the other hand, the major challenge of such a flexible ser-
vice is scalability. Using simulation, we have compared ourap-
proach to existing Internet algorithms for two popular services
(unicast and multicast) along several important dimensions of
scalability: forwarding state, delay (i.e., path stretch), and net-
work load. It should be noted that network load is not tradition-
ally considered when evaluating routing/forwarding schemes—
at least not forwarding-plane load—because traditional algo-
rithms consider only unicast, and relay a single copy of each
packet. We, however, are interested in exploring new trade-offs;
in particular we give away some “accuracy” of delivery in return
for reduced amounts of state. That is, in order to reduce rout-
ing state requirements, we allow some packets to be delivered
to parts of the network where they will ultimately be discarded.
Our results show that for several kinds of topologies and specifi-
cation assignments, our design scales comparably to the existing
Internet routing/forwarding structure, given the addressassign-
ment used in the Internet.

The rest of this paper is organized as follows. In Section I we
present an overview of our routing and forwarding architecture.
In Section II we describe our simulation experiments while Sec-
tion III presents the results of our experiments. In SectionIV we
describe related work, and in Section V we present conclusions.

I. The Speccast Approach

In speccast, node and destination specifications can be defined
in any one of many possiblespecification languages, because
specifications (addresses) are independent of the routing and
forwarding mechanism. For example, a specification could be

1229-2370/03/$10.00c© 2003 KICS

2

a 32-bit number (i.e., an IPv4 address), or it could be a boolean
predicate involving a set of attributes (e.g., “A and B or C and
D”), or it could be a tree (e.g., “A with children B and C, whereC
has children D and E”). Consequently, the speccast forwarding
algorithm, described in Section I-B, applies a language-specific
“matching” function to determine which nodes satisfy (match)
the specification.

If every node knows all node specifications and the entire
topology, the originator of a packet can compare the specifica-
tion to all nodes to determine destination(s), compute the path to
all destination nodes, and place a source route (i.e., aforward-
ing tree) in the packet. Unfortunately, this clearly will not scale;
it is unreasonable to assume that every node knows the entire
network graph, and every node specification. Consequently,we
need a way to aggregate the network state, so that hosts only
need limited knowledge of topology and specifications.

One way to significantly reduce the network state is to keep
aggregated, possibly imprecise state about nodes that are further
away. A standard way to achieve this is by using a hierarchy of
domains over the node set (as in Kleinrock and Kamoun [6]). In
this case some nodes keep state aboutclusters, which are sin-
gle nodes in the graph, representing connected subgraphs ofthe
original graph. The price for this reduction in state is increased
path length: sources use the same path to all nodes in a cluster,
which may not be optimal for each node in the cluster.

Network state in speccast consists of topological information
(that describes connectivity) and semantic information (that de-
scribes specifications). Aggregating a subset of nodes intoa
cluster can potentially reduce state not only by hiding topology
information (i.e., individual nodes and links within the cluster),
but also by reducing semantic state (i.e., by aggregating infor-
mation about what specifications are satisfied by nodes inside a
cluster). To reduce semantic state, we replace node specifica-
tions within a cluster with a single abstractedcluster specifica-
tion, which may have a smaller representation. Since we allow
cluster specification to be less precise, an abstracted specifica-
tion indicates that a cluster “might” contain a node that matches
the specification. This imprecision means that a source or inter-
mediate router may incorrectly conclude that a cluster contains
a node that satisfies a destination specification, when it does
not. Thus, we reduce network state, but at the expense of possi-
ble overdelivery(i.e., bandwidth wasted by forwarding packets
along paths that do not lead to destinations). Because forward-
ing state is reduced by hiding topology and by abstracting spec-
ifications, routers can fill in the missing parts using their own
knowledge of their local topology and specifications—which, in
general, is more detailed than the originator’s because each node
has detailed knowledge of its local area. To control this trade-
off, we require that the specification language have a “knob”
(parameter) that varies the semantic state (sizes of specifica-
tions) vs. the amount of overdeliveries. Such a parameter can
be a maximum size of a cluster specification.

As in other hierarchical clustering schemes [6], nodes are
grouped into nested, disjoint clusters. Since node specifications
are not necessarily unique and might have no relation to topol-
ogy and hierarchical clustering, we need some way to convey
topological information. Since nodes are identified by specifi-
cations, we do not assign additional topological names to nodes

and clusters. Instead, topological information can be specified
by identifying links (i.e., channels between nodes), assigning
every link a uniquelink identifierand alink level, determined by
the link’s “depth” in the cluster hierarchy—that is, the number of
clusters that contain the link. The specific clustering hierarchy
is independent of routing and forwarding algorithms presented
here. We assume that the multi-level clustering hierarchy is cre-
ated by the distributed self-organizing toposemantic clustering
algorithm described in Section I-C.

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

���
���
���
���

γ,0
ε,1

η,1

δ,1

α,1 β,1

22
15

10

25

20

30
20−30

10−22

(a)

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

α β

γ

22 15

20−30

10

(b)

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

α β

γ

(c)

Fig. 1. (a) Topology and specifications (b) Topology view at node “10”
(c) Forwarding tree at the source.

