Secure, Customizable,
Many-to-One Communication

Kenneth L. Calvert, James Griffioen, Billy Mullins, Leon Rigwski, Amit Sehgal

Laboratory for Advanced Networking, University of Kentyckexington, KY

Abstract. Concastis a customizable many-to-one network-layer comcation
service. Although programmable services like concasticgmave the efficiency
of group applications, accompanying security concerng breiaddressed before
such services are likely to be deployed. The problem of ésglguch services
is interesting because conventional end-to-end secusighamisms are not ap-
plicable when messages are processed inside the netwatkglsm because of
the potential for interaction among the various policiemived. In this paper
we describe our implementation of a secure concast sewtdeh leverages ex-
isting network-level security mechanisms (IPsec) to mtewsecure distribution
of program code (merge specifications) as well as autheiaticaf participating
nodes. We describe the various policies supported, how ititeyact, and how
our approach provides security against various attacks.

1 Introduction

The design of the Internet protocols has produced a remirifleible, robust, and
scalable system. Perhaps nowhere is the end-to-end degigipfe more evident than
in the area of security, where the best services and sokuiticmuniversally considered
to be those that are closest to the application. Over timeehier, a number of net-
work services have appeared that involve, in one way or &ngthocessing that occurs
in the shared infrastructurayvayfrom the end systems on which the applications re-
side. Many of these services depend on the ability to loak hé packet beyond the
information needed for traditional forwarding (i.e. thecket header), into the packet
payload. In some cases, this processing is performed orptiieation’s behalfiuring
forwarding [1-6].

The problem of securing applications that rely on this tyfygrocessing is interest-
ing because the conventional end-to-end security solsifiwaclude—and indeed, are
intended to prevent—inspection and modification that ceapart from the endpoints,
and thus are incompatible with such applications. In addjtieliance on the infrastruc-
ture to perform processing on behalf of the application iegithe existence of multiple
policies that need to be enforced.

The concastservice is a good example of a service that performs protgssi
the applications behalf during forwarding. Concast is a yAi@aone communication

* Work supported in part by the Defense Advanced ResearcbBétsohgency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, E8Ader agreement number
F30602-99-1-0514, and by the National Science Foundatiolemgrants EIA-0101242 and
ANI-9977292.

service that can be viewed as a companion service to mulficass the inverse of one-
to-many communication). In concast, multiple sendersstrahdata packets toward
a single receiver; the eventual result is that a single gackataining the combined
(merged) data from the multiple senders, is delivered togbeiver. Because the nature
of the merging operation varies with the application, cab@dlows end systems to
define the merge processing that is applied at internal mktwodes. The benefit of
concast is in reducing the limiting factor on the scalagilftom the total number of
senders to the “branching factor” at any node in the “treeitfed by the paths packets
follow from senders to receiver.

In this paper we consider the problem of securing scalalflastructure-based ser-
vices, in particular the problem of creating a secure cdrsmyice. We outline a gen-
eral set of security requirements for such services, andtifgtiehe relevant policies
and trust relationships involved. We then describe a newrgigapproach based on
the idea that the control plane can be secured using coovahipoint-to-point secu-
rity techniques for authentication, confidentiality, antegrity. Given a secure control
plane, the responsibility for end-to-end security can thewlistributed among the par-
ticipating nodes. We describe the application of our apgiida implementing a secure
concast service. We report performance measurementsftakeiour prototype imple-
mentation of the secure concast service.

2 Security Requirements

We assume a network environment in which network serviceofiered to users as a
business proposition bservice providersWe believe that a customizable service will
only be deployed if it offers some benefit to the service pteriWe assume this benefit
takes the form of money paid to the provider in return for asde the enhanced service.
Thus our first security requirement is:

Only authorized users can take advantage of the custoneizsice.

We assume that users will pay for a service only if they arerassof receiving
some benefit from it. In the case of concast, the main benetitedaiser isscalability
through anonymityby moving application-specific processing into the netwofras-
tructure, the service hides the details of where the datarisrgy from and how much
processing is occurring. To put it another way: placing egapion-specific processing
in the infrastructure hides scale and complexity from thersisThis leads to an addi-
tional requirement:

The scale and complexity of the processing should not beseg@t any single
point.

As a consequence, the user must rely on the network to catrgrouessing ac-
cording to user-supplied specifications. On one level,ithi® different than any other
network service. However, in terms of security there is dqarod difference between
relying on the network téorward data, as opposed to examining and possitdylifying
it. In the former case, end-to-end security mechanisms & can provide assurance
that (under standard assumptions) user data is not disctwseampered with. In the

latter case, the users not only have to trust the networkny cait the specified pro-
cessing, but also to protect the confidentiality and intggf the application’s data.
That is, the user/application has to rely on the networlastiucture to enforce itse-
curity policies This brings us to the third security requirement:

Integrity and confidentiality of application data are proted according to
user-supplied policies.

In other words, each instance of the service has a userisdppblicy that specifies
which entities are authorized to participate in that inséan

This requirement is nontrivial for two reasons. First, hessathe infrastructure is a
key participant in the enhanced service, the applicatiditypoeeds to cover not only
users, but also components of the infrastructure (nodegtHer words, each partici-
pant must be able to identify nodes that am trusted to carry out processing on its
behalf, and the system must take steps to prevent such modepérticipating in pro-
viding service to that user. Second, and more importariify,service is designed so
that the set of participating nodes grows incrementallp-hg-hop toward participat-
ing users. Participants aoaly aware of other participants (either users or infrastruectur
nodes) that are up to one hop away; this is a fundamental cfiesistic that is required
for scalability and indeed, for practical deployment. Ascangequence, users cannot
themselves ensure that only trusted nodes participateeindtvice; they must rely on
the infrastructure to enforce their policies on particiqiat

Our approach to satisfying the last two requirements isdtesin invariant that is
to be maintained at all times by the service:

All participating nodes are trusted by the user to enforcerymlicies regard-
ing (i) processing, confidentiality and integrity of usertaiaand (ii) which
nodes are trusted to participate.

