
Secure, Customizable,
Many-to-One Communication

Kenneth L. Calvert, James Griffioen, Billy Mullins, Leon Poutievski, Amit Sehgal
�

Laboratory for Advanced Networking, University of Kentucky, Lexington, KY

Abstract. Concast is a customizable many-to-one network-layer communication
service. Although programmable services like concast can improve the efficiency
of group applications, accompanying security concerns must be addressed before
such services are likely to be deployed. The problem of securing such services
is interesting because conventional end-to-end security mechanisms are not ap-
plicable when messages are processed inside the network, and also because of
the potential for interaction among the various policies involved. In this paper
we describe our implementation of a secure concast service,which leverages ex-
isting network-level security mechanisms (IPsec) to provide secure distribution
of program code (merge specifications) as well as authentication of participating
nodes. We describe the various policies supported, how theyinteract, and how
our approach provides security against various attacks.

1 Introduction

The design of the Internet protocols has produced a remarkably flexible, robust, and
scalable system. Perhaps nowhere is the end-to-end design principle more evident than
in the area of security, where the best services and solutions are universally considered
to be those that are closest to the application. Over time, however, a number of net-
work services have appeared that involve, in one way or another, processing that occurs
in the shared infrastructure,awayfrom the end systems on which the applications re-
side. Many of these services depend on the ability to look into the packet beyond the
information needed for traditional forwarding (i.e. the packet header), into the packet
payload. In some cases, this processing is performed on the application’s behalfduring
forwarding [1–6].

The problem of securing applications that rely on this type of processing is interest-
ing because the conventional end-to-end security solutions preclude—and indeed, are
intended to prevent—inspection and modification that occurs apart from the endpoints,
and thus are incompatible with such applications. In addition, reliance on the infrastruc-
ture to perform processing on behalf of the application implies the existence of multiple
policies that need to be enforced.

The concastservice is a good example of a service that performs processing on
the applications behalf during forwarding. Concast is a many-to-one communication
�

Work supported in part by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF under agreement number
F30602-99-1-0514, and by the National Science Foundation under grants EIA-0101242 and
ANI-9977292.



service that can be viewed as a companion service to multicast (i.e., the inverse of one-
to-many communication). In concast, multiple senders transmit data packets toward
a single receiver; the eventual result is that a single packet, containing the combined
(merged) data from the multiple senders, is delivered to thereceiver. Because the nature
of the merging operation varies with the application, concast allows end systems to
define the merge processing that is applied at internal network nodes. The benefit of
concast is in reducing the limiting factor on the scalability: from the total number of
senders to the “branching factor” at any node in the “tree” formed by the paths packets
follow from senders to receiver.

In this paper we consider the problem of securing scalable infrastructure-based ser-
vices, in particular the problem of creating a secure concast service. We outline a gen-
eral set of security requirements for such services, and identify the relevant policies
and trust relationships involved. We then describe a new security approach based on
the idea that the control plane can be secured using conventional point-to-point secu-
rity techniques for authentication, confidentiality, and integrity. Given a secure control
plane, the responsibility for end-to-end security can thenbe distributed among the par-
ticipating nodes. We describe the application of our approach to implementing a secure
concast service. We report performance measurements takenfrom our prototype imple-
mentation of the secure concast service.

2 Security Requirements

We assume a network environment in which network services are offered to users as a
business proposition byservice providers. We believe that a customizable service will
only be deployed if it offers some benefit to the service provider. We assume this benefit
takes the form of money paid to the provider in return for access to the enhanced service.
Thus our first security requirement is:

Only authorized users can take advantage of the customizable service.

We assume that users will pay for a service only if they are assured of receiving
some benefit from it. In the case of concast, the main benefit tothe user isscalability
through anonymity: by moving application-specific processing into the network infras-
tructure, the service hides the details of where the data is coming from and how much
processing is occurring. To put it another way: placing application-specific processing
in the infrastructure hides scale and complexity from the users. This leads to an addi-
tional requirement:

The scale and complexity of the processing should not be exposed at any single
point.

As a consequence, the user must rely on the network to carry out processing ac-
cording to user-supplied specifications. On one level, thisis no different than any other
network service. However, in terms of security there is a profound difference between
relying on the network toforwarddata, as opposed to examining and possiblymodifying
it. In the former case, end-to-end security mechanisms exist that can provide assurance
that (under standard assumptions) user data is not disclosed or tampered with. In the



latter case, the users not only have to trust the network to carry out the specified pro-
cessing, but also to protect the confidentiality and integrity of the application’s data.
That is, the user/application has to rely on the network infrastructure to enforce itsse-
curity policies. This brings us to the third security requirement:

Integrity and confidentiality of application data are protected according to
user-supplied policies.

In other words, each instance of the service has a user-supplied policy that specifies
which entities are authorized to participate in that instance.

This requirement is nontrivial for two reasons. First, because the infrastructure is a
key participant in the enhanced service, the application policy needs to cover not only
users, but also components of the infrastructure (nodes). In other words, each partici-
pant must be able to identify nodes that arenot trusted to carry out processing on its
behalf, and the system must take steps to prevent such nodes from participating in pro-
viding service to that user. Second, and more importantly, the service is designed so
that the set of participating nodes grows incrementally, hop-by-hop toward participat-
ing users. Participants areonlyaware of other participants (either users or infrastructure
nodes) that are up to one hop away; this is a fundamental characteristic that is required
for scalability and indeed, for practical deployment. As a consequence, users cannot
themselves ensure that only trusted nodes participate in the service; they must rely on
the infrastructure to enforce their policies on participation.

