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Abstract— We study the problem of building an optimal
network-layer clustering hierarchy, where the optimality can be
defined using three potentially conflicting metrics: state, delay
and bandwidth.

The problem of network clustering where a node’s addresses
depends on the node’s location (e.g. in the hierarchy) is well
studied. We study a problem where network nodes are addressed
by specifications that might not be tied to locations in the
topology.

We propose and compare several distributed clustering al-
gorithms: (i) clustering based solely on topology, (ii) clustering
based solely on semantics (node specifications) and (iii) a combi-
nation of the above methods (toposemantic network clustering),
where we specify a parameter that determines how much the
clustering depends on topology and how much on semantics.

We show that the toposemantic method yields the best results
when we know the right parameter value for a given topology and
assignment of specifications. We propose an algorithm that does
not require a parameter, but nevertheless yields better results
than the first two methods. 1

I. INTRODUCTION

Traditionally, network clustering is used to achieve scalabil-
ity. Clustering reduces the amount of routing information that
nodes have to store and exchange since the internal nodes and
paths inside clusters are hidden from nodes outside of those
clusters.

Hierarchical (multi-level) clustering was first introduced by
McQuillan [1] and is used to further reduce routing costs by
introducing hierarchy2. One of the first major analysis of the
McQuillan hierarchy was written by Kleinrock and Kamoun
[2]. Their paper points out the tradeoffs between network state
(sum of sizes of routing tables at all nodes) and delay stretch
(relative increase of the average path length) for hierarchical
routing and the optimal clustering structures to achieve a
minimal state.

Nodes in conventional hierarchical routing systems are
identified and addressed by their location in the hierarchy. In
this paper we consider a network-layer service where nodes
are identified by specifications that might not correlate with
locations in a network topology. The network’s job is to
deliver the packet to all nodes (and only those nodes) whose
specifications match the destination specification carried in the
packet. Unlike overlay networks, our delivery service does not

1The support of the National Science Foundation under grant CNS-0435272
is gratefully acknowledged.

2Throughout this paper, “clustering” and “hierarchical clustering” are used
interchangeably

rely on the existence of any underlying network service. As
such, it can subsume traditional network-layer services (e.g.
unicast and multicast) as well as support higher-level services
like publish-subscribe systems.

Because specifications do not necessarily reveal anything
about location, routing and forwarding algorithms need to
maintain topological information along with the specifications.
So in our problem the network state consists of two parts:
topological and semantic (specification) information.

Besides hiding internal topological information, the benefit
of clustering is that nodes with similar specifications can
be combined to form a node whose specification may have
a more compact representation (size). In addition, cluster
specifications can be abstracted—replaced with less precise
specifications, further reducing size. However, this state re-
duction comes at the cost of overdeliveries (false positives),
i.e. bandwidth wasted by forwarding packets along paths that
do not lead to valid destinations.

The main challenge of clustering is to aggregate topological
and semantic information in a manner that minimizes: (i) the
total network topological and semantic state (i.e. routing table
sizes), (ii) the average delay, or path length (measured by the
average path length over all pairs of destinations) and (iii) the
network load (measured by the number of links an average
packet traverses during forwarding, including overdeliveries).
These three metrics are related, and we explore the tradeoffs
between them.

II. CLUSTERING APPROACHES

Clustering is difficult because so many possible assignments
of nodes to clusters exist. We start by describing two ap-
proaches that can be used to cluster nodes: topological and
semantic clustering.

A. Topological Clustering

In topological clustering specifications are not considered;
clustering is only based on topology. The goal of topological
clustering is to minimize the number of routing table entries to
clusters. Kleinrock and Kamoun [2] show that the optimal type
of hierarchy to achieve this goal is a balanced hierarchy, where
all nodes have approximately the same depth in the hierarchy
and all clusters are composed of the same number of lower
level clusters. The advantages of the balanced hierarchy is that
we can control the tradeoff between routing table size and
delay stretch. This trade-off has also been studied in the area
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Fig. 1. (a) Topological Clustering vs (b) Semantic Clustering

of compact and interval routing ([3]). Their schemes assume
unicast communication and a only single copy of a packet
presented in a network.