By way of example, suppose that each node corresponds to a
user, and the node specification represents the age of the user at
that node. Destination and cluster specifications are ranges of
ages. Two specifications match if corresponding ranges inter-
sect. Destination specifications are also given by a range ofval-
ues, meaning that speccast should deliver a packet to all nodes
whose ages are within a given range. An example of the for-
warding process is given in Section I-B. Figure 1(a) illustrates a
sample hierarchy. Each link has a label, where Greek lettersare
link identifiers and numbers are link levels. (Lower link level
numbers correspond to crossing more link boundaries.) Each
node label is a specification (in our example, an age). Node
specifications “20”, “25” and “30” are abstracted with a single
specification “20-30” that represents a range of values. Simi-
larly “10”, “15” and “22” are abstracted to a cluster specification
“10-22”. Each node propagates a routing message (link statean-
nouncement [LSA]) containing its specification and links tothe
nodes in the same cluster. Similarly clusters propagate an LSA
containing itsborder links(i.e., the links that connect a cluster to
its neighboring clusters) and a cluster specification to peer clus-
ters. In Figure 1(a), the node with specification “15” transmits
two LSAs. The first LSA contains (“15”,{β, γ}) and is sent
over link β and then, linkα. The second LSA contains (“10-
22”, {γ}) and is sent overγ; its information is then propagated
to other nodes in the right cluster. The topology view of node
“10” in Figure 1(b) shows a graph, where nodes correspond to
clusters (nodes) in Figure 1(a) for which routing messages have
been received.

Another potential application of speccast use isdistributed
interactive simulation(DIS), used by the military. In DIS, each
entity must have a view of the battlespace, which consists of
information about other entities within the range of a givenen-
tity in the battlespace environment. To enable this, each entity
must communicate its current state (location, velocity, orienta-
tion, etc.) to all entities interested in this information.The most
efficient way to deliver a message to the group of “interested”

3

receivers is to use multicast. In DIS, however, the number of
groups is very large (at least one per entity), and delivery to a
combination of groups is required. Speccast can represent the
destination set efficiently using a destination specification. For
example, an entity can be described by a set of values, e.g.,
c = vehicle, x = 10, y = 20, wherex andy represent co-
ordinates. Then, a packet with a destination specification,e.g.,
(x ≥ 5) ∧ (x ≤ 15) ∧ (c = vehicle), is delivered to all nodes
matching that specification.

A. Speccast Routing

We use a hierarchical link-state algorithm, which involvesthe
generation and propagation of link state announcements (LSAs)
and constructing a graph model of the network from received
LSAs. Each node in clusterC that connects to nodes in neigh-
boring clusters ofC assembles and broadcasts an LSA describ-
ing C.

Our routing protocol differs from well known link-state hier-
archical protocols, such as OSPF [7]. The link-state announce-
ment in speccast is the external representation of a clusterthat
consists of topological and semantic information. An LSA’s
topological information is its set of cluster border links along
with their levels. An LSA’ssemanticinformation is an ab-
stracted cluster specification. As in OSPF, each node maintains
a database of received LSAs, called alink-state database.

To obtain an LSA of a clusterC, LSAs corresponding to sub-
clusters ofC are “merged”. Border links ofC are obtained from
a union of border links of subclusters ofC, excluding links in-
ternal toC. The cluster specification ofC is calculated by ag-
gregating and abstracting specifications of subclusters.

B. Speccast Forwarding

The goal of the forwarding algorithm is to deliver a packet to
each node that satisfies the destination specification contained
in the packet header. Packets are forwarded using a loose source
routing approach. Because a packet may have multiple destina-
tions, the source route is a tree (called aforwarding tree). Thus
each datagram header contains a destination specification and a
forwarding tree.

The forwarding algorithm has three parts: destination speci-
fication matching, route refinement (to extend, if necessary, the
forwarding tree in a packet), and a forwarding step (to forward
the packet according to the forwarding tree). First, if the cur-
rent node specification matches the destination specification, the
packet is delivered to the higher (application) layer. Next, the
route refinementstep is performed. Route refinement occurs
when a packet has just entered a cluster: this situation can be
detected by the incoming link’s level. In the route refinement
step, we calculate a forwarding tree of links inside the new clus-
ter that connects the current node with (i) all sub-clustersinside
the cluster that might satisfy the destination specification and
(ii) all “next-hop” links in the partial forwarding tree (incase
they are not directly connected to the node). Several strategies
can be used to calculate this tree. In our simulations, we useDi-
jkstra’s algorithm to calculate the shortest-path forwarding tree.
This locally-calculated tree is merged with the forwardingtree
in the packet. Finally, after route refinement step is completed,

the packet is forwarded to each child link of the root of the ex-
panded forwarding tree.

Consider Figure 1(a). Suppose that the node with specifica-
tion “10” (call it s) needs to send a packet with a destination
specificationd = “20-24”. The topology view ofs is shown in
Figure 1(b). Its link-state database contains two clusterswhose
specification might matchd: the node with specifications “22”
and the cluster with specification “20-30”. Nodes builds the
forwarding tree shown in Figure 1(c). One copy of a packet is
forwarded over linkα to node “22”. Another copy is forwarded
over link β and thenγ to the cluster (call itx) with a specifica-
tion “20-30”. Sincex’s graph model has more information (in
particular, it contains a node whose specification matches the
destination specification), the forwarding tree is extended with
link δ leading to “20” (see Figure 1(a)). When the packet arrives
at “20” and “22”, it is delivered to the application.