This can be viewed as (an explicit form efnsitive trust Transitivity of trust relation-
ships in some form seems to be an unavoidable requiremestébableservices that
rely on third parties for key functionality.

3 Securing a Programmable Service

The first step in securing a programmable service is estatdjstrust relationships
between the participating entities (senders, receivasnatwork nodes).

Trust relationships can be represented as the set of pailscjpodes) that are al-
lowed to perform certain actions (e.g., join the concastigroeceive the merge specifi-
cation, or be given an encryption key). We sgyadicy defines the set of nodes that can
perform a certain action. For example, a concast receivédefine the list of sender
nodes that are allowed to join the group (calledjtiie policy). At the same time, each
local node in the provider’s network will define the list oftesystems that are allowed
to use the concast service (e.g., have paid for the sen@dedrly, both policies must
be met before a sender is allowed to join a concast group.

The most important policy is the one that defines the nodescrabe trusted to
enforce the policies of others. We believe this This typearfisitive trust is critical for

network-level services where processing occurs hop-lgy-Because the user’s data
does not remain encrypted end-to-end, intermediate nd@dehandle the user’s data
must enforce the user’s policies on the user’s behalf. If dencannot be trusted to

enforce the user’s policies, that node cannot be allowedittigipate in the service. For

example, a concast receiver must rely on routers in the mktw@nforce the receiver’s

join policy. If unauthorized senders were allowed to senih @ong the concast flow

and the membership check did not occur until the merged paekehed the receiver,

it would be too late. The damage (corruption of authorizettise data) would already

have occurred at intermediate nodes in the network.

The key to achieving a scalable yet secure service is thigyabiincrementally add
nodes to the service such that the invariant is not violated to incorporate each added
node’s policy into the session policy. To initiate a secweevige, the user’s policies
must be propagated, hop-by-hop through the network, chgdkie validity of each
node along the path before adding it to the flow.

Note that this description assumes that policies are thigaspropagated securely.
At each hop along the propagation path, the adjacent nodssauthenticate one an-
other and verify policy compliance before proceeding. Canghenticity and authoriza-
tion have been established, the policies can be sent ovafidential channel. Because
the trust relationships are established hop-by-hop,iggisint-to-point security tech-
nigues can be used. In particular, protocols such as IPsebeased both to perform
the authentication check and to create the encrypted twweelwhich policies can be
sent.

Once a path of trusted network hops has been establish¢gatiecan be used for
control plane messages. In particular, control messagésiable service-specific pro-
cessing at each trusted node can be sent along the path.&$esuire (programmable)
control plane, end systems can then control security indteeglane, by installing mod-
ules that offer as much or as little security as desired. heiotvords, by supporting a
secure, authenticated, hop-by-hop signaling protocdiéncontrol plane, applications
can implement end-to-end security in the data plane, tlyemedintaining the end-to-
end principle.

In the next section, we present a specific approach for imgieimg a secure control
plane, and show how it can be applied to the concast servive approach is novel
in the sense that it leverages existing point-to-point secommunication protocols
(i.e., IPsec) to create a secure path and distribute pslameé user-specified processing
modules. Given this basic infrastructure, end systems dieéine and control security
in the data plane by programming the service appropriately.

3.1 The Concast Service

Before we describe how a secure concast service can be iraptethusing our ap-
proach, we need to take a moment and briefly review the basic-¢acure) con-
cast service. Additional details of the concast servicelmafound in our earlier pa-
pers [7] and [1].

Concast is a many-to-one communication service that pesvidle symmetric in-
verse of multicast: a group of senders belonging tmacast flontransmit messages

that aremergedby the network en route to a common receiferiike multicast, con-
cast provides a scalable abstraction: an arbitrary numberoop member¢senders)
are treated as a single entity B A concast flow is identified by its receivét and a
group identifierG; senders “join” the flow before they begin sending.

The packets delivered t8 on a concast flow are derived from the packets sent by
the group members according tareerge specification (MSupplied by the receiving
application. The concast service allows a limited amoumtedfvork programmability,
where the desired processing semantics are defined withiframework of a merge
specification. The merge specification defines (1) how datagrdelivered to the re-
ceiver are derived from datagrams transmitted by diffesemders (2) the timing of
datagram forwarding and delivery; and (3) which datagrarascambined with each
other (e.g. only packets containing the same sequence muardenerged with each
other). The merge specification is supplied by the receitvéow creation time (e.g.
in the form of bytecodes for a collection of Java classesawniihg to a certain type
specification), and is executed by a merge daenvterged at each network node.

Concastmerge specificatiodeployment is accomplished via tl@oncast Signal-
ing Protocol (CSP)implemented using a receiver-side CSP daenR@3PJ and a
server-side CSP daemo8ESPY. The CSP protocol creates the flow and establishes
concast-related state, called thhew state block (FSB)n network nodes (i.e. at all
concast-capable nodes on the paths from group membersriectiger.) Thdlow state
blockrecords thenerge specificatiodescribing how packets are to be merged, and an
upstream neighbor list (UNLthat records the next concast-capable nodes “upstream”
(towards the senders) for this flow. The UNL is maintaineshgsioft-state techniques
similar to RSVP [8].

Figure 1 shows the secure version of the CSP protocol, bitiakie idea is the same
as the original CSP protocol. First, the receiver initidtesflows (step 0,1). The senders
then attempt to join the flow byoin Flow Requests (JFR)essages toward the receiver
which are intercepted at intermediate nodes and directéactd CSP daemons. and
propagated toward the receiverRsquest for Merge Spec (RM8gssages (steps 2-8).
The merge specification is then “pulled” from the receivevacods the senders (steps
9-18).