Even though a balanced hierarchy is characterized by a
scalable number of routing table entries, the disadvantage is
that the size of the entry may grow linearly with the number
of nodes that it represents. For example, if node specifications
are both random and flat identifiers (there is no structure),
the cluster specification will be constructed as a set of node
specifications.

B. Semantic Clustering

Data clustering (sometimes called cluster analysis [4],
[5]) attempts to partition a data set into subsets (clusters)
so that data in each subset is similar for some definition
of “similar”. For example, hierarchical bottom-up clustering
algorithms begin with each element in a separate cluster and
then successively finds pairs of similar clusters and merges
them.

It is possible to use data clustering techniques to define
network clusters: nodes correspond to data elements, and
similarity can be defined as a semantic similarity (distance)
between node specifications. Unlike standard data clustering,
our problem has an additional constraint – the network topol-
ogy. Clusters can only be merged if there is an edge in the
graph connecting them.

C. Topological vs Semantic Clustering

The advantage of semantic clustering is that the size of
each cluster specification can be small. For example, if two
nodes A and B with similar specifications are merged together,
then the common part can be factored out of the specification
of the newly formed cluster. In this case, node specifications
consist only of a difference with the cluster specification. The
disadvantage is that the number of routing table entries can be
larger than in the balanced case.

The difference between topological and semantic clustering
is illustrated in Figure 1 for a network consisting of 4 nodes.
Topological clustering in Figure 1(a) groups nodes into equal
size clusters (clustering is balanced). This minimizes the num-
ber of routing table entries (each node has an entry pointing
to the other cluster and an entry to the other node in the same
cluster). Semantic clustering (see Figure 1(b)) groups together
nodes with similar specifications. This reduces specification
sizes. For example, the abstracted specification 2.∗ can be used

as a cluster specification instead of enumerating 2.1, 2.2 and
2.3.

D. Other Clustering

An overview of clustering techniques is given in Perkins’
overview [6], which describes many clustering algorithms,
each with its own goal: minimizing router state, maximizing
the connectivity inside each cluster, localizing high-intensity
traffic within a cluster subject to constraints, such as limiting
the number of child clusters or the diameter size. Our goal in
this paper is to minimize router state, under a constraint that
limits the number of child clusters.

Clustering algorithms have also been proposed for ad-hoc
and sensor networks ([7], [8], [9]). Comparatively, in our
algorithm we are trying to reduce the amount of routing
information, consisting of both topological and semantic in-
formation.

III. TOPOSEMANTIC CLUSTERING

As the name suggests, we propose the use of an algo-
rithm that combines both topological and semantic criteria
in forming clusters, with the goal of minimizing total net-
work state—which consists of both topological and semantic
information. To avoid an excessive number of levels in the
resulting hierarchy and thus a high delay stretch, we introduce
the constraint brMax: a branching factor that determines the
maximum number of child clusters. The value of brMax is
assumed to be at least two.

Our algorithm performs bottom-up hierarchical clustering.
It starts with each node in a separate cluster. At each step
the algorithm selects a pair of neighboring clusters to merge.
We distinguish two types of merging operations: Push and
Fuse. Push(A, B) forms a new cluster N containing A and B

as subclusters. Fuse(A, B) forms a new cluster N containing
A0, A1, . . . , An and B0, B1, . . . , Bm as subclusters where the
Ais are subclusters of A and Bis are subclusters of B (clusters
A and B cease to exist).

Both Push(A, B) and Fuse(A, B) operations reduce a state
in nodes that keep routing table entries corresponding to
clusters A and B (i.e. nodes in clusters that are siblings to
A and B).