Our approach to satisfying the last two requirements is to state an invariant that is
to be maintained at all times by the service:

All participating nodes are trusted by the user to enforce user policies regard-
ing (i) processing, confidentiality and integrity of user data; and (ii) which
nodes are trusted to participate.

This can be viewed as (an explicit form of)transitive trust. Transitivity of trust relation-
ships in some form seems to be an unavoidable requirement forscalableservices that
rely on third parties for key functionality.

3 Securing a Programmable Service

The first step in securing a programmable service is establishing trust relationships
between the participating entities (senders, receivers, and network nodes).

Trust relationships can be represented as the set of principals (nodes) that are al-
lowed to perform certain actions (e.g., join the concast group, receive the merge specifi-
cation, or be given an encryption key). We say apolicydefines the set of nodes that can
perform a certain action. For example, a concast receiver will define the list of sender
nodes that are allowed to join the group (called thejoin policy). At the same time, each
local node in the provider’s network will define the list of end systems that are allowed
to use the concast service (e.g., have paid for the service).Clearly, both policies must
be met before a sender is allowed to join a concast group.

The most important policy is the one that defines the nodes that can be trusted to
enforce the policies of others. We believe this This type of transitive trust is critical for



network-level services where processing occurs hop-by-hop. Because the user’s data
does not remain encrypted end-to-end, intermediate nodes that handle the user’s data
must enforce the user’s policies on the user’s behalf. If a node cannot be trusted to
enforce the user’s policies, that node cannot be allowed to participate in the service. For
example, a concast receiver must rely on routers in the network to enforce the receiver’s
join policy. If unauthorized senders were allowed to send data along the concast flow
and the membership check did not occur until the merged packet reached the receiver,
it would be too late. The damage (corruption of authorized sender data) would already
have occurred at intermediate nodes in the network.

The key to achieving a scalable yet secure service is the ability to incrementally add
nodes to the service such that the invariant is not violated,and to incorporate each added
node’s policy into the session policy. To initiate a secure service, the user’s policies
must be propagated, hop-by-hop through the network, checking the validity of each
node along the path before adding it to the flow.

Note that this description assumes that policies are themselves propagated securely.
At each hop along the propagation path, the adjacent nodes must authenticate one an-
other and verify policy compliance before proceeding. Onceauthenticity and authoriza-
tion have been established, the policies can be sent over a confidential channel. Because
the trust relationships are established hop-by-hop, existing point-to-point security tech-
niques can be used. In particular, protocols such as IPsec can be used both to perform
the authentication check and to create the encrypted tunnelover which policies can be
sent.

Once a path of trusted network hops has been established, that path can be used for
control plane messages. In particular, control messages that enable service-specific pro-
cessing at each trusted node can be sent along the path. Givena secure (programmable)
control plane, end systems can then control security in the data plane, by installing mod-
ules that offer as much or as little security as desired. In other words, by supporting a
secure, authenticated, hop-by-hop signaling protocol in the control plane, applications
can implement end-to-end security in the data plane, thereby maintaining the end-to-
end principle.

In the next section, we present a specific approach for implementing a secure control
plane, and show how it can be applied to the concast service. The approach is novel
in the sense that it leverages existing point-to-point secure communication protocols
(i.e., IPsec) to create a secure path and distribute policies and user-specified processing
modules. Given this basic infrastructure, end systems thendefine and control security
in the data plane by programming the service appropriately.

3.1 The Concast Service

Before we describe how a secure concast service can be implemented using our ap-
proach, we need to take a moment and briefly review the basic (non-secure) con-
cast service. Additional details of the concast service canbe found in our earlier pa-
pers [7] and [1].

Concast is a many-to-one communication service that provides the symmetric in-
verse of multicast: a group of senders belonging to aconcast flowtransmit messages



that aremergedby the network en route to a common receiver
�

. Like multicast, con-
cast provides a scalable abstraction: an arbitrary number of group members(senders)
are treated as a single entity by

�
. A concast flow is identified by its receiver

�
and a

group identifier� ; senders “join” the flow before they begin sending.
The packets delivered to

�
on a concast flow are derived from the packets sent by

the group members according to amerge specification (MS)supplied by the receiving
application. The concast service allows a limited amount ofnetwork programmability,
where the desired processing semantics are defined within the framework of a merge
specification. The merge specification defines (1) how datagrams delivered to the re-
ceiver are derived from datagrams transmitted by differentsenders (2) the timing of
datagram forwarding and delivery; and (3) which datagrams are combined with each
other (e.g. only packets containing the same sequence number are merged with each
other). The merge specification is supplied by the receiver at flow creation time (e.g.
in the form of bytecodes for a collection of Java classes conforming to a certain type
specification), and is executed by a merge daemon (Merged) at each network node.

Concastmerge specificationdeployment is accomplished via theConcast Signal-
ing Protocol (CSP), implemented using a receiver-side CSP daemon (RCSPd) and a
server-side CSP daemon (SCSPd). The CSP protocol creates the flow and establishes
concast-related state, called theflow state block (FSB), in network nodes (i.e. at all
concast-capable nodes on the paths from group members to thereceiver.) Theflow state
block records themerge specificationdescribing how packets are to be merged, and an
upstream neighbor list (UNL)that records the next concast-capable nodes “upstream”
(towards the senders) for this flow. The UNL is maintained using soft-state techniques
similar to RSVP [8].