3.2 Securing Concast

Because the receiver is responsible for initiating the ashfiow, the receiver should
also be responsible for defining the flow’s membership (joén) policy. As we saw
earlier, the policy must propagate through the network towlze senders so that routers
can decide whether a sender is allowed to join or not. To ramistalability, the concast
receiver is not required to know (in fact never learns) thentdy, or the location, of the
senders. Obviously the join policy cannot be pushed into#teork toward the senders
until the location of the senders is known.

Because senders must identify themselves before the gmligin be sent out, the
secure version of the CSP protocol begins just like the walgCSP protocol (see Fig-
ure 1). A new sender issues a join request message that jategdn the clear) to the
receiver (steps 2-8). At this point the path from the senaléné receiver is known and

"] N ° v)i
! X | _ ! Sender (Y): n |
: - :Rece“/er (X) : :2 Join Group : - |
; '0. Create Flow | ! : !
| Mergeg 0! , IMerged ¢ 1 PMergeg 2!
! i ' | A |
! 8 ! ! 13 ! ! |
PR DN S ' 0. RMS A o4 JFR 18 .

9. Seclnfo ._14. Seclinfo, |
RCSPd| ' 11. SIAck '| RCSPd|:_ 16. SIAck !| SCSPd|
l |E§5C‘ :

RCSPd: 12. MS RCSPd: 17. PMS SCSPd:

1. Create FSB 5. Create FSB 3. Create FSE
UNL =§ UNL = {S} 15. Setup

7. Update UNL 10. Setup IPSEC IPSEC
UNL = {N} tunnel 18. Spawn

8. Spawn MERGEd 13. Spawn MERGEd PMERGEd

Fig. 1. The Secure Concast Signaling Protocol.

the user’s join policy can be “pulled” toward the sender.sTisiaccomplished by cre-
ating a set of secure tunnels back to the sender (steps 94i8%ecure path is created
hop-by-hop, each time authenticating the next hop, verifytis admissibility according
to the policy, and then passing the merge specificationu@ict the relevant policies)
across the secure tunnel (e.g., steps 9-12).

Because the merge specification is sent across a securelabvannel and executes
on trusted nodes, the responsibility for end-to-end datha gecurity can be placed in
the hands of the end systems. To achieve this objective pileast merge specification
itself must contain the code that controls decrypting, pssing, and then re-encrypting
the data packet before forwarding it on. Because the coalahnel is secure, the de-
cryption and encryption key can be distributed along withrirerge specification.

3.3 Merge Framework Modifications

In addition to securing the CSP protocol (i.e., securingcthatrol plane), changes were
also needed in the merging framework, in the form of “hookssuipport user-defined
encryption/decryptionin the data plane.

First, we enhanced the merge specification type/messageltale a user-defined
encryption function and decryption function as well as therst keys to be used for
encryption, decryption and authentication. These may h#a#ig byte codes, or they
may be pointers to predefined encryption and decryptiontfoms we added into the
merge framework (MergeD). As part of the encryption speaifim, the framework
allows the user to specify whether a MAC (message autheiaticaode) should be

include in the encrypted message. If so, the MAC will be cleeckhen the packet is
decrypted to verify its integrity.

The second change to the framework creates different fofrtiteeanerge daemon
(MergeD) to be deployed at senders, merging nodes, and ¢e&vee Merge daemons
executing on sender nodes receive packets over a localts@s@ause these incom-
ing packets are unencrypted (the local environment isdd)sthe decryption func-
tion does not need to be invoked; only encryption is perfatme outgoing packets.
On receiver nodes the situation is reversed: incoming pgaagkeed to be decrypted,
but outgoing packets go straight to the receiver applioatiod do not need to be en-
crypted. On intermediate nodes, all incoming packets aoeypéed and all outoing
packets are encrypted (as long as merging is occurringthieze is more than one
upstream neighbor—otherwise, the packets are simply faled). Because we trust
sender nodes only to transmit data, not merge packets,ghalking protocol transfers
only apartial merge specification to the sender, containing an encryfiioction and
the secret key (that is, neither the merge routine nor theygéon key is passed).

4 Secure Concast Signaling Protocol

This section describes the Secure Concast Signaling Riptehich is based on the
original Concast Signaling Protocol [1]. Together withéPsSecure CSP provides a
foundation for the secure concast service. We begin by defimbtational conventions,
data types, and cryptographic primitives used. Next weritesthe protocol messages
and their contents. Finally, we give a high-level operatiatescription of the (normal)
process of setting up a concast flow.

4.1 Basic Types and Cryptographic Primitives
Our protocol uses the following types:

— appident Identifier of an application-level principal, i.e. a paigiant in the con-
cast flow (receiver or sender). E.g., if X.509 certificates@sed, this could be an
OSI Relative Distinguished Name (RDN).

— nodeident Identifier of a network-level principal, i.e. a node. We UlBaddresses
as network identifiers.

— flowspec A pair (R, G) identifying a concast flow, wher® is the receiver's IP
address (aodeidenf) andG is the group identifier.

— mergespec A collection of data and function definitions that defines therge
processing to be carried out by intermediate nodes, andctirdorms to the re-
guirements of the concast merging framework.

— pmergespecA patrtial or “thinned"’mergespec¢containing only the security-related
portions of the merge specification. End systems recei@aparergespecs because
they need to do security-related processing but may notiseetl to apply policies
or perform merging.

— policy: A specification of a set of principals that are authorizeddme way. We
consider a policy to be a predicate on identifieapgidents or nodeidents) and

credentials; if the predicate has the value “true” for a gikentifier and credential,
it means that (i) the identified principal is authorized, &ii}dthe given credential
is an acceptable witness for evaluating authenticity ofrimfation to be provided
by the principal.

— signature A digital signature, essentially a cryptographic digefsimessage data
encrypted with some principal’s private key, computed athtted according to
accepted cryptographic standards (e.g. SHA-1 [9] and PKIJ$@]). The notation
{h(a|b|c)}, denotes the result of concatenating messages or fieldandc and
signing the digest (created using a well-known cryptogi@plgorithm such as
SHA-1) of the resulting bit string with private kdy. Unless otherwise specified,
signature fields in messages cover the entire contents of the messageding the
field.