Merging two clusters produces state reduction. First, a
topological state is reduced, since external nodes will keep one
routing table entry instead of two. Second, a semantic state can
be reduced, since the size of combined cluster specifications
might be smaller that the sum of the sizes of the two former
specifications. Let size(X) denote the size of the routing
table entry describing X at nodes that are outside of X . The
amount of reduction (sizeRed(A, B)) due to replacing entries
corresponding to A and B with a single routing table entry
corresponding to a new cluster N created by Push or Fuse
can be calculated as

sizeRed(A, B) = size(A) + size(B) − size(N). (0)

Since each routing table entry consists of both topological
and semantic information, we denote its size as a weighted



sum, where τ is a weight of the topological state and σ is a
weight of the semantic state,

size(X) = specSize(X)σ + topoSize(X)τ. (1)

We assume that the size of the topological information is
equal for every cluster, then without loss of generality we as-
sume that ∀X, topoSize(X) = 1. Let specRed(A, B) denote
the reduction of the semantic state (i.e. specRed(A, B) =
specSize(A)+specSize(B)−specSize(N)), then from (0)
and (1) we get

sizeRed(A, B) = specRed(A, B)σ + τ. (2)

Let sib(A, B) denote the number of nodes in clusters that are
siblings to A and B. The total reduction in state is then

H(A, B) = (specRed(A, B)σ + τ)sib(A, B).

Since H estimates the amount of the reduction of the network
state, we propose to use H as the metric for choosing which
clusters to merge. That is, if we take σ = 0, then merging is
based solely on topological state reduction; if we take τ = 0
it is based entirely on reduction in semantic state.

We propose the following greedy centralized algorithm. Ini-
tially, there is one cluster containing all nodes. The following
steps are iterated as long as it is possible to decrease the state:

1. Evaluate the heuristic H on every pair of neighboring
clusters A and B such that the number of subclusters in
the parent cluster of A and B exceeds brMax.

2. Pick a pair of neighboring clusters A and B with a
maximum state reduction H(A, B). If either the total
number of subclusters of A and B does not exceed
brMax or A or B contains only a single node, then
Fuse(A, B); otherwise, Push(A, B).

In the distributed version, each cluster (e.g. a single cluster
representative node per cluster) independently picks one of
its neighbors as a candidate to merge with. (Link or cluster
identifiers can be used to break ties when there are several
choices with the same maximum heuristic value.) If two
neighboring clusters pick each other, they merge. To calculate
the sib function, each routing message corresponding to a
cluster should carry the number of nodes inside that cluster.

IV. RESULTS

We would like to quantify the tradeoffs among state, delay,
and overdelivery (caused by “false positives” due to abstrac-
tion) under different clustering approaches. To evaluate these
tradeoffs, we simulated topological, semantic and combined
approaches. We first evaluated a topological clustering algo-
rithm that ignores specifications and considers only topology
in aggregation. We compare properties of resulting hierarchies
built by topological and semantic clustering algorithms and
show the drawbacks of these algorithms. We then evaluate a
combination of the above algorithms (toposemantic clustering)
and compare it to the two algorithms above. We show that the
toposemantic algorithm performs better than the topological
and semantic clustering algorithms.

A. Simulation Setup

All of our tests were run using transit-stub topologies of
600 nodes generated by GT-ITM [10] (3 stubs per transit
node, 9 extra transit-stub edges and 24 extra stub-stub edges).
All results are calculated as an average over 20 different
topologies. For all graphs (except Figure 2) the branching
factor brMax = 10.

To simulate network traffic, we implemented a unicast
traffic model for which a source and destination node were se-
lected randomly. Each node is assigned a unique specification
(described in section IV-D.1). A packet was then sent from the
selected source with the destination node specification carried
in the packet. This procedure was repeated to create traffic
load across the network for the duration of the simulation.
Forwarding is performed in several steps. First, a source node
sends a packet toward visible clusters those specifications
match the destination specification, once packet enters these
clusters, the same procedure is repeated for subclusters and so
on.

B. Metrics

The state metric consists of two components. First, we
measure the topological state—the average number of routing
table entries (visible clusters) over all nodes in the network.
Second, we consider the specification state, i.e. the total size
of cluster specifications stored at all nodes. We also measure
a (relative) specification state ratio—specification state for a
given clustering divided by the specification state with no
clustering.

We define the delay cost to be the number of edges crossed
on the way from the source to a node matching the destination
specification. We define delay stretch to be the ratio of the
algorithm’s measured delay cost versus the minimum possible
delay cost (over the shortest path).