Figure 1 shows the secure version of the CSP protocol, but thebasic idea is the same
as the original CSP protocol. First, the receiver initiatesthe flows (step 0,1). The senders
then attempt to join the flow byJoin Flow Requests (JFR)messages toward the receiver
which are intercepted at intermediate nodes and directed tolocal CSP daemons. and
propagated toward the receiver asRequest for Merge Spec (RMS)messages (steps 2-8).
The merge specification is then “pulled” from the receiver towards the senders (steps
9-18).

3.2 Securing Concast

Because the receiver is responsible for initiating the concast flow, the receiver should
also be responsible for defining the flow’s membership (i.e.,join) policy. As we saw
earlier, the policy must propagate through the network toward the senders so that routers
can decide whether a sender is allowed to join or not. To maintain scalability, the concast
receiver is not required to know (in fact never learns) the identity, or the location, of the
senders. Obviously the join policy cannot be pushed into thenetwork toward the senders
until the location of the senders is known.

Because senders must identify themselves before the policies can be sent out, the
secure version of the CSP protocol begins just like the original CSP protocol (see Fig-
ure 1). A new sender issues a join request message that propagates (in the clear) to the
receiver (steps 2-8). At this point the path from the sender to the receiver is known and



IPSEC

N SR
Receiver (X):

YX Sender (Y):

RCSPd:

0.
2. Join Group

1.

RCSPd RCSPd SCSPd

SCSPd:RCSPd:
3.

4.

5.

6.

7. 10.

12. MS

SI Ack
SecInfo
RMS

8. 13.

tunnel
Setup IPSEC

UNL = {S}
Create FSB

Create Flow

Update UNL

UNL = {}
Create FSB

UNL = {N}

Spawn MERGEd Spawn MERGEd

Create FSB

9.
11.

JFR
SecInfo
SI Ack

PMS

IPSEC

14.

15. Setup

16.

17.

18. Spawn

IPSEC 

PMERGEd

PMergedMergedMerged

8. 13. 18.

2.0.

Fig. 1. The Secure Concast Signaling Protocol.

the user’s join policy can be “pulled” toward the sender. This is accomplished by cre-
ating a set of secure tunnels back to the sender (steps 9-18).The secure path is created
hop-by-hop, each time authenticating the next hop, verifying its admissibility according
to the policy, and then passing the merge specification (including the relevant policies)
across the secure tunnel (e.g., steps 9-12).

Because the merge specification is sent across a secure control channel and executes
on trusted nodes, the responsibility for end-to-end data path security can be placed in
the hands of the end systems. To achieve this objective, the concast merge specification
itself must contain the code that controls decrypting, processing, and then re-encrypting
the data packet before forwarding it on. Because the controlchannel is secure, the de-
cryption and encryption key can be distributed along with the merge specification.

3.3 Merge Framework Modifications

In addition to securing the CSP protocol (i.e., securing thecontrol plane), changes were
also needed in the merging framework, in the form of “hooks” to support user-defined
encryption/decryption in the data plane.

First, we enhanced the merge specification type/message to include a user-defined
encryption function and decryption function as well as the secret keys to be used for
encryption, decryption and authentication. These may be actually byte codes, or they
may be pointers to predefined encryption and decryption functions we added into the
merge framework (MergeD). As part of the encryption specification, the framework
allows the user to specify whether a MAC (message authentication code) should be



include in the encrypted message. If so, the MAC will be checked when the packet is
decrypted to verify its integrity.

The second change to the framework creates different forms of the merge daemon
(MergeD) to be deployed at senders, merging nodes, and the receiver. Merge daemons
executing on sender nodes receive packets over a local socket. Because these incom-
ing packets are unencrypted (the local environment is trusted), the decryption func-
tion does not need to be invoked; only encryption is performed on outgoing packets.
On receiver nodes the situation is reversed: incoming packets need to be decrypted,
but outgoing packets go straight to the receiver application and do not need to be en-
crypted. On intermediate nodes, all incoming packets are decrypted and all outoing
packets are encrypted (as long as merging is occurring, i.e.there is more than one
upstream neighbor—otherwise, the packets are simply forwarded). Because we trust
sender nodes only to transmit data, not merge packets, the signalling protocol transfers
only apartial merge specification to the sender, containing an encryptionfunction and
the secret key (that is, neither the merge routine nor the decryption key is passed).

4 Secure Concast Signaling Protocol

This section describes the Secure Concast Signaling Protocol, which is based on the
original Concast Signaling Protocol [1]. Together with IPsec, Secure CSP provides a
foundation for the secure concast service. We begin by defining notational conventions,
data types, and cryptographic primitives used. Next we describe the protocol messages
and their contents. Finally, we give a high-level operational description of the (normal)
process of setting up a concast flow.

4.1 Basic Types and Cryptographic Primitives

Our protocol uses the following types:

– appident: Identifier of an application-level principal, i.e. a participant in the con-
cast flow (receiver or sender). E.g., if X.509 certificates are used, this could be an
OSI Relative Distinguished Name (RDN).

– nodeident: Identifier of a network-level principal, i.e. a node. We useIP addresses
as network identifiers.

– flowspec: A pair �� �� � identifying a concast flow, where
�

is the receiver’s IP
address (anodeident) and� is the group identifier.

– mergespec: A collection of data and function definitions that defines the merge
processing to be carried out by intermediate nodes, and thatconforms to the re-
quirements of the concast merging framework.

– pmergespec: A partial or “thinned”mergespec, containing only the security-related
portions of the merge specification. End systems receive partial mergespecs because
they need to do security-related processing but may not be trusted to apply policies
or perform merging.

– policy: A specification of a set of principals that are authorized insome way. We
consider a policy to be a predicate on identifiers (appidents or nodeidents) and



credentials; if the predicate has the value “true” for a given identifier and credential,
it means that (i) the identified principal is authorized, and(ii) the given credential
is an acceptable witness for evaluating authenticity of information to be provided
by the principal.