— cert: A public-key certificate, which binds an identifier (of tyappident or nodei-
dent) to a public key.

— ipsecinfa A structure containing IPsec information of a host needgd@other
host to create an IPsec tunnel to the former host.

— timestamp A timestamp.

— ccasthdr. the first field of every secure CSP message. Indicates tistowvenf the
protocol and the type of the message.

The notatiorverify(m, a, ¢) denotes the result of verifying the authenticity and in-
tegrity of (some part of) a messageusing signature and certificate.. This function
returns true if digesting the information in results in a value consistent with that ob-
tained by decrypting with the public key contained in. For brevity, we sometimes
abuse notation by indicating that the entire messagebeing verified even though the
authenticator covers only a portion of it.

The notationp(u, c) denotes the result of applying poligyto identifier w with
credentiak. The value “true” means that, presenting credential is authorized. The
notationtime-checkt) denotes the result of verifying that a timestatrip within some
¢ of the current time as known locally. We assume thist configured appropriately at
every node for the degree of clock synchronization achievatihe network. (As usual
when timestamps are used to ensure freshneddsitoo small the protocol may fail
between nodes whose clocks are not well-synchronizedngétttoo large increases
the window of vulnerablility to replay attack.)

4.2 Policies and Principals

As described earler, the signaling protocol makes use adwapolicies. Per-flow poli-
cies are supplied by the receiver, and specify the prinsipalodes and applications—
that are allowed to participate in the flow. Per-node pddic@ee supplied by service
providers (ISPs), and specify the nodes that are allowedrmpn various functions in
a flow. Per-node policies are only appliednndeidents.

The supported policies include:

— fp.j: per-flow join policy. Specifies application entitieappidents) authorized to
join the flow. This policy is specified by the concast recealeng with the merge
specification.

— fp.u: per-flow upstream node policy. Specifies nodesdgidenss) that are autho-
rized to participate in the flow either as host of an appl@aievel sender or as a
merging node. This policy is specified by the concast recaileg with the merge
specification.

— np.r: per-node receiver policy. Specifies nodesdeidents) that are authorized to
be the terminal points of concast flows. This implies thatribde is authorized
to supply merge specifications. This policy would typicaharacterize nodes that
either have had a fee paid on their behalf, or are part of soostetd nonlocal
domain.

— np.d: per-node downstream policy. Specifies nodeslgidens) that are authorized
to relay a merge specification from a downstream receiver.

— np.s: per-node sender policy. Specifies the set of nodedéidents) authorized to
be the source of requests to join a concast flow. Again, tylgicharacterizes the
set of nodes in this domain that have paid for service, anéstdisted by virtue
of the other domain to which they belong.

— np.u: per-node upstream policy. Specifies the set of nodes dn#futio be upstream
of this node in a flow. Note that such nodes are trusted nottoriandle (merge)
user data, but also to apply this node’s policies.

The protocol description involves the following principand their associated in-
formation: X is the receiver (application), which has private kayand certificate x ;
it is running on nodek, which has private kekg and certificateC'z. Y is a sender (ap-
plication), which has private kely-and certificate”y . Y is running on nodé, which
hasks andCs. Finally, N is a merging node with private kéyy and certificate”y .

4.3 Protocol Messages

Message contents are given in terms of the structured typmersin Figure 2, which
in turn use the basic types defined above. Note that HEATEREQ structure contains
two signatures; the first covers tiMERGETOKEN, while the second covers the same
data except thahergespeds replaced by the subset of its information that constitute
a pmergespec Also, the PCREATEREQ structure contains only the fields ofGrE-
ATEREQthat are relevant to the reduced mergespec, i.e. the subsetloat constitutes

a reduced mergespec, th®TSi g, and theuser Cer t ; given a validCREATEREQ, a
PCREATEREQ can be derived from it.

JOINREQ MERGETOKEN CREATEREQ
flowspec f 1 owl D, flowspec fl owl D MERGETOKEN Nt ;
appident user; mergespeas; signature MTSi g;
signature user Si g; policy PFUpst r eanp; signature pMISi g;
cert userCert; policy PFJoi nP; cert userCert;

appident user;

Fig. 2. Structures used in concast messages

The contents of the protocol messages are shown in Figure 3.

Join Flow Request (JFR) Request for Merge Specification (RMS),
ccasthdr fl owl nf o; ccasthdr fl ow nf o;

JOINREQ user Req; JOINREQ user Req;

nodeident sNode; nodeident upNode;

timestampt s; timestampt s;

ipsecinfo si nf o; ipsecinfo si nf o;

signature nsgSi g; signature nmsgSi g;

cert sNodeCert ; cert upNodeCert ;

Security Information (Secinfo)
ccasthdr fl ow nfo;
JOINREQ user Req;
nodeident downNode;
timestampt s;

ipsecinfo si nf o;

signature msgSi g;

cert downNodeCert ;
Sec. Info. Acknowledgement (SIAck) Merge Specification (MS)
ccasthdr fl owl nf o; ccasthdr fl ow nf o;
JOINREQ user Req; CREATEREQ user Spec;
nodeident upNode; nodeident downNode;
timestampt s; timestamp ts;
signature nmsgSi g; policy nodeP;
cert upNodeCert; signature nsgSi g;

cert downNodeCert ;

Concast Join Succeeded (CJS

ccasthdr fl owl nfo;

PCREATEREQ pUser Spec;

nodeident downNode;
timestamp ts;

signature nsgSi g;

cert downNodeCert ;

Fig. 3. Secure CSP Messages

4.4 Protocol Operation

With the help of Figure 1 we describe the normal sequenceepEdbr a secure concast
flow establishment. In the interest of clarity we omit steplsited to error processing,
and assume that the flow in question is not currently preseahy node involved.