C. Speccast Clustering Algorithm

In previous work [8] we proposed atoposemanticclustering
algorithm, which minimizes the total network state consisting
of both topological (number of stored LSAs) and semantic (sum
of sizes of specifications in link-state database) information. To
avoid an excessive number of levels in the resulting hierarchy
and thus a high delay stretch, we introduced the constraintbf >

1, wherebf is a branching factor that determines the maximum
number of child clusters.

Our algorithm performs bottom-up hierarchical clustering. It
starts with each node in a separate cluster. At each step the
algorithm selects a pair of neighboring clusters to merge. We
distinguish two types of merging operations:Pushand Fuse.
Push(A, B) forms a new clusterN containingA and B as
subclusters. Fuse(A, B) forms a new clusterN containing
A0, A1, . . . , An andB0, B1, . . . , Bm as subclusters where the
Ais are subclusters ofA andBis are subclusters ofB; clusters
A andB cease to exist.

Let specRed(A, B) denote the reduction of the semantic
state due to merging:specRed(A, B) = specSize(A) +
specSize(B)− specSize(N). Let sib(A, B) denote the num-
ber of nodes in clusters that are siblings toA and B. We
use an estimate of the reduced network stateH(A, B) =
(specRed(A, B) + τ)sib(A, B) as the metric for choosing
which clusters to merge. In all the simulations we used very
largeτ (∀A, τ > specSize(A)). Therefore, the goal is for all
nodes to have approximately the same depth in the hierarchy,
and specifications are considered only as a secondary criterion
during clustering.

Initially, there is one cluster containing all nodes. The fol-
lowing steps are iterated as long as it is possible to reduce the
amount of state:

1. Evaluate the heuristicH on every pair of neighboring clus-
tersA andB such that the number of subclusters in the parent
cluster ofA andB exceedsbf.
2. Pick a pair of neighboring clustersA andB with a maximum
state reductionH(A, B). If the total number of subclusters of
A andB does not exceedbf, or A or B contains only a single
node, thenFuse(A, B); otherwise,Push(A, B).

4

D. Optimization: Filters

Abstracting away information in LSAs leads to overdelivery:
packets are sent to clusters that should not receive them. We
propose to eliminate “overdeliveries” for flows of packets by
maintaining additional “filter” state (similar to DVMRP [9]).
Filters provide “unhiding” of specification information atspe-
cific nodes. The additional state and routing messages required
to set up this state can be amortized over a flow of packets.

A filter at a nodex that contains an LSA for a clusterc in its
routing table can store a negative filter, encoded as a tuple(p, c),
wherep is a specification andc is a reference to a clusterc. The
filter is interpreted to mean that no nodes in a clusterc satisfy
specificationp even though the advertised cluster specification
of c matches specificationp. Filters are checked during the route
refinement step.

If a node in a clusterc receives a data packet with destination
specificationp (this might happen because of specification ab-
straction), but no nodes inc satisfyp, the border router can send
a message back toward the sender to install a negative filter and
stop future packets with specificationp. The negative filter for a
clusterc is sent back along the reverse path (visited links can be
stored in the packet) to the nodex that addedc to the forwarding
tree, and the filter is installed at nodex.

In Section III-B we present results demonstrating the effect
of filters by showing the amount of overdeliveries for the first
packet (without filters) and also for subsequent packets assum-
ing filters are installed. Per flow state needed to store filters is
shown as well.

E. Optimization: Default Routes

A standard mechanism for state reduction used in the Internet
is the usage of “default routes”. For example, if a domain (call it
a “stub” domain) is connected to the rest of the network through
a single “provider” domain, nodes inside the stub domain need
not keep specific state about the network outside that domain;
instead, they keep only default routes. If the destination address
does not match any local node, the packet is forwarded outside
the domain where more information is available to continue for-
warding.

A similar mechanism can be used with our approach. Instead
of propagating all external LSAs to each node in a stub domain
connected only to a single other domain, only a single “default”
LSA is propagated. This LSA contains border links of the stub
domain and a specificationTrue that matches any specification.
Once the packet leaves the clusterc with default routing, the
refinement step is performed as if the packet had just been orig-
inated locally (except it is not forwarded back toc).

II. Evaluation

We evaluate our routing and forwarding service by comparing
it to IP unicast and multicast protocols currently in use in the In-
ternet. Internet routing protocols are considered to be more or
less scalable, and thus provide an excellent basis against which
to compare the scalability of our network routing service. Our
goal is to understand the (added) overhead incurred by support-
ing a powerful and flexible routing service—i.e., speccast.First,
we compare the scalability of both systems for unicast address-

ing, then for multicast (for varying numbers of groups and vary-
ing group sizes), and finally, for unicast and multicast combined.
We also study the relation between the specification assignment
and speccast parameters.

A. Simulation Model

A.1 Simulated Routing Protocols

To evaluate the scalability of our architecture, we simulated
our speccast approach and conventional Internet unicast proto-
cols. For unicast Internet-like routing, we simulated OSPF[7]
as the intra-domain routing protocol and BGP [10] as the inter-
domain routing protocol. To compare with existing multicast
approaches, we simulated PIM Sparse Mode (PIM-SM) [11] as
the intra-domain routing protocol and MSDP [12] as the inter-
domain routing protocol. In the description of our experiments
and the graphs which follow, we refer to the set of all these In-
ternet protocols asIP.