Network load is measured as the number of links over which
a message is forwarded en route to its destination. Note, this
includes all links over which the message is forwarded, even if
the link does not lead to any node that matches the destination
specification. We define the network load ratio to be the ratio
of the total number of edges crossed by a message versus
the number of links in the shortest-path from a source to a
destination.

Ratio of overdeliveries is used to measure the cost of
abstraction and is calculated as the ratio of network load
under abstraction to the network load under no abstraction.
For unicast, this metrics is equal to load divided by delay.

C. Topological Clustering

We start by confirming that our clustering algorithm with
parameter σ = 0 (τ 6= 0) in fact builds a balanced hierarchy.
Figure 2(a) shows that with increasing branching factor brMax
the number of routing table entries (visible clusters) increases
approximately as the asymptotic growth function (brMax −
1)logbrMaxn, where n is the number of nodes in the network.

Figure 2(b) confirms the tradeoff (studied by Kleinrock et
al.) between the topological state (number of routing table



entries) and delay. Results are shown for two routing schemes:
Closest Entry Routing (CER) where a cluster is viewed as a
single node by the outside nodes and Overall Best Routing
(OBR) where the exact cost of forwarding through a cluster
is known. In the following experiments we use Closest Entry
Routing.
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Fig. 2. Topological clustering (σ = 0)

D. Specification Abstraction

We can control the load-state tradeoff by controlling the
maximum size of a cluster specification. By controlling the
maximum cluster specification size, we can control the max-
imum possible network state, since the number of routing
entries is known for a given brMax and the cluster specification
adds a bounded amount of state to each routing table entry. To
quantify this tradeoff, we measure the amount of overdeliveries
caused by the specification abstraction.

1) Abstractable Specification Language: For our investiga-
tion we use a simple abstractable specification language. It
reassembles generalized IPv4 addresses, where each specifi-
cation can correspond to a set of IPv4 network addresses.

Each specification is represented by a tree with labels
assigned to nodes. A root node always has a label true. Leaf
nodes might have a wildcard (*) label. Two specifications
match if in the corresponding trees, every branch of one tree
overlaps some branch of the other tree. Two branches overlap
if all elements are equal up to the last element or up to the
wildcard (*) label in one of them.
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A specification can be abstracted by replacing any branch
in the specification tree with a wildcard. A specification tree
can be reduced to a given upper bound u on the number of
tree nodes (specification size limit) by performing a breadth
first search, leaving the first u nodes, and replacing all other
branches with wildcards.

Each node is assigned a specification based on its hierarchi-
cal GT-ITM address. GT-ITM addresses resemble IP addresses
and depend on the node’s location in the transit-stub topology.
We convert GT-ITM addresses to our simple abstractable
language, e.g. a GT-ITM address 1.2.3.4 is represented by
a single branch: true → 1 → 2 → 3 → 4. For specification
size limit 2, it can be abstracted to true → 1 → 2 → *.

To measure the load-state tradeoff we vary the maximum
cluster specification size. Hierarchy is balanced (σ = 0), and
the branching factor brMax = 10.

Our simulation results (shown in Figure 3, “shuffle 0%
node pairs” curve) confirm that we can effectively control
the network state by controlling the maximum size of the
cluster specifications, and it shows that the network load ratio
(overhead due to abstraction) is inversely proportional to the
network state.

E. Semantic Clustering

We have quantified the tradeoff between topological state
and delay and between semantic (specification) state and



amount of overdeliveries for the topological clustering. Now
we can compare these tradeoffs for semantic clustering for the
same predicate assignment.