Step 0: To create a flow(R, G), the receiver applicatioX generates the secure merge
specification s) and per-flow policiesRFUpst r eanP andPFJoi nP), formats

Step 1:

Step 2:

Step 3,4:

Step 5,6:

the requisite information asERGETOKEN, and generates a signatuMlSi g)
using its private keytx. It also generates a signatugMrSi g) for the partial
MERGETOKEN (the MERGETOKEN minusns). X finally bundles thevERGET 0-
KEN, the signatureMI'Si g andpMT'Si g, and its certificateiser Cer t =Cx into
aCREATEREQ and hands it over to the local CSP module.

Upon receiving theREATEREQ cr, the CSP aR verifies the signaturégr.MI'Si g
ander.pMTSi g using the public key in the certificate.user Cer t ; that the prin-
cipal of certificateer.user Cer t matches identitgr.user ; and thatr.user Cer t
is a valid certificate generated by a trusted certificateaitth If the verification
succeeds then the CSP creates the local flow state for th¢ Ro@) and returns a
success indication t& .

To join the flow(R, G), the sending applicatio¥i creates @0INREQby including
its identityuser =Y, certificateuser Cer t =C'y, and a signaturaser Si g gen-
erated by signing the request using its private key The JOINREQIs then passed
to the local CSP.

Upon receivinglOINREQjr from Y, the CSP af5 verifies (i) the join request sig-
naturejr.user Si g using the public key in certificatg-.user Cer t , (ii) that the
principal of certificatejr.user Cer t matches application identifigr-.user and
(iii) that jr.user Cer t is a valid certificate. The CSP &tnext checks (i) ift” is
allowed by local policy to act as a concast sender, and (R)ig an acceptable con-
cast receiver node according to local policy, i.e. thatp.r(R, 1) is trué. If so, a
flow state block is created for the floil?, G) and its state is marked “pending”. A
JFR message containing the user’s join requsgr Req, the current timestamp
t s, S’s identifiersNode=S and certificatesNodeCer t =C's, IPsec information
si nf o to connect ta5 and a signaturesgSi g obtained by signing the JFR mes-
sage usings is generated and forwarded towakd

Upon intercepting a JFR message on its way toR, the CSP alV first verifies the
signaturesjm.user Req.user Si g and jm.nsgSi g to ensure the authenticity
and integrity of the user request and the JFR message raghedt also checks
the validity of the timestampgm.t s. Next, the CSP verifies tha¥:np.r(R, 1),
andN:np.ujm.sNode,m.sNodeCer t) are all true. If so, it creates a temporary
flow state block for the flon(R, G), adds the pai(m.sNode,m.sNodeCert)
to the upstream neighbor list, and marks the flow “pendinigéldo constructs an
RMS message containing the user’s join requesr Req, a fresh timestamps,
N's identifierupNode=Nand certificateupNodeCer t =C, IPsec information
si nf o needed to connect to no@é and a signaturesgSi g obtained by signing
the RMS message usirigy. It forwards the resulting RMS message tow#td
(This process will be repeated at each concast-capableataaigthe path td: the
node intercepts the RMS message, validates the signathiezks that the message
source andR are acceptable to its local node policies, and then cortstiamd

! While the channel between the receiver application andadte ICSP is probably trusted, this
verification is a good idea because other nodes are goingfarpeit. If there is a problem, it
is better to detect it locally. (Similarly for theoINREQpassed by".)

2 Note that this check should “tentatively succeed” at thagistwithout a certificate faR. The
purpose is to prevent wasted effort in cdsés unacceptable regardless of what credentials are
presented. It will be repeated later wiltls actual credentials when they are available

forwards towardR a signed RMS message containing the origi@NREQ and
its own identifier and certificate. For brevity, we assumeshtbat NV is the last
concast-capable node on the path tow&rH

Step 7,8: Upon receiving an RMS message:, the CSP afR, the destination node, veri-
fies the signaturesm.user Req.user Si gandrm.nsgSi g. It also checks that
time-checkrm.t s) A
fp.j(rm.r eq.user ,rm.r eq.user Cert) A
fp.u(rm.sNode,rm.sNodeCert) A
R:np.urm.sNode, rm.sNodeCer t) are true, i.e. the flow policy admits the join-
ing sendel” and both flow and node policies admit the upstream neighborsght
the message. If so, then it spawns the Merge daemon for theifloat, it sends
a signed error message upstream, indicating that the ctonéailed for policy
reasons.

Step 9: Before the CSP can send the merge specification to the upstrade it must create
an IPsec tunnel to the upstream node. To do this the CSP fisstigall necessary
IPsec connection information usingn.si nf o at its own end. It then creates a
SECINFO (Security Information) message that containsuker Req=rm.r eq, a
fresh timestamp s, R’s identifierdownNode and certificatedownNodeCer t ,
R'’s IPsec informatiorsi nf o and a signature obtined by signing NFoO with
kg. It then sends theER2INFO message to the upstream node.

Step 10,11: Upon receiving the ScINFO messagem, the CSP at the upstream naechecks
that the flow identifiesm.user Req.f | ow Drefers to a legitimate pending flow,
and verifies (i) the signaturesn.user Reqg.user Si g andsm.nsgSi g, (ii) that
certificatesmn.downNodeCer t is valid. Next the CSP checkstifme-checksm.t s)
is true. It then applies its local downstream node poliey,éhecks the truth of the
predicateV:np.d(sm.downNode, sm.downNodeCer t). If true, it sets up its lo-
cal IPsec connection files usingr.si nf 0 and establishes a security association
with sm.downNode. Upon successful creation of the IPsec tunnel the CSP areate
a SIAck message that includes theer Req(sm.user Req), the node’s identity
upNode (V) and certificataipNodeCer t (Cy), a timestamp s and a signature
nsgSi g obtained by signing the SIék message withks. CSP then sends the
SIACK message downstream towakd

Step 12: When the tunnel is established, the CSHzaadds the pailN, Cy) to the flow’s
upstream neighbor list (UNL) and then constructs aR¢ESPEC (Merge Specifi-
cation) message containing the flow’s create request Spec, a fresh timestamp
t s, its identitydownNode=R and certificatalownNodeCer t =Cg. R also adds
its upstream policyp.uto nodeP in the MERGESPECmMessage, signs the message
with kg and sends it tav.