– signature: A digital signature, essentially a cryptographic digest of message data
encrypted with some principal’s private key, computed and formatted according to
accepted cryptographic standards (e.g. SHA-1 [9] and PKCS #1 [10]). The notation�� �� �� ����� denotes the result of concatenating messages or fields�,

�
and � and

signing the digest (created using a well-known cryptographic algorithm such as
SHA-1) of the resulting bit string with private key� . Unless otherwise specified,
signaturefields in messages cover the entire contents of the message preceding the
field.

– cert: A public-key certificate, which binds an identifier (of typeappident or nodei-
dent) to a public key.

– ipsecinfo: A structure containing IPsec information of a host needed by another
host to create an IPsec tunnel to the former host.

– timestamp: A timestamp.
– ccasthdr: the first field of every secure CSP message. Indicates the version of the

protocol and the type of the message.

The notationverify�	 � � � �� denotes the result of verifying the authenticity and in-
tegrity of (some part of) a message	 using signature� and certificate�. This function
returns true if digesting the information in	 results in a value consistent with that ob-
tained by decrypting� with the public key contained in�. For brevity, we sometimes
abuse notation by indicating that the entire message	 is being verified even though the
authenticator covers only a portion of it.

The notation
 �� � �� denotes the result of applying policy
 to identifier � with
credential�. The value “true” means that�, presenting credential�, is authorized. The
notationtime-check��� denotes the result of verifying that a timestamp

�
is within some


of the current time as known locally. We assume that



is configured appropriately at
every node for the degree of clock synchronization achievable in the network. (As usual
when timestamps are used to ensure freshness, if



is too small the protocol may fail

between nodes whose clocks are not well-synchronized; setting



too large increases
the window of vulnerablility to replay attack.)

4.2 Policies and Principals

As described earler, the signaling protocol makes use of various policies. Per-flow poli-
cies are supplied by the receiver, and specify the principals—nodes and applications—
that are allowed to participate in the flow. Per-node policies are supplied by service
providers (ISPs), and specify the nodes that are allowed to perform various functions in
a flow. Per-node policies are only applied tonodeidents.

The supported policies include:

– fp.j: per-flow join policy. Specifies application entities (appidents) authorized to
join the flow. This policy is specified by the concast receiveralong with the merge
specification.



– fp.u: per-flow upstream node policy. Specifies nodes (nodeidents) that are autho-
rized to participate in the flow either as host of an application-level sender or as a
merging node. This policy is specified by the concast receiver along with the merge
specification.

– np.r: per-node receiver policy. Specifies nodes (nodeidents) that are authorized to
be the terminal points of concast flows. This implies that thenode is authorized
to supply merge specifications. This policy would typicallycharacterize nodes that
either have had a fee paid on their behalf, or are part of some trusted nonlocal
domain.

– np.d: per-node downstream policy. Specifies nodes (nodeidents) that are authorized
to relay a merge specification from a downstream receiver.

– np.s: per-node sender policy. Specifies the set of nodes (nodeidents) authorized to
be the source of requests to join a concast flow. Again, typically characterizes the
set of nodes in this domain that have paid for service, and nodes trusted by virtue
of the other domain to which they belong.

– np.u: per-node upstream policy. Specifies the set of nodes authorized to be upstream
of this node in a flow. Note that such nodes are trusted not onlyto handle (merge)
user data, but also to apply this node’s policies.

The protocol description involves the following principals and their associated in-
formation:� is the receiver (application), which has private key�� and certificate�� ;
it is running on node

�
, which has private key�� and certificate�� . � is a sender (ap-

plication), which has private key�� and certificate�� . � is running on node� , which
has�� and�� . Finally,� is a merging node with private key�	 and certificate�	 .

4.3 Protocol Messages

Message contents are given in terms of the structured types shown in Figure 2, which
in turn use the basic types defined above. Note that theCREATEREQ structure contains
two signatures; the first covers theMERGETOKEN, while the second covers the same
data except thatmergespecis replaced by the subset of its information that constitutes
a pmergespec. Also, thePCREATEREQ structure contains only the fields of aCRE-
ATEREQ that are relevant to the reduced mergespec, i.e. the subset of mt that constitutes
a reduced mergespec, thepMTSig, and theuserCert; given a validCREATEREQ, a
PCREATEREQ can be derived from it.

JOINREQ

flowspec flowID;
appident user;
signature userSig;
cert userCert;

MERGETOKEN

flowspec flowID;
mergespecms;
policy PFUpstreamP;
policy PFJoinP;
appident user;

CREATEREQ

MERGETOKEN mt;
signature MTSig;
signature pMTSig;
cert userCert;

Fig. 2. Structures used in concast messages



The contents of the protocol messages are shown in Figure 3.

Join Flow Request (JFR)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident sNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert sNodeCert;

Request for Merge Specification (RMS)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident upNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert upNodeCert;

Security Information (SecInfo)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident downNode;
timestamp ts;
ipsecinfo sinfo;
signature msgSig;
cert downNodeCert;

Sec. Info. Acknowledgement (SIAck)
ccasthdr flowInfo;
JOINREQ userReq;
nodeident upNode;
timestamp ts;
signature msgSig;
cert upNodeCert;

Merge Specification (MS)
ccasthdr flowInfo;
CREATEREQ userSpec;
nodeident downNode;
timestamp ts;
policy nodeP;
signature msgSig;
cert downNodeCert;

Concast Join Succeeded (CJS)
ccasthdr flowInfo;
PCREATEREQpUserSpec;
nodeident downNode;
timestamp ts;
signature msgSig;
cert downNodeCert;

Fig. 3.Secure CSP Messages

4.4 Protocol Operation

With the help of Figure 1 we describe the normal sequence of steps for a secure concast
flow establishment. In the interest of clarity we omit steps related to error processing,
and assume that the flow in question is not currently present on any node involved.

