
Practicum 5 – Maps and Closures

Assignment Details

Assigned: February 18th 2014. Due: February 20th, 2014 at midnight.

Background

 One of the requirements of PA1 Part 2 – using a data structure to hold function pointers and call

them to construct objects – stands out, to many, as the scariest. This practicum covers how to

handle it.

Before we start

If you do not already have a working XMLSerializable base class, check the course web page –

working .cpp and .h files have been posted. If you use these files (and you are welcome to!), all you

should need to do is copy them to your pa1 directory, and then make sure that Entity inherits from

XMLSerializable.

We’ll be working in the program directory for this assignment; all of the changes are in addition to

PA1 Part 2, so both should be able to exist side-by-side.

Getting started

Navigate to your program directory; we’ll be working there. Copy over the provided files if you

need to.

Some Changes to the makefile

For starters, open up your makefile, and make the following changes:

 Remove main.o from the OBJECTS line (if you had it there, at least; depending on how you

have implemented previous practicum assignments, it may not be there…)

 If you have a main.cpp already, add main.o to the production that builds prog1, so it reads:

prog1: $(OBJECTS) main.o
 g++ $^ -o prog1

 Add a new production to the makefile as follows:

la5: $(OBJECTS) la5.o
 g++ $^ -o la5

 And while we’re at it, edit the line that does the compilation of the individual C++ files to make

sure we’re using C++11 features:

%.o: %.cpp $(HEADERS)
 g++ --std=c++0x -c $< -o $@

So what changes here? This lets us have two targets for the makefile. From the command line, we

can use “make prog1” to work as it always has, or “make la5” to make an executable for this lab.

Remember that to build this lab, we need to use “make la5” each time!

 Note that if you try to make the new executable right now, it will fail, complaining about not being

able to find la5.o; so let’s go ahead and fix that.

la5.cpp

To make la5.o, we need a la5.cpp.

Open it up in your favorite editor, and set it up. Go ahead and #include <iostream>, <map>,

<string> and <functional>. Add using namespace std;, too, if you prefer (if not, you’ll

need a lot of std:: in the program; it’s your preference, but you probably want the using

statement in there…).

Then, inside the main function, we’re going to set up a map. A map is a C++ STL class which, er,

maps something to something else – in this case, we’re going to map strings (which will be class

names) to function pointers (to construct an object of that class, as to meet the requirement for PA1

Part 2).

map is a parameterized class, like vector, except it takes two arguments – the type mapped from

(the “key”) and the type mapped to (the “value”). In our case, we want to map from a string to a

function pointer that returns an XMLSerializable pointer – which is, if we use the C++11

syntax, function<XMLSerializable*()>. As such, to declare a map of this type, add to main:

map<string,function<XMLSerializable*()>> mapConstructor;

Now, before we do anything with the map, we need to fill it. And to fill it, we’ll need to know what

classes we can use; there are really only four classes we’ll see in the XML for this assignment, so let’s

go ahead and use those -- #include your header files for your Armor, Weapon, Item, and Creature

classes.

Now we’re going to populate the map. Let’s start with Item; outside of your main function, define a

function that constructs an Item object, and returns it as an XMLSerializable pointer:

XMLSerializable * constructItem()
{
 return new Item;
}

(Note that depending on how you declared your constructors, you may need to modify this slightly!)

Make sure you understand what this function does – we construct an Item object via the new

operator (which gives us an Item*), and then return it as an XMLSerializable*. Remember that

you can always cast a pointer to a derived class to a pointer to a base class.

Then, inside your main function, after you’ve declared your map, associate that function with “Item”:

mapConstructor["Item"] = constructItem;

Just like we’ve talked about before – constructItem here is an expression, the expression is of

function pointer type, and evaluates to the location in memory where constructItem resides, so

we can then store that variable in the map.

Now we can certainly do it exactly that way for the remaining classes, but let’s do at least one of

them in a slightly easier way:

mapConstructor["Enemy"] = []() { return new Enemy; };

Ok, now, this is a bit new. The C++11 spec allows you to declare anonymous functions in the

middle of code, called closures. The [] is what tells C++ that we’re trying to declare one; the code

has (basically) the same result as doing it the other way – a function gets declared, stored in memory,

and its memory location then stored in the map. And, again – we have logic stored as data, which we

can look up later. This is pretty cool.

And speaking of the looking up…

To finish up the practicum, we’re going to ask the user for a class name1, then look it up in our map,

and then try to construct an object based off of it.

And how do we do this? Just about the same way we set the values:

function<XMLSerializable*()> pFunc = mapConstructor[sLookup];

And this gives us a function pointer from the mapping2. But, since we’re just asking the user to

come up with text from the keyboard, we might not have found anything. How do we tell? By

seeing if the value we get back is NULL:

if(pFunc == NULL)
{
 // do stuff if we didn’t find anything…
}
else
{
 // do stuff if we did find something in the map
}

And now to finish off the assignment:

If there’s nothing there, tell the user.

If there is, call the function pointer3, and tell the user if a non-NULL value came back from the call.

Aaaand we’re done.

1 string sLookup; cin >> sLookup; is a pretty reasonable way of reading it in. Make sure to prompt
the user with something useful…
2 There is an important caveat here; when you use the [] operator on a map, it always constructs a new object

at that location if there is not one. In our example, it works well because the default value of a function

object is equivalent to NULL, but is a common gotcha in C++ programming.
3 As covered previously, if pFunc is our variable holding a function pointer, pFunc() will call that function.

Note that calling a NULL function pointer does not have pleasant consequences.

Requirements

 Submitted in your program directory

 You should handle Item, Enemy, Weapon, and Armor – the four classes that exist in the

sample XML file on the class web site.

 The la5 program, when run, should ask the user for a class name, and construct an object

of that class, and report success when done, or failure if not. Nothing more, nothing less.

 The construction of the class should be done via looking up a function pointer in a map.

 We’ll be talking about this in lecture on Friday, as well as how to combine everything

together…