Step 13,14: Upon receiving an MS messagsn (through the tunnel), the upstream nadeer-
ifies the three signaturesm.user Spec.MI'Si g, mm.user Spec.pMI'Si g and
mm.nmsgSi g, checks the timestampm.t s (allowing for travel and processing
time to get to the receiver node and back), unpacks and lmsted merge speci-

fication and policies, and then performs the following stiepeach node (with
certificateC,) in the flow’s upstream neighbor liét.
1. Verify thatq is acceptable according to the node upstream policy reteive
the merge specificatiomzm.nodeP(g, Cy).
2. Verify thatgq is acceptable according to the flow's upstream neighbocyoli
fp.u(q, Cq)
If the UNL is nonempty after this step, spawn a MERGEd and $kadMERGEd
the updated upstream neighbor list. (Note that this stejpéraponce for all up-
stream neighbors at intermediate and receiver nodes. Aesgrhowever, for tech-
nical reasons a separate MERGEd is spawned for each sengjifigagion pro-
gram.)

Step 14,15,16:(These steps are similar to 9—1IN)checks whether an IPsec tunnelgalready
exists. If not, it sets up IPsec to establish a tunnel, andtcocts, signs and sends
to ¢ a SECINFO message. ECINFO contains the originaloINREQfor the flow, its
identity downNode=Nand certificatalownNodeCer t =C'y, and IPsec informa-
tion si nf oto enable establishing a tunnel. The upstream node prepaew for
the creation of an IPsec tunnel and if successful sends &iSessage to the
downstream node.

Step 17: The downstream node after receiving the SkAmessage fron$ sends the merge
specification to the upstream node. But since the upstrea®$was added after
the receipt of a JFR message and not an RMS message, a pantigd apecifica-
tion instead of a full merge specification is sent upstreairthus creates ans
message that includes the originaler Spec=mm.user Spec, the partial merge
specificationpmergespec¢ a timestamp s, N's identity downNode=N and cer-
tificate downNodeCer t =C, and a signaturesgSi g obtained by signing the
prs message usingy. The CSP then sends thes message upstream

Step 18: Upon receiving a PMS messager, the CSP at the sender nofleverifies (i) the
signaturepm.user Spec.pMI'Si gandpm.nsgSi g, (ii) the timestampm.t s,
and (iii) the certificatepm.downNodeCer t . If the verification is successfl
spawns a partial merge daemon and notifieshat the join operation has com-
pleted, and data transfer can begin.

5 Security Analysis

The Security Architecture for Active Networkkl] enumerates the various attacks that
can be mounted against an active network framework. Giventkineat model, we
briefly describe how our secure concast service fares uhdsetvarious attack sce-
narios.

Attacks resulting in usurpation: Theft of serviceattacks are prevented by concast’s
authentication mechanisms. As described earlier, theastreervice is based on
well-defined trust relationships that must be verified befory node, sender or in-
termediate merge node, will be added to the flow. Becausedieidl established

% Note that at this point it has already been established lieattiginating user satisfiég,j, and
that the downstream node satisflénp.d, the local downstream node policy.

hop-by-hop, each node’s authenticity and integrity candréied individually and
compared against the receiver's and provider’s securiticipe before being in-
cluded in the flow. As a result, only nodes with the properifieation are allowed
to access the service.

Attacks resulting in unauthorized disclosure: Outside of breaking into a host or router,
packet snooping is the most common technique for obtainingss to content. In
secure concast, all data traffic is encrypted. Secure updawtstream channels
(IPsec tunnels) are created and merge specificationsdingencryption keys, are
transported via these secure channels. Data packets aggpttcand decrypted
hop-by-hop using these keys. Thus, so long as no trustedisadenpromised, no
confidential data is disclosed.

Attacks resulting in deception: Secure concast preventsasquerading by spoofing
attacks via two methods. First, all control messages areaar IPsec tunnels
whose endpoints have been authenticated. The only exoegtiothe initial JFR
and RMS messages which are transmitted in the clear. Hoywhese message
carry a digital signature that can help identify spoofedredses. Even if these
messages are not identified as spoofed messages, they phessed to trigger the
initiation of fully authenticated IPsec tunnel where thidientity will be checked.
Second, all data packets are encrypted and carry a messtégmtéeation code.
Packets can be spoofed, but without the correct encryptgntke merge daemon
will discard them. At best, such packets result in a deniade¥ice attack (see
below).

Replay attacksire another form of deception. Because all control packetsa-
ried over the IPsec tunnel, replay attacks are automatidetiected by IPsec. Only
the initial JFR and RMS travel outside the tunnel. Both camyauthenticated
timestamp that is used to detect packets that are outsidgetieptable delivery time
window. Packets replayed during the window while the turexédts are harmless
because the operations are idempotent. Regarding theltatael, all packets are
encrypted and can carry a sequence number to detect degli€#te user desires.
Substitution attackswvhich represent another form of deception, are preverited v
the use of cryptographic integrity checks. All packets dgially signed to guar-
antee the packets integrity.

Attacks resulting in disruption/Denial of Service: These types of attacks present the
biggest problem for the secure concast service. Althoughrseconcast prevents
some of the attacks, there are several different attackscthdd be launched to
consume packet processing cycles at network nodes, thigegae senders.

An example of a disruption attack that secure concast ptsvgithejoin circum-
vention attackln this case a malicious node ignores the join process anglgi
sends data to a merge daemon for merging. Because the atthis® not know
the key, the MAC check fails, so the merge daemon does noteteegpacket into
the stream, thereby preventing disruption of the strearh kdigus data. However,
the time spent processing the packet still represents a Ba&kahat is difficult to
prevent.

DoS attacks can also be mounted via false requests. Evesyatlmgus join request
is received, the network nodes expends resources tryingttp she IPsec tunnel,
only to find that the sender is not responding.