Step 0: To create a flow�� �� �, the receiver application� generates the secure merge
specification (ms) and per-flow policies (PFUpstreamP andPFJoinP), formats



the requisite information as aMERGETOKEN, and generates a signature (MTSig)
using its private key�� . It also generates a signature (pMTSig) for the partial
MERGETOKEN (theMERGETOKEN minusms). � finally bundles theMERGETO-
KEN, the signaturesMTSig andpMTSig, and its certificateuserCert=�� into
a CREATEREQ and hands it over to the local CSP module.

Step 1: Upon receiving theCREATEREQ
��, the CSP at

�
verifies the signatures1 ��.MTSig

and��.pMTSig using the public key in the certificate��.userCert; that the prin-
cipal of certificate��.userCertmatches identity��.user; and that��.userCert
is a valid certificate generated by a trusted certificate authority. If the verification
succeeds then the CSP creates the local flow state for the flow�� �� � and returns a
success indication to� .

Step 2: To join the flow �� �� �, the sending application� creates aJOINREQby including
its identityuser=� , certificateuserCert=�� , and a signatureuserSig gen-
erated by signing the request using its private key�� . TheJOINREQis then passed
to the local CSP.

Step 3,4: Upon receivingJOINREQ
� � from � , the CSP at� verifies (i) the join request sig-

nature
� �.userSig using the public key in certificate

� �.userCert, (ii) that the
principal of certificate

� �.userCert matches application identifier
� �.user and

(iii) that
� �.userCert is a valid certificate. The CSP at� next checks (i) if� is

allowed by local policy to act as a concast sender, and (ii) if
�

is an acceptable con-
cast receiver node according to local policy, i.e. that� :np.r�� � � � is true2. If so, a
flow state block is created for the flow�� �� � and its state is marked “pending”. A
JFR message containing the user’s join requestuserReq, the current timestamp
ts, � ’s identifiersNode=� and certificatesNodeCert=�� , IPsec information
sinfo to connect to� and a signaturemsgSig obtained by signing the JFR mes-
sage using�� is generated and forwarded toward

�
.

Step 5,6: Upon intercepting a JFR message
�	 on its way to

�
, the CSP at� first verifies the

signatures
�	 .userReq.userSig and

�	 .msgSig to ensure the authenticity
and integrity of the user request and the JFR message respectively. It also checks
the validity of the timestamp

�	 �ts. Next, the CSP verifies that� :np.r�� � � �,
and� :np.u��	 �sNode

�	 �sNodeCert� are all true. If so, it creates a temporary
flow state block for the flow�� �� �, adds the pair�	 �sNode

�	 �sNodeCert�
to the upstream neighbor list, and marks the flow “pending”. It also constructs an
RMS message containing the user’s join requestuserReq, a fresh timestampts,
� ’s identifier upNode=� and certificateupNodeCert=�	 , IPsec information
sinfo needed to connect to node� and a signaturemsgSig obtained by signing
the RMS message using�	 . It forwards the resulting RMS message toward

�
.

(This process will be repeated at each concast-capable nodealong the path to
�

: the
node intercepts the RMS message, validates the signatures,checks that the message
source and

�
are acceptable to its local node policies, and then constructs and

1 While the channel between the receiver application and the local CSP is probably trusted, this
verification is a good idea because other nodes are going to perform it. If there is a problem, it
is better to detect it locally. (Similarly for theJOINREQpassed by� .)

2 Note that this check should “tentatively succeed” at this stage without a certificate for� . The
purpose is to prevent wasted effort in case� is unacceptable regardless of what credentials are
presented. It will be repeated later with� ’s actual credentials when they are available



forwards toward
�

a signed RMS message containing the originalJOINREQ and
its own identifier and certificate. For brevity, we assume here that� is the last
concast-capable node on the path toward

�
.)

Step 7,8: Upon receiving an RMS message�	 , the CSP at
�

, the destination node, veri-
fies the signatures�	 .userReq.userSigand�	 .msgSig. It also checks that
time-check��	 �ts� �
fp�j ��	 �req �user

� �	 �req �userCert� �
fp�u��	 �sNode

� �	 �sNodeCert� ��
:np.u��	 �sNode

� �	 �sNodeCert� are true, i.e. the flow policy admits the join-
ing sender� and both flow and node policies admit the upstream neighbor who sent
the message. If so, then it spawns the Merge daemon for the flow; if not, it sends
a signed error message upstream, indicating that the connection failed for policy
reasons.

Step 9: Before the CSP can send the merge specification to the upstream node it must create
an IPsec tunnel to the upstream node. To do this the CSP first sets up all necessary
IPsec connection information using�	 .sinfo at its own end. It then creates a
SECINFO (Security Information) message that contains theuserReq=�	 �req, a
fresh timestampts,

�
’s identifierdownNode and certificatedownNodeCert,�

’s IPsec informationsinfo and a signature obtined by signing SECINFO with
�� . It then sends the SECINFO message to the upstream node.