To obtain a fair comparison, our BGP implementation only
selected the shortest Autonomous System (AS) path and did not
include support for policies that could prevent the shortest path
from being selected. Our simulations assumed that each AS had
several BGP speakers, one for each neighboring AS. When for-
warding to the next AS in the AS path, the nearest exit (bor-
der router) to that AS is preferred. We also implemented “de-
fault route” mechanisms in both the IP and speccast simulations,
which produced similar state savings for both protocols.

Our PIM-SM simulation assumed a single rendezvous point
(RP) per AS for all groups. As defined by the MSDP protocol,
our simulation delivered the first multicast packet sent to apar-
ticular group to every AS. ASs that have group members joined
the RP of the source. Subsequent packets destined for the same
multicast group were then propagated from the source to the lo-
cal RP, then along the source tree to RPs in domains that had
group members, and finally from RPs to group members.

A.2 Simulation Topology

We generated two different types of topologies using GT-ITM
[13] and BRITE [14]. GT-ITM graphs were generated using
transit-stub topologies (3 stub domains per transit node, where
transit and stub domains have on average 8 nodes). Different
graph sizes were obtained by increasing the number of transit
domains; the number of extra transit-stub links was proportional
to the graph size (4 per transit domain), and no stub-stub edges
were added. BRITE graphs were generated using a top-down,
2-level structure: a top-level (AS) graph with power-law degree
property was generated using the Barabasi method [15], while
the topology within each AS was generated using the Waxman
algorithm. Each AS was connected on average to 1.5 other ASs.
All results presented here were calculated as an average over 5
different topologies.

A.3 Clustering

While nodes in our Internet simulation form clusters accord-
ing to AS boundaries determined by the topology generator,
speccast uses a different clustering algorithm. In particular, we
used the toposemantic algorithm, described in Section I-C.

5

T

U

1

2

3

4

M

0xE0000100

0xE0000105

(a)

T

U

1

2

3

4

M

0xE0000100

0xE0000105

4 7

5

(b)

T

U

1

2

M

*

*

(c)

Fig. 2. Example of (a) a node specification, (b) a cluster specification,
(c) an abstracted cluster specification

A.4 Node and Destination Specifications

Although speccast allows many possible types of specifica-
tions, our simulations use a simple specification language that
is capable of representing unicast and multicast addressesof the
kind used in our IP simulation. A node (or destination) specifi-
cation is represented by a tree of labels. The root label is always
True (T). The root typically has two children (labels): a label
U for a branch representing unicast addresses, and a labelM
for a branch representing multicast addresses. An example node
specification is shown in Figure 2(a).

An IP address is represented by theU label followed by a
path of 4 labels, where each label corresponds to a single byte
value. For example, the IP address1.2.3.4 is converted to the
specification shown as aU branch in Figure 2(a).

IPv4 multicast addresses can also be represented in this
language. For example, the multicast addresses224.0.1.0
(0xE0000100) and224.0.1.5 (0xE0000105) can be represented
by anM branch as shown in Figure 2(a).

Aggregation of cluster specifications is achieved by merging
paths corresponding to node specifications. An example of an
aggregated cluster specification is shown in Figure 2(b). A spec-
ification can be further abstracted by replacing any branch in the
specification tree with a wildcard. A specification tree can be
reduced to a given number of tree nodeslim (maximum speci-
fication size) by performing a breadth first search, leaving the
first lim nodes, and replacing all other branches with wildcards.
In the simulation we use a distinct specification size limit for
the unicast branch (limu) of a specification and for the multicast
branch (limm) of the specification. Givenlimu = 2, limm = 0,
the specification in Figure 2(b) is abstracted to the specification
in Figure 2(c).

Two specificationsmatchif every branch of the destination
tree overlaps with some branch of the node specification tree.
Two branches overlap if all elements are equal up to the last
element or up to the wildcard (*) label in one of them.

A.5 Node Specification Assignment

For the GT-ITM topologies, IP address assignment was pro-
vided by the topology generator. It produced addresses depen-
dent on node locations in the transit-stub topology. For theBrite
topology, we performed our own, similar address assignment.
Unicast specifications in speccast were obtained by converting
IP addresses to our specification language.

For multicast we considered both ahigh locality assignment,

where group members are placed close to each other, and a
random assignmentwhere group members are placed randomly
through the network.

A.6 Network Traffic

To simulate unicast network traffic we implemented a traffic
model in which a source and destination node were randomly
selected. Similarly, for multicast traffic destination multicast
groups were selected randomly. A packet was then sent from
the selected source with the destination specification carried in
the packet. This procedure was repeated to create traffic load
across the network for the duration of the simulation.

A.7 Metrics

We define thedelay costof a routing solution to be the sum,
over all nodesd satisfyingp, of the number of edges traversed on
the path from sourcen to d, when that solution is used. We de-
finedelay stretchto be the ratio of the algorithm’s measured de-
lay cost versus the minimum possible delay cost (i.e., the short-
est path tree [SPT]).

Load is defined as the number of links over which a message
is forwarded en route to its destination(s). This includes all links
over which the message is forwarded, even if some links do not
lead to any node that satisfiesp. We define thenetwork load
ratio to be the ratio of the total number of edges crossed by a
message to the number of links in the shortest-path tree from
the sourcen to all nodes satisfyingp. (Note that the shortest
path tree does not necessarily yield the smallest network load
as we have defined it. It is therefore possible for a solution
to achieve network load ratios less than one. This effect has
been observed before in “shared tree” multicast protocols such
as CBT and PIM-SM [16]).