6 Performance evaluation

Fig. 4. Concast video application containing four merged streams.

In order to measure the costs of our secured concast sew&esed a concast
video-merging application[12]. Some video applicatioeguire the ability to receive
video feeds from multiple sources simultaneously; examplelude distance learning
and video monitoring/surveillance. The objective is toeiee the best possible video
quality from all sources. For our concast video merging i@pfibn, a concast session
is established that transcodes the incoming streams ineriquality streams, thereby
reducing the network bandwidth requirements. The ideaieptace uncontrolled loss
due to congestion withontrolledloss due to transcoding. To support this type of appli-
cation, we designed a simple merge function that scalesttwariing video stream by
down-sampling the pixels that comprise each frame of theojidnd combining all in-
coming streams into a single outgoing stream. In other weaash network link should
carry no more than one video steam. To achieve this, the nspeggfication keeps track
of the number of incoming video streams and the number ofr@igideo streams en-
coded in each incoming stream. It then assigns a region df@agoing frame to each
incoming video stream and down-samples the stream apptelyrto fit in the assigned
region. The assignment of streams to regions takes intaattie relative sizes of the
(possibly already down-sampled) incoming streams. As riams “join” the concast
session, the existing images are adjusted to make roomdattbam. Each composite
stream carries information about how many original stredrogntains and how they
have last been combined so that each node can determine ltomtane its incoming
streams. This ensures that even if an unbalanced mergeaseluilt by all the concast
senders, the final video stream delivered to the concasivezaogill have a roughly
proportional display area for each of the constituent visteeams.

Our test topology is shown in Figure 5. We used four video ses\ceach transmit-
ting an uncompressed black-and-white 320x240 video stadaargiven frame rate. At
each merging hop in the network the frames were merged intngéessub-sampled

image. Figure 4 is a resulting frame captured at the receiwde. We ran with both
a 'NULL' cipher specification as well as using AES (128-bitjceyption with a SHA1
message digest at rates of 4, 6, and 8 frames per secondrtfpagh case, we measured
the total system and user level CPU utilization. The datatafasn from merge node

) 100Mbs
Receiver| —_—

10Mbs

Fig. 5. Experimental Network - Secure Concast Video Merging

3 in the experimental topology (Figure 5). All nodes in théewwrk were 1.5Ghz Pen-
tiums with 128MB of RAM, resulting in similar results for themaining merge nodes.
Our concast merge specification was written in Java and neaser-level JVM, which
accounts for the majority of the load. The results of our expents are presented in
Figure 6. In the graphs, load with AES encryption is on thg legith “null” encryption
(i.e. encrypt and decrypt are no-ops) is on the right. In easle, encryption/decryption
of the video streams imposed an overhead of roughly 20 per&ertan be seen from
the results for AES/SHAL with 8 fps, the merge nodes wereinghat maximum CPU
utilization (system + user). When trying to go beyond 8 fpsitledes were overloaded
which resulted in packet loss. The initial high load in eaakecis measurement taken
during Java Virtual Machine startup (i.e. when spawning\teege Daemon).

Our results demonstrate that the presented security msohdim particular, per
packet data security) is feasible and can be implementddaweasonable overhead.
Note that our implementation of the secure merge specidicdtas been done in Java
only with the intention to show feasibility and not optintgli

7 Related Work

The DARPA Active Network community has defined an architextior an active
nodes [13] that comprises a NodeOS and one or more ExecutidroEments (EE). A
security architecture has been proposed for the architdétamework, with particular
attention paid to capsule-based EEs (i.e. those that expdetto be included in each
packet). An important observation by the authors of thahiggcture is that some part
of the active packet is dynamic (changes at intermediats)raq the rest of it is static.
Digital signatures are used to provide end-to-end autbatidin and integrity protection
to the static part of the packet. HMAC-SHA-1 integrity prctien is used between two

ation (Percentage)

CPU Utilization (Percentage)

ation (Percentage)

=1
=)
o
O

CPU Utilization (4 FPS) (AES/SHAL)

CPU Utilization (4 FPS) (NULL)

100 T T 100 T T
User CPU Utilization User CPU Utilization
m System CPU Utilization ------- M System CPU Utilization -
80 g 8 (
g
=
8
S
60 g 60 I
c
2
40 f A W 8 40
W £
g2 M AWM A o
20 20 TINATY 1 Py
: ° N P VPl
il i M N ! TR TSy T mAn I 1,0
'l ‘w T R H\yy,,we\‘ i | .‘wv e Aot b \,,\,w, o
0 o L i i
0 100 150 200 250 0 50 100 150 200 250
Time (Seconds) Time (Seconds)
CPU Utilization (6 FPS) (AES/SHA1) CPU Utilization (6 FPS) (NULL)
100 T T 100 T T
User CPU Utilization User CPU Utilization
System CPU Utilization ------- System CPU Utilization -
80 I g 8
S
s i
I i
S '
60 g 60
Ay LN
2 i
40 8 40 'A"V
50
2 |
20 - S 20
-“g,&i".)“,"n | Y Aot LT, “ \ N [
i ki ”‘c“,\‘,ng A A AR b A PRI w‘,v".\,».n; y
0 . 0
0 50 100 150 250 0 50 100 150 200 250
Time (Seconds) Time (Seconds)
CPU Utilization (8 FPS) (AES/SHA1) CPU Utilization (8 FPS) (NULL)
100 T T 100 T T
User CPU Utilization User CPU Utilization
System CPU Utilization - N\ System CPU Utilization -
I ~
80 | o 80
Ty, :
=
I
W 8
60 i i \ g o0
c
2
40 & 40 i &Au ,A
3
: 2
SIS Aty LA e Akt ° b e LY I
,‘“‘J’ i :‘"Mu\'-; i Tl m w," B A ! n ,v‘\ﬁkv::‘n,v,“;‘\' &v\”u'l,ﬂ,‘y‘,,w'nv‘v m‘«.u,r; It ,\‘5 W”“‘
o ikl o Lt
0 50 100 150 200 250 0 50 100 150 200 250

Time (Seconds)

Time (Seconds)

Fig. 6. Secure Merge Processing Overhead

neighboring nodes to provide integrity protection. Certifes are stored in DNS CERT
records and every packet carries references to the apatepertificates. Authoriza-
tion to execute code is based on the Jawecurity architecture with modifications to
support multiple policies, a feature often needed in act®@vorks.