Step 10,11:Upon receiving the SECINFO message�	 , the CSP at the upstream node� checks
that the flow identifier�	 .userReq.flowID refers to a legitimate pending flow,
and verifies (i) the signatures�	 .userReq.userSig and�	 .msgSig, (ii) that
certificate�	 .downNodeCert is valid. Next the CSP checks iftime-check��	 �ts�
is true. It then applies its local downstream node policy, i.e. checks the truth of the
predicate� :np.d��	 �downNode

� �	 �downNodeCert�. If true, it sets up its lo-
cal IPsec connection files using�	 .sinfo and establishes a security association
with �	 .downNode. Upon successful creation of the IPsec tunnel the CSP creates
a SIACK message that includes theuserReq(�	 .userReq), the node’s identity
upNode(� ) and certificateupNodeCert(�	 ), a timestampts and a signature
msgSig obtained by signing the SIACK message with�� . CSP then sends the
SIACK message downstream toward

�
.

Step 12: When the tunnel is established, the CSP at
�

adds the pair�� ��	 � to the flow’s
upstream neighbor list (UNL) and then constructs a MERGESPEC (Merge Specifi-
cation) message containing the flow’s create requestuserSpec, a fresh timestamp
ts, its identitydownNode=

�
and certificatedownNodeCert=�� .

�
also adds

its upstream policynp.u tonodeP in the MERGESPECmessage, signs the message
with �� and sends it to� .

Step 13,14:Upon receiving an MS message		 (through the tunnel), the upstream node� ver-
ifies the three signatures		 .userSpec.MTSig, 		 .userSpec.pMTSig and
		 .msgSig, checks the timestamp		 .ts (allowing for travel and processing
time to get to the receiver node and back), unpacks and installs the merge speci-



fication and policies, and then performs the following stepsfor each node� (with
certificate� � ) in the flow’s upstream neighbor list.3

1. Verify that � is acceptable according to the node upstream policy received in
the merge specification:		 �nodeP�� �� � �.

2. Verify that � is acceptable according to the flow’s upstream neighbor policy:
fp�u�� �� � �.

If the UNL is nonempty after this step, spawn a MERGEd and sendthe MERGEd
the updated upstream neighbor list. (Note that this step happens once for all up-
stream neighbors at intermediate and receiver nodes. At senders, however, for tech-
nical reasons a separate MERGEd is spawned for each sending application pro-
gram.)

Step 14,15,16:(These steps are similar to 9–11.)� checks whether an IPsec tunnel to� already
exists. If not, it sets up IPsec to establish a tunnel, and constructs, signs and sends
to � a SECINFO message. SECINFO contains the originalJOINREQfor the flow, its
identitydownNode=� and certificatedownNodeCert=�	 , and IPsec informa-
tion sinfoto enable establishing a tunnel. The upstream node preparesits end for
the creation of an IPsec tunnel and if successful sends a SIACK message to the
downstream node.

Step 17: The downstream node after receiving the SIACK message from� sends the merge
specification to the upstream node. But since the upstream node� was added after
the receipt of a JFR message and not an RMS message, a partial merge specifica-
tion instead of a full merge specification is sent upstream.� thus creates apms
message that includes the originaluserSpec=		 .userSpec, the partial merge
specificationpmergespec, a timestampts, � ’s identity downNode=� and cer-
tificatedownNodeCert=�	 , and a signaturemsgSig obtained by signing the
pms message using�	 . The CSP then sends thepms message upstream to� .

Step 18: Upon receiving a PMS message
	 , the CSP at the sender node� verifies (i) the
signatures
	 .userSpec.pMTSigand
	 .msgSig, (ii) the timestamp
	 .ts,
and (iii) the certificate
	 .downNodeCert. If the verification is successful�
spawns a partial merge daemon and notifies� that the join operation has com-
pleted, and data transfer can begin.

5 Security Analysis

TheSecurity Architecture for Active Networks[11] enumerates the various attacks that
can be mounted against an active network framework. Given this threat model, we
briefly describe how our secure concast service fares under these various attack sce-
narios.

Attacks resulting in usurpation: Theft of serviceattacks are prevented by concast’s
authentication mechanisms. As described earlier, the concast service is based on
well-defined trust relationships that must be verified before any node, sender or in-
termediate merge node, will be added to the flow. Because the flow is established

3 Note that at this point it has already been established that the originating user satisfiesfp.j, and
that the downstream node satisfies� :np.d, the local downstream node policy.



hop-by-hop, each node’s authenticity and integrity can be verified individually and
compared against the receiver’s and provider’s security policies before being in-
cluded in the flow. As a result, only nodes with the proper certification are allowed
to access the service.

Attacks resulting in unauthorized disclosure: Outside of breaking into a host or router,
packet snooping is the most common technique for obtaining access to content. In
secure concast, all data traffic is encrypted. Secure up- anddownstream channels
(IPsec tunnels) are created and merge specifications, including encryption keys, are
transported via these secure channels. Data packets are encrypted and decrypted
hop-by-hop using these keys. Thus, so long as no trusted nodeis compromised, no
confidential data is disclosed.

Attacks resulting in deception: Secure concast preventsmasquerading by spoofing
attacks via two methods. First, all control messages are sent over IPsec tunnels
whose endpoints have been authenticated. The only exception are the initial JFR
and RMS messages which are transmitted in the clear. However, these message
carry a digital signature that can help identify spoofed addresses. Even if these
messages are not identified as spoofed messages, they are simply used to trigger the
initiation of fully authenticated IPsec tunnel where theiridentity will be checked.
Second, all data packets are encrypted and carry a message authentication code.
Packets can be spoofed, but without the correct encryption key, the merge daemon
will discard them. At best, such packets result in a denial ofservice attack (see
below).
Replay attacksare another form of deception. Because all control packets are car-
ried over the IPsec tunnel, replay attacks are automatically detected by IPsec. Only
the initial JFR and RMS travel outside the tunnel. Both carryan authenticated
timestamp that is used to detect packets that are outside theacceptable delivery time
window. Packets replayed during the window while the tunnelexists are harmless
because the operations are idempotent. Regarding the data channel, all packets are
encrypted and can carry a sequence number to detect duplicates if the user desires.
Substitution attacks, which represent another form of deception, are prevented via
the use of cryptographic integrity checks. All packets are digitally signed to guar-
antee the packets integrity.