We measure thenetwork stateof a solution as the average
amount of information stored at each node. For speccast we
also separately compute thetopological state, which consists of
the network state without counting specifications. For multicast
flows of packets we countper-flow stateandper-flow number of
routing messages. For speccast these metrics are used to charge
for negative filters. For IP these metrics are used to charge for
PIM-SM source trees.

A.8 Simulation Parameters

Finally, our speccast service is parameterized by three values:
the branching factor (bf)used to construct the clustering hier-
archy, themaximum size of a cluster specificationof a unicast
part (limu), and of a multicast part (limm). The branching factor
determines the depth of the hierarchy. As the branching fac-
tor increases, so does the size of the topological state thatmust
be maintained at each node; at the same time, delay and load
decrease. The maximum cluster specification size defines the
amount of information loss that occurs when specifications are
merged together. Truncating the specification produces less pre-
cise specifications which leads to overdelivery as described in
Section I. This trade-off was studied in our previous work [8].

6

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
E

LA
Y

 (
st

re
tc

h
ov

er
 S

P
T

)

Nodes in graph

Delay (Speccast)
Delay (Speccast, clustering as in IP)

Delay (IP)

(a) Delay.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ta

te

Nodes in graph

Speccast (clustering as in IP)
IP
Speccast
Speccast, topological only
Speccast, topological only, 1 link per LSA

(b) Per node state.

Fig. 3. Unicast scalability, GT-ITM topology, speccast: bf = 8, limu = 15

III. Results

A. Unicast Results

First, we compare speccast to the standard unicast service of-
fered by the Internet today. Similar results were obtained for
both GT-ITM and Brite topologies. We present results for the
GT-ITM topology in Figure 3. Brite topology results were sim-
ilar and more results can be found in [17].

Speccast topological state (bottom curves in Figure 3(b)) and
delay (Figure 3(a)), which are independent of specifications,
scale well compared to the Internet. Load and semantic state
depend on a particular specification language and specification
assignment. For unicast service using our tree-based specifica-
tion language, speccast achieves smaller state and slower state
growth than IP at the expense of a slightly higher delay and load.

Figure 3(b) shows that speccast topological state grows more
slowly than IP state. This is because speccast has more levels
in its clustering hierarchy. Speccast clustering is built with a
branching factor of 8, so when the number of nodes in our sim-
ulation is greater than 512, the speccast hierarchy has approxi-
mately 4 to 5 levels as compared to 2 levels (AS clusters) in the
IP clustering. When IP-like clustering is used for speccast, topo-
logical state grows at the same rate as IP (see the curve marked
“Speccast (clustering as in IP)” in Figure 3(b)). More levels in
the hierarchy give speccast slower growth of state at the expense
of an increased delay. In Figure 3(a), we see that delay for IPand

for speccast with IP clustering is almost the same, and both are
lower than the delay of speccast with toposemantic clustering.

In Figure 3(b), by comparing speccast topological state and
speccast topological state where we only counted 1 link per
LSA, we can see that a significant amount of speccast topolog-
ical state (more than half) is caused by multiple links in LSAs.
This is the price that we pay for allowing source nodes and some
intermediate routers to have more than one path to choose from.

Unicast specifications add only a small amount of state to the
speccast topological state since these addresses have hierarchi-
cal structure and are closely related to the topology. For the
same reason there is almost no wasted bandwidth for the GT-
ITM topology, so the delay stretch in Figure 3(a) coincides with
the load ratio, and thus negative filters are not used. The choice
of the maximum specification size (limu) is evident from the ex-
periment in Section III-D.

B. Multicast Results

In Figures 4 and 5, we vary the multicast group size from 5
to 1000 while keeping the number of groups fixed (10 groups)
and a fixed graph size of 3000 nodes. For a given parameter
setting for speccast, we see the same scalability properties as
the IP solution. While the only way to change the trade-offs in
the IP solution is by switching between protocols (e.g. replace
PIM with DVMRP), it is possible to achieve different trade-offs
in speccast by adjusting the knobs. Let us look at each metricin
more detail.

First, for a small group size we notice that speccast state is
lower than IP state because, unlike IP, speccast does not useuni-
cast specifications, while IP multicast requires unicast. Then,
in Figure 4(b), speccast state grows with increasing multicast
group size until it reaches saturation, when in most clusters the
number of multicast groups per cluster almost reacheslimm.
When the number of groups per cluster becomes greater than
limm, the precise information about multicast membership is re-
placed with a wildcard. After saturation, the number of clusters
with wildcards increases, and therefore the amount of speccast
state decreases as well. High locality assignment exhibitsslower
growth of state (Figure 5(b)). Average delay stretch, whichdoes
not depend on the number of groups, is lower for Speccast (1.15)
than for IP (1.7), since in PIM-SM/MSDP approach, the first
multicast packet in a flow is forwarded via at least one RP. For
small numbers of groups, the load ratio (Figures 4(a) and 5(a))
is significantly better for Speccast. The small amount of overde-
liveries appears after the saturation. Load ratio decreases with
increasing group size since the load of the SPT increases with
growing group size. Load ratio is higher for a high locality as-
signment (Figure 5(a)), since the load of SPT for this assignment
is smaller, because group members occur in closer proximity
than in a random assignment.