Like the AN security architecture, SANTS [11] differs frohetapproach described
in this paper mainly in its focus on a capsule-based proeggsiodel. Every packet
is singly responsible from its own authentication, intggend authorization. In our
approach, however, packets belong to a flow, and all pacKedsflow pass through
the same sequence of nodes. Initial efforts are requiredttmsze all the members
belonging to the flow. But once achieved, the problem of cemfiility and integrity is
simplified due to the use of a shared secret by all membersdifdw.

The Switchware project [14] included one of the first attesriptdeal with security
in active networks. Like concast, the Switchware architexallowed for flow-based
programmability. The Secure Active Networks Environm@&aARE) [15] also allowed
an end-system control over the nodes participating in its, floy setting up nested
tunnels hop-by-hop. Unlike our approach, however, the SAgRroach exposes the
identity of every node being programmed to the originating system. While this
avoids the need for transitive trust, it limits scalability

A framework to provide hop-by-hop security in an active natking environment
for unicast and multicast applications was proposed byhKaswamy et.al [16]. Their
approach makes use of a centralized Keying Server (KSV)hwhiovides an interface
to accept a secure topology in the form of “links” or “grouist unicast and multicast
respectively. Every node that is a part of the secure togdets up an IKE SA with the
KSV. The KSV uses this SA to securely convey to the each “nanlétie topology all
information that it needs to reliably setup a security asdmn with its peer(s). They
use Linux IPChains to enforce a policy governing which péskan be accepted into
the node, and they use the DNS service to retrieve the pubje&ssociated with nodes.
However, in their approach all flows seem to share the samebrdmp channel for
security. Also, there does not seem to be a concept of nag¢de flow-level policies
that would enable nodes to control the membership in the flow.

8 Conclusion

A number of security challenges are associated with actateverking applications
that process data on a per hop basis. Some of the requirenfesiish applications
are secure distribution of the processing code and shamdtsgauthentication and
authorization of the members, confidentiality and intggyftapplication data. Standard
end-to-end mechanisms cannot be used to solve these pblem

In this paper we have attempted to solve the security ctgdiespecific to concast,
a many-to-one communication service. A fundamental featirour solution is the
use of IPsec which provides us confidentiality, autheriicand integrity on a point-
to-point link. We combine IPsec with a rich set of policiedahis lets us identify
legitimate members of a flow, define trust relationships agnitve various members,
and outline the type of protection required by each node hadsérvice as a whole.
The availability of a secure control plane helps us provigeadform to applications

to securely distribute shared secrets and thereby achimfiElentiality and integrity of
application data.

References

1. K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. WeiGoncast: Design and imple-
mentaion of an active network servicéZEE Journal on Selected Areas in Communications
(2001) pp. 19(3):426-437, March 2001.

. S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. iSerdD. Towsley, and S. Zabele,
“Scalable Fair Reliable Multicast Using Active Servicel2EE Network Magazing-ebru-
ary 2000.

3. I. Kouvelas, V. Hardman, and J. Crowcroft, “Network AdeptContinuous-Media Ap-
plications Through Self Organised Transcoding,” tlie Proceedings of the Network and
Operating Systems Support for Digital Audio and Video Camfee (NOSSDAV 98Jjuly
1998.

4. E. Amir, W. McCanne, and H. Zhang, “An application levaele® gateway,” irACM Multi-
media '95 1995.

5. D. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: élki for building and dynam-
ically deploying network protocols,” ilEEE OPENARCH'98San Francisco, CA, April
1998.

6. S.Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K. @abmd E. Zegura, “Bowman and
CANEs: Implementation of an active network,” Rroceedings of the 37th annual Allerton
Conference on Communication, Control, and Computing, Melio, Illinois.

7. K. Calvert, J. Griffioen, A. Sehgal, and S. Wen, “ConcagsiDn and implementation of a
new network service,” ifProceedings of 1999 International Conference on Networkd?r
cols, Toronto, OntaripNovember 1999.

8. Bob Braden, Lixia Zhang, Steve Berson, and Shai HerzogSlagin, “Resource ReSer-
Vation Protocol (RSVP),” September 1997, RFC 2205.

9. D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (§HA&ptember 2001, RFC
3174.

10. B. Kaliski and J. Staddon, “PKCS #1: RSA Cryptography cHfmations. Version 2.0,
October 1998, RFC 2437.

11. S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “$tgacurity for active networks,”
in The Fourth IEEE Conference on Open Architectures and Nétwoogramming April
2001.

12. K. Calvert, J. Griffioen, B. Mullins, S. Natarajan, L. Rieuski, A. Sehgal, and S. Wen,
“Leveraging emerging network services to scale multimegfiplications,” Software—
Practice and Experience (SPR)ol. 33, no. 14, pp. 1377-1397, November 2003.

13. AN Architecture Working Group, “Architectural framevkofor active networks—version
1.0,” July 1999.

14. D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Kerotisytl. Moore, C. Gunder, S. Net-
tles, and J. Smith, “The switchware active network architer” IEEE NetworkMay 1998.

15. D. Alexander, W. Arbaugh, A. Keromytis, and J. Smith, f&wa and security of pro-
grammable network infrastructuresJEEE Communications Magazine, Special issue on
Programmable Network4998.

16. S. Krishnaswamy, J. Evans, and G. Minden, “A prototygentework for providing hop-
by-hop security in an experimentally deployed active nek@oin DANCE: Darpa Active
Networks Conference and Expositj@902.

N