Attacks resulting in disruption/Denial of Service: These types of attacks present the
biggest problem for the secure concast service. Although secure concast prevents
some of the attacks, there are several different attacks that could be launched to
consume packet processing cycles at network nodes, the receiver, or senders.
An example of a disruption attack that secure concast prevents is thejoin circum-
vention attack. In this case a malicious node ignores the join process and simply
sends data to a merge daemon for merging. Because the attacker does not know
the key, the MAC check fails, so the merge daemon does not merge the packet into
the stream, thereby preventing disruption of the stream with bogus data. However,
the time spent processing the packet still represents a DoS attack that is difficult to
prevent.
DoS attacks can also be mounted via false requests. Every time a bogus join request
is received, the network nodes expends resources trying to setup the IPsec tunnel,
only to find that the sender is not responding.



6 Performance evaluation

Fig. 4. Concast video application containing four merged streams.

In order to measure the costs of our secured concast service,we used a concast
video-merging application[12]. Some video applications require the ability to receive
video feeds from multiple sources simultaneously; examples include distance learning
and video monitoring/surveillance. The objective is to receive the best possible video
quality from all sources. For our concast video merging application, a concast session
is established that transcodes the incoming streams into lower-quality streams, thereby
reducing the network bandwidth requirements. The idea is toreplace uncontrolled loss
due to congestion withcontrolledloss due to transcoding. To support this type of appli-
cation, we designed a simple merge function that scales the incoming video stream by
down-sampling the pixels that comprise each frame of the video, and combining all in-
coming streams into a single outgoing stream. In other words, each network link should
carry no more than one video steam. To achieve this, the mergespecification keeps track
of the number of incoming video streams and the number of original video streams en-
coded in each incoming stream. It then assigns a region of each outgoing frame to each
incoming video stream and down-samples the stream appropriately to fit in the assigned
region. The assignment of streams to regions takes into account the relative sizes of the
(possibly already down-sampled) incoming streams. As new streams “join” the concast
session, the existing images are adjusted to make room for the stream. Each composite
stream carries information about how many original streamsit contains and how they
have last been combined so that each node can determine how tocombine its incoming
streams. This ensures that even if an unbalanced merge tree was built by all the concast
senders, the final video stream delivered to the concast receiver will have a roughly
proportional display area for each of the constituent videostreams.

Our test topology is shown in Figure 5. We used four video senders, each transmit-
ting an uncompressed black-and-white 320x240 video streamat a given frame rate. At
each merging hop in the network the frames were merged into a single sub-sampled



image. Figure 4 is a resulting frame captured at the receivernode. We ran with both
a ’NULL’ cipher specification as well as using AES (128-bit) encryption with a SHA1
message digest at rates of 4, 6, and 8 frames per second (fps).In each case, we measured
the total system and user level CPU utilization. The data wastaken from merge node

Sender 3 Sender 4Sender 2Sender 1

Merge 2 Merge 3

Merge 1

100Mbs
Receiver

10Mbs

Fig. 5.Experimental Network - Secure Concast Video Merging

3 in the experimental topology (Figure 5). All nodes in the network were 1.5Ghz Pen-
tiums with 128MB of RAM, resulting in similar results for theremaining merge nodes.
Our concast merge specification was written in Java and runs in a user-level JVM, which
accounts for the majority of the load. The results of our experiments are presented in
Figure 6. In the graphs, load with AES encryption is on the left, with “null” encryption
(i.e. encrypt and decrypt are no-ops) is on the right. In eachcase, encryption/decryption
of the video streams imposed an overhead of roughly 20 percent. As can be seen from
the results for AES/SHA1 with 8 fps, the merge nodes were running at maximum CPU
utilization (system + user). When trying to go beyond 8 fps the nodes were overloaded
which resulted in packet loss. The initial high load in each case is measurement taken
during Java Virtual Machine startup (i.e. when spawning theMerge Daemon).

Our results demonstrate that the presented security mechanism (in particular, per
packet data security) is feasible and can be implemented with a reasonable overhead.
Note that our implementation of the secure merge specification has been done in Java
only with the intention to show feasibility and not optimality.

7 Related Work

The DARPA Active Network community has defined an architecture for an active
nodes [13] that comprises a NodeOS and one or more Execution Environments (EE). A
security architecture has been proposed for the architectural framework, with particular
attention paid to capsule-based EEs (i.e. those that expectcode to be included in each
packet). An important observation by the authors of that architecture is that some part
of the active packet is dynamic (changes at intermediate hops) and the rest of it is static.
Digital signatures are used to provide end-to-end authentication and integrity protection
to the static part of the packet. HMAC-SHA-1 integrity protection is used between two



0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (4 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (4 FPS) (NULL)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (6 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (6 FPS) (NULL)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (8 FPS) (AES/SHA1)

User CPU Utilization
System CPU Utilization

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n 
(P

er
ce

nt
ag

e)

Time (Seconds)

CPU Utilization (8 FPS) (NULL)

User CPU Utilization
System CPU Utilization

Fig. 6.Secure Merge Processing Overhead



neighboring nodes to provide integrity protection. Certificates are stored in DNS CERT
records and every packet carries references to the appropriate certificates. Authoriza-
tion to execute code is based on the Java� security architecture with modifications to
support multiple policies, a feature often needed in activenetworks.