For a flow of packets, the PIM-SM/MSDP solution uses a
source tree, which reduces the delay stretch to 1.1, which is
very close to the delay stretch of speccast, although speccast
can achieve similar delay even for the first packet. Speccast
with negative filters shows lower load than a PIM-SM source
tree (Figures 4(a) and 5(a)) for flows of packets. Per-flow state
(shown in Figure 4(c)) and the number of per-flow routing mes-
sages grow much slower for speccast than for IP. This is because

7

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 R
at

io

Multicast Group Size

Load (IP)
Load (Speccast)

Load (IP, Source tree)
Load (Speccast with filters)

(a) Load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te

Multicast Group Size

IP
Speccast

(b) Per node state.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te
, a

ve
ra

ge
 p

er
 fl

ow

Multicast Group Size

(IP: PIM-SM source tree)
(Speccast: negative filters)

(c) Per flow state.

Fig. 4. Multicast, BRITE topology, 3000 nodes, bf = 8, limm = 6,
number of groups = 10, random assignment

PIM-SM/MSDP uses positive state while speccast uses nega-
tive state. Speccast requires only one filter per negative branch,
while PIM-SM/MSDP keeps state at every node of the forward-
ing source tree.

In the next experiment (Figures 6 and 7), we increase the
number of multicast groups while keeping the size of each group
constant (100 group members).

Since the maximum cluster specification size is fixed, when
the number of groups is small almost all semantic state can fit
without being abstracted (Figures 6(b) and 7(b)), thus, theload
is very low (Figures 6(a) and 7(a)). When the number of groups
gets larger, state is abstracted more, which results in a higher
load that becomes similar to the one in the IP solution. The
spike in Figure 7(b) has the same explanation as in the previous
experiment. The number of per-flow routing messages (Figure
6(c)) grows with increasing load to prevent false positiveswith
negative filters. Delay and per-flow state remain the same for

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 R
at

io

Multicast Group Size

Load (IP)
Load (Speccast with and without filters)

Load (IP, Source tree)

(a) Load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te

Multicast Group Size

IP
Speccast

(b) Per node state.

Fig. 5. Multicast, BRITE topology, 3000 nodes, bf = 8, limm = 6,
number of groups = 10, high locality assignment

both solutions since these metrics are independent of the number
of groups.

C. Unicast and Multicast Together

In the final experiment (Figure 8), we combine unicast and
multicast services to compare our solution to IP. Traffic wasdi-
vided to 80% of unicast and 20% of multicast. To keep multicast
group sizes and number of groups proportional to the number of
nodes, we scale these two parameters with the graph size. The
number of multicast groups is 5% of the number of nodes and
the group size is 5% of the number of nodes.

Speccast demonstrates a smaller amount and slower growth of
state (Figure 8(b)) and better delay and load parameters (Figure
8(a)). Note that even the described speccast specification assign-
ment allows much more than just unicast and multicast services.
By making small changes to the specification language and by
defining other types of destination specifications, it is possible,
for example, to provide scoped multicast, where a packet is de-
livered to multicast group members only inside a desired subnet,
or a packet can be delivered to a union or an intersection of mul-
ticast groups.

D. Specification Assignment vs Speccast “Knobs”

In the next experiment (Figure 9), we quantify the trade-offs
for different levels oflocality, which is a correlation between
node specifications and nodes’ locations in a topology. We start
with our initial high locality assignment (in which nodes inthe
same part of the graph have similar addresses), then we pick ran-
dom pairs of nodes and “swap” their specifications. The num-
ber of swapped pairs is written as the percentage of all nodes

8

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 R
at

io

Multicast Groups

Load (IP)
Load (Speccast)

Load (IP, Source tree)
Load (Speccast with filters)

(a) Load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te

Multicast Groups

IP
Speccast

(b) Per node state.

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000

T
ot

al
 s

iz
e

of
 r

ou
tin

g
m

es
sa

ge
s

(b
yt

es
),

 a
ve

ra
ge

 p
er

 fl
ow

Multicast Groups

IP
Speccast

(c) Sum of sizes of routing message per flow.

Fig. 6. Multicast, BRITE topology, 3000 nodes, bf = 8, limm = 6, group
size = 100, random assignment

in the network. More “swaps” lead to lower locality and 50%
of swapped specifications gives mostly random assignment of
specifications.

For small values oflimu, the state in Figure 9(b) is approx-
imately the same for all levels of locality, since the maximum
specification size is reached at almost all clusters. This iscom-
pensated by extra load (Figure 9(a)), which is higher for more
random assignments (up to 4 times higher for a 1000 node
graph).

E. Architecture Discussion

Although our approach could be used to mimic an Internet
hierarchy and naming, it was not designed to be compatible
with IP. However, it could conceivably be deployed as an in-
terior gateway protocol. Border routers would need to translate
between IP packets and speccast. To be practically deployable,
many details not considered here would have to be fleshed out.

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 R
at

io

Multicast Groups

Load (IP)
Load (Speccast)

Load (IP, Source tree)
Load (Speccast with filters)

(a) Load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

te

Multicast Groups

IP
Speccast

(b) Per node state.