Our expectation is that semantic clustering will perform well
when nodes with similar specifications are “close together” in
the topology. We expect that semantic clustering is not going
to perform as well for randomized specification assignment.
We want to quantify the tradeoffs for different levels of
locality, i.e. correlation between node specifications and node’
locations in a topology. We start with our initial specification
assignment based on GT-ITM addresses (high locality), then
we pick random pairs of nodes and “swap” their specifications.
The number of swapped pairs is written as the percentage
of all nodes in the network. More “swaps” lead to lower
locality, and 50% of swapped specifications gives mostly
random assignment of specifications. Instead of pure semantic
clustering (τ = 0, σ 6= 0), we use mostly semantic clustering
(τ = 1, σ = 106), where sizes of clusters are considered only
as a tiebreaker between pairs with equal semantic reductions.
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Fig. 4. Semantic clustering (τ = 1, σ = 10
6
, brMax = 10): small cluster

predicates, but large number of routing table entries

First, as we expected, under high locality assignment (0%
shuffle), semantic clustering (Figure 4) is better than topologi-
cal clustering (Figure 3). For the same specification size limit,
semantic clustering gives lower state and ratio of overdeliver-
ies.

Then by comparing Figures 3 and 4 we confirm our guess

that in semantic clustering the size of each cluster specification
can be much smaller than in topological clustering, but the
number of such clusters can be significantly larger than in a
balanced hierarchy.

In Figure 4(b) we can see the tradeoff between the amount
of overdeliveries and the maximum specification size for
different amounts of locality. Compared to the topological
clustering in Figure 3(b), the amount of overdeliveries for the
same maximum specification size and locality is much lower
for semantic clustering. (Note the difference in scales of the
two graphs.)

The drawback of semantic clustering, as shown in Figure
4(a), is that even small randomness in the specification assign-
ment sharply increases the number of visible clusters which in
turn increases the total network state, even though the size of
each cluster specification is small. Figure 5 shows that even
small decreases in locality lead to large increases in number
of visible clusters.
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F. Comparison

In the toposemantic clustering algorithm, we try to combine
the best properties of previously studied topological and se-
mantic clustering: a small number of routing table entries as
in the topological clustering and small cluster specifications
as in the semantic clustering.

In Figure 6 we compare topological, semantic and topose-
mantic clustering (for toposemantic clustering we fix σ = 1
and increase τ from 1 to 3000). We also consider a special
case of toposemantic clustering (called H+) with σ = 1 and τ

is very large (∀A, τ > specSize(A)). The expectation is that
with such parameters, the hierarchy will be built balanced and
specifications will be considered as a secondary criteria when
topological conditions are equal.

In Figure 6, toposemantic clustering changes from mostly
semantic on the left side to more balanced (topological) on
the right. We notice that the number of routing table entries
(visible clusters) sharply decreases for values from 0 to 250.
The same is true for the specification state ratio.

Since the load decreases with the increasing parameter τ , the
best value of τ is the smallest value such that number of visible
clusters is close to the number corresponding to a balanced



clustering. In Figure 6 the best results for the toposemantic
clustering are achieved for approximately τ = 250.

In Figure 6(c) we notice that once the hierarchy built by
the toposemantic algorithm becomes mostly balanced (τ >

250), it is better than the hierarchy build by the topological
clustering. For approximately the same state and delay, the
load is lower. Similarly, in Figure 6(c) we can see that H+

performs better than the topological clustering.
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Finally, in Figure 7 we compare 3 types of clustering:
balanced, H+ and toposemantic with the best parameter values
found in the previous experiment (σ = 1, τ = 250). We
measure the tradeoff between the specification state ratio
and the ratio of overdeliveries by changing the maximum
specification size. The best clustering corresponds to points
closest to the origin of coordinates (0,0) in Figure 7.

As we can see, the toposemantic clustering builds the best
hierarchy, but requires a parameter that depends on topology

and the specification assignment. H+ clustering is the second
best, but does not require any parameters. It is best suited for
a distributed algorithm where it is impossible to calculate the
best parameter value off-line.
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V. CONCLUSIONS

We have presented a network clustering problem for a
general network-layer service where nodes are addressed by
specifications that might not correlate with locations in a
network topology. We believe that a study of solutions for
this problem can lead to insights into techniques for scalable
routing in the Internet. Our results can also be applied for
self-organizing networks.

We have studied the properties of topological and semantic
clustering and presented a novel toposemantic algorithm that
builds a clustering hierarchy based on topology and specifi-
cations assigned to nodes. We have analyzed our algorithm
and found that it produces better results than semantic and
topological algorithms.
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