Like the AN security architecture, SANTS [11] differs from the approach described
in this paper mainly in its focus on a capsule-based processing model. Every packet
is singly responsible from its own authentication, integrity and authorization. In our
approach, however, packets belong to a flow, and all packets of a flow pass through
the same sequence of nodes. Initial efforts are required to authorize all the members
belonging to the flow. But once achieved, the problem of confidentiality and integrity is
simplified due to the use of a shared secret by all members of the flow.

The Switchware project [14] included one of the first attempts to deal with security
in active networks. Like concast, the Switchware architecture allowed for flow-based
programmability. The Secure Active Networks Environment (SANE) [15] also allowed
an end-system control over the nodes participating in its flow, by setting up nested
tunnels hop-by-hop. Unlike our approach, however, the SANEapproach exposes the
identity of every node being programmed to the originating end system. While this
avoids the need for transitive trust, it limits scalability.

A framework to provide hop-by-hop security in an active networking environment
for unicast and multicast applications was proposed by Krishnaswamy et.al [16]. Their
approach makes use of a centralized Keying Server (KSV) which provides an interface
to accept a secure topology in the form of “links” or “groups”for unicast and multicast
respectively. Every node that is a part of the secure topology sets up an IKE SA with the
KSV. The KSV uses this SA to securely convey to the each “node”in the topology all
information that it needs to reliably setup a security association with its peer(s). They
use Linux IPChains to enforce a policy governing which packets can be accepted into
the node, and they use the DNS service to retrieve the public keys associated with nodes.
However, in their approach all flows seem to share the same hop-by-hop channel for
security. Also, there does not seem to be a concept of node-level or flow-level policies
that would enable nodes to control the membership in the flow.

8 Conclusion

A number of security challenges are associated with active networking applications
that process data on a per hop basis. Some of the requirementsof such applications
are secure distribution of the processing code and shared secrets, authentication and
authorization of the members, confidentiality and integrity of application data. Standard
end-to-end mechanisms cannot be used to solve these problems.

In this paper we have attempted to solve the security challenges specific to concast,
a many-to-one communication service. A fundamental feature of our solution is the
use of IPsec which provides us confidentiality, authentication and integrity on a point-
to-point link. We combine IPsec with a rich set of policies and this lets us identify
legitimate members of a flow, define trust relationships among the various members,
and outline the type of protection required by each node and the service as a whole.
The availability of a secure control plane helps us provide aplatform to applications



to securely distribute shared secrets and thereby achieve confidentiality and integrity of
application data.

References

1. K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen,“Concast: Design and imple-
mentaion of an active network service,”IEEE Journal on Selected Areas in Communications
(2001), pp. 19(3):426–437, March 2001.

2. S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose, D. Towsley, and S. Zabele,
“Scalable Fair Reliable Multicast Using Active Services,”IEEE Network Magazine, Febru-
ary 2000.

3. I. Kouvelas, V. Hardman, and J. Crowcroft, “Network Adaptive Continuous-Media Ap-
plications Through Self Organised Transcoding,” inthe Proceedings of the Network and
Operating Systems Support for Digital Audio and Video Conference (NOSSDAV 98), July
1998.

4. E. Amir, W. McCanne, and H. Zhang, “An application level video gateway,” inACM Multi-
media ’95, 1995.

5. D. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for building and dynam-
ically deploying network protocols,” inIEEE OPENARCH’98, San Francisco, CA, April
1998.

6. S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K. Calvert, and E. Zegura, “Bowman and
CANEs: Implementation of an active network,” inProceedings of the 37th annual Allerton
Conference on Communication, Control, and Computing, Monticello, Illinois.

7. K. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “Concast: Design and implementation of a
new network service,” inProceedings of 1999 International Conference on Network Proto-
cols, Toronto, Ontario, November 1999.

8. Bob Braden, Lixia Zhang, Steve Berson, and Shai Herzog Sugih Jamin, “Resource ReSer-
Vation Protocol (RSVP),” September 1997, RFC 2205.

9. D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” September 2001, RFC
3174.

10. B. Kaliski and J. Staddon, “PKCS #1: RSA Cryptography Specifications. Version 2.0,”
October 1998, RFC 2437.

11. S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “Strong security for active networks,”
in The Fourth IEEE Conference on Open Architectures and Network Programming, April
2001.

12. K. Calvert, J. Griffioen, B. Mullins, S. Natarajan, L. Poutievski, A. Sehgal, and S. Wen,
“Leveraging emerging network services to scale multimediaapplications,” Software—
Practice and Experience (SPE), vol. 33, no. 14, pp. 1377–1397, November 2003.

13. AN Architecture Working Group, “Architectural framework for active networks—version
1.0,” July 1999.

14. D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C. Gunder, S. Net-
tles, and J. Smith, “The switchware active network architecture,” IEEE Network, May 1998.

15. D. Alexander, W. Arbaugh, A. Keromytis, and J. Smith, “Safety and security of pro-
grammable network infrastructures,”IEEE Communications Magazine, Special issue on
Programmable Networks, 1998.

16. S. Krishnaswamy, J. Evans, and G. Minden, “A prototype framework for providing hop-
by-hop security in an experimentally deployed active network,” in DANCE: Darpa Active
Networks Conference and Exposition, 2002.