Fig. 7. Multicast, BRITE topology, 3000 nodes, bf = 8, limm = 6, group
size = 100, high locality assignment

The computations required to manipulate links are as efficient
as in other link-state protocols. The potentially expensive part of
our solution is related to manipulating specifications, especially
specification matching in the forwarding process. The specifica-
tion matching is not performed by each router in the forwarding
path, but only when a packet enters a new cluster, and the num-
ber of specifications for matching is logarithmic in the number
of nodes in that cluster. The default route optimization reduces
the amount of computation, by moving it to border routers, that
could also perform caching and preprocessing. Although the-
oretically, speccast allows very general specification languages
that require solving a satisfiability problem for each specifica-
tion matching, in practice, we expect more efficient specification
languages, similar to the one used in this paper.

IV. Related Work

We were not the first to propose this kind of rout-
ing/forwarding separation. Xiaowei Yang proposed an alterna-
tive architecture, called NIRA, which was designed to work in
an ISP context, similar to today’s. A major difference is that
Speccast focuses on flexibility of node specification assignment,
rather than service provider-based addressing.

Several projects have tried to circumvent the limitations im-
posed by the current network-level architecture (i.e., IP)by
reimplementing routing and forwarding services as an overlay
network. For example, theInternet Indirection Infrastructure
(i3) [1] allows applications to insert a forwarding state at (over-
lay) routers to define new unicast, multicast, and mobile routing
services. The system utilizes an underlying distributed hash ta-
ble network (such as Chord [18]) to create rendezvous points

9

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
E

LA
Y

, L
O

A
D

 (
st

re
tc

h
ov

er
 S

P
T

)

Nodes in graph

Load (IP)
Delay (IP)

Load (Speccast)
Delay (IP, source tree)

Delay (Speccast)
Load (IP, Source tree)

Load (Speccast with filters)

(a) Delay and load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
ta

te

Nodes in graph

IP
IP, unicast only
Speccast
Speccast, topological only

(b) Per node state.

Fig. 8. Unicast and multicast, GT-ITM topology, bf = 8, limu = limm = 8,
multicast: group size = 5%, groups = 5%, high locality

for end systems.Publish-subscribesystems represent another
class of applications that define their own routing/forwarding
algorithms [3], [19], [4], [5]. In these systems certain nodes
“publish” information that is consumed by nodes interestedin
that information (“subscribers”). A publish-subscribe overlay
distribution network is then defined to carry data from publish-
ers to subscribers. Unfortunately, all of the above approaches
suffer from the overlay-to-underlay mapping problem, resulting
in overlay networks that do not make efficient use of the under-
lying network.

There is also recent work on distributed hash tables im-
plemented on a network layer [20], [21]. In these systems,
randomly-chosen numbers are used as specifications. Speccast
allows many possible specification languages and achieves a
much lower delay, which is independent of specifications.

A notion similar to specification reduction through aggrega-
tion in speccast is used in the content-based networking algo-
rithm by Carzaniga et. al. [22], [3]. The content-based network-
ing algorithm propagates filters using the underlying “broad-
cast” layer (assuming it exists). Filters describing several nodes
can be shared when the filter of one node “covers” a filter of
another (in our terms, if all nodes that satisfy one node’s spec-
ification satisfy another node’s specification) and paths tothese
nodes from some other node intersect. Our network layer ser-
vice does not require the overhead needed to maintain a separate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 10 15 20 25 30 35 40 45 50

R
at

io
 o

f o
ve

rd
el

iv
er

ie
s

(1
 -

 n
o

ov
er

de
liv

er
ie

s)

Maximum specification size (limu)

Speccast, Shuffle 50% node pairs
Speccast, Shuffle 30% node pairs
Speccast, Shuffle 20% node pairs
Speccast, Shuffle 10% node pairs
Speccast, Shuffle 5% node pairs
Speccast, Shuffle 0% node pairs

(a) Load.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 5 10 15 20 25 30 35 40 45 50

S
ta

te

Maximum specification size (limu)

Speccast, Shuffle 50% node pairs
Speccast, Shuffle 30% node pairs
Speccast, Shuffle 20% node pairs
Speccast, Shuffle 10% node pairs
Speccast, Shuffle 5% node pairs
Speccast, Shuffle 0% node pairs

IP
Speccast, topological state only

(b) Per node state.

Fig. 9. Trade-offs under changing locality, BRITE topology, 1000 nodes

underlying routing protocol. Also, our system provides much
greater control to the source, not just by giving more power in
describing destinations, but also by allowing it to choose among
available paths. Moreover, our system supports specificationab-
straction, which is not supported by the content-based network-
ing service.

Another theoretical work that studied the trade-off between
stretch and network state was in the area of compact and inter-
val routing. Initial results were reported by Peleg [23], which
were later improved on by Thrup and Zwick [24]. The authors
proposed a forwarding algorithm and an algorithm-dependent
label assignment scheme (in our terms “node specifications”) to
optimize the trade-off. We do not control/limit address assign-
ment and explore different trade-offs by allowing several copies
of a packet to be present in a network.

Nimrod [25] describes a powerful scalable routing architec-
ture based on hierarchical, link-state and source routing ap-
proaches. Although this architecture could be extended to per-
form speccast-like routing, the disadvantage is the required reso-
lution before forwarding of a datagram packet: a query-response
protocol is needed to obtain the source route to the destination.
In contrast, speccast performs on-the-fly route refinement to re-
duce the delay.

PNNI [26] is a system developed for ATM networks that also
uses hierarchical, link-state and source routing ideas. A major
difference is that addresses in PNNI can only be aggregated.Our

10

system explores specification state for load trade-off by allowing
specification abstraction and the forwarding algorithm which is
different from longest prefix matching.

Our early work in this area described a different implemen-
tation ofspeccast service[27] where destinations were also de-
scribed by a specification carried in a packet. We proposed a
very simple specification language, but demonstrated the power
and flexibility of using speccast as the network-level service on
which a wide range of applications could be efficiently built.
However, the solution did not scale as well to Internet-sized net-
works.

V. Conclusions

We have presented a novel network-layer routing service that
provides separation between topological and semantic informa-
tion. In our solution, we investigated a novel point in the rout-
ing/forwarding solution space—one that allows trading thepos-
sibility of overdeliveries(increased network load) for reduced
state requirements and reduced dependence of node specifica-
tions (addressing) on location. We compared the scalability of
the proposed architecture with traditional Internet unicast and
multicast services and found them comparable. Our system can
be extended to implement other services besides unicast and
multicast by giving a new specification language.

REFERENCES

[1] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh
Surana, “Internet indirection infrastructure,” inACM SIGCOMM, 2002.

[2] Yang hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for end system
multicast (keynote address),” inSIGMETRICS, 2000.

[3] Antonio Carzaniga and Alexander L. Wolf, “Forwarding ina content-
based network,” inACM SIGCOMM, 2003.

[4] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Robert E. Strom
Jay Nagarajarao, and Daniel C. Sturman, “An efficient multicast protocol
for content-based publish-subscribe systems,”IEEE International Confer-
ence on Distributed Computing Systems, 1999.

[5] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley, “The design and implementation of an intentional naming system,”
ACM SOSP, vol. 20, 1999.

[6] Leonard Kleinrock and Farouk Kamoun, “Hierarchical routing for large
networks. Performance evaluation and optimization,”Computer Net-
works: The International Journal of Distributed Informatique, vol. 1, no.
3, pp. 155–174, Jan. 1977.

[7] J. Moy, “OSPF version 2,” Apr. 1998, RFC 2328.
[8] Leonid Poutievski, Kenneth L. Calvert, and James N. Griffioen, “Topose-

mantic network clustering,”IEEE Globecom 2006, Nov. 2006.
[9] Waitzman, Partridge, and Deering, “Distance Vector Multicast Routing

Protocol,” Nov. 1988, RFC 1075.
[10] Rekhter et al, “A Border Gateway Protocol 4,” Jan. 2006,RFC 4271.
[11] Estrin et al, “Protocol independent multicast-sparsemode (PIM-SM): Pro-

tocol specification,” June 1998, RFC 2362.
[12] B. Fenner and D. Meyer, “Multicast source discovery protocol (MSDP),”

Oct. 2003, RFC 3618.
[13] E. Zegura and K. Calvert, “Georgia Tech Internet Topology Models,”

http://www.cc.gatech.edu/projects/gtitm.
[14] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers,

“BRITE: Universal topology generation from a user’s perspective,” in In-
ternational Workshop on Modeling, Analysis and Simulationof Computer
and Telecommunications Systems, MASCOTS.

[15] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,”
ArXiv Condensed Matter e-prints, Oct. 1999.

[16] Kenneth Calvert, Ramesh Madhavan, and Ellen Zegura, “Acomparison
of two practical multicast routing schemes,” Tech. Rep. GIT-CC-94/25,
College of Computing, Georgia Institute of Technology, 1994.

[17] Leonid Poutievski, “Speccast: Toward a more general network layer. PhD
thesis,” University of Kentucky, 2007.

[18] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” inSIGCOMM, 2001.

[19] Antonio Carzaniga, David Rosenblum, and Alexander Wolf, “Achieving
scalability and expressiveness in an Internet-scale eventnotification ser-
vice,” ACM Symposium on Principles of Distributed Computing, 2000.

[20] Matthew Caesar, Tyson Condie, Jayanthkumar Kannan, Karthik Lakshmi-
narayanan, and Ion Stoica, “ROFL: routing on flat labels.,” in SIGCOMM,
2006.

[21] Matthew Caesar, Miguel Castro, Edmund B. Nightingale,Greg O’Shea,
and Antony Rowstron, “Virtual ring routing: network routing inspired by
dhts.,” inSIGCOMM, 2006, pp. 351–362.

[22] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf, “A
routing scheme for content-based networking,” inIEEE INFOCOM, 2004.

[23] David Peleg and Eli Upfal, “A trade-off between space and efficiency for
routing tables,”J. ACM, vol. 36, no. 3, pp. 510–530, 1989.

[24] Mikkel Thorup and Uri Zwick, “Compact routing schemes,” in ACM
symposium on Parallel algorithms and architectures, 2001.

[25] Isidro Castineyra, Noel Chiappa, and Martha Steenstrup, “The Nimrod
routing architecture,” August 1996, RFC 1992.

[26] “Private network-network interface specification version 1.0 (PNNI 1.0),”
The ATM Forum, Mar. 1996.

[27] Leonid Poutievski, Kenneth L. Calvert, and James N. Griffioen, “Spec-
cast,” IEEE INFOCOM, 2004.

