
Practicum 4 – Function Pointers & More

Assignment Details

Assigned: February 11th, 2013. Due: February 13th, 2013 at midnight.

Background

This assignment will provide some direct experience with function pointers and some more

information about the build tools available on Linux.

The Practicum

Ok, to get started, log in to your multilab account as normal.

Then we’re going to go into the folder you checked out last week – if you called it “main_copy”

like in the instructions from last week, “cd main_copy” will get you there.

 Then type “svn update .”, enter your password, and you should see something like this:

bloodroot:~> cd main_copy
bloodroot:~/main_copy> svn update .
Authentication realm: <svn://progit.netlab.uky.edu:3690> UKCS Source
Control
Password for '216sec001':

ATTENTION! Your password for authentication realm:

 <svn://progit.netlab.uky.edu:3690> UKCS Source Control

can only be stored to disk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if
possible. See the documentation for details.

You can avoid future appearances of this warning by setting the value
of the 'store-plaintext-passwords' option to either 'yes' or 'no' in
'/u/zon-d2/ugrad/dbbrow00/.subversion/servers'.

Store password unencrypted (yes/no)? no
A CS216/216sec001/la3
A CS216/216sec001/la3/quick.cpp
Updated to revision 1933.
bloodroot:~/main_copy>

What just happened was an svn update operation. Instead of checking out a new copy, we just

updated our current copy to what’s sitting on the server – most notably; it added the two folders for

this week’s assignments, and a .cpp file inside one of them.

(If the svn update failed the easiest thing to do is just check out a new copy; unfortunately, svn

on multilab can be a bit flakier than Tortoise, if you’re used to that client…)

Now, navigate to the la3 folder (via the cd command), this is where we’re going to be working

today.

The quick.cpp file given contains a working (and thoroughly – very thoroughly – commented)

implementation of quick sort. Before we get started changing it, let’s compile it, and give it a test

run.

 g++ quick.cpp

Is the command to compile (no -c option, as the file does contain a main, and we’re trying to

compile it to a program). Run that, and you should get:

bloodroot:~/main_copy>
bloodroot:~/main_copy>
bloodroot:~/main_copy> cd CS216
bloodroot:~/main_copy/CS216> cd 216sec001
bloodroot:~/main_copy/CS216/216sec001> cd la3
bloodroot:~/main_copy/CS216/216sec001/la3> ls
./ ../ quick.cpp .svn/
bloodroot:~/main_copy/CS216/216sec001/la3> g++ quick.cpp
In file included from /usr/include/c++/4.6/random:35:0,
 from quick.cpp:5:
/usr/include/c++/4.6/bits/c++0x_warning.h:32:2: error: #error This file
requires compiler and library support for the upcoming ISO C++
standard, C++0x. This support is currently experimental, and must be
enabled with the -std=c++0x or -std=gnu++0x compiler options.
quick.cpp: In function ‘int main(int, char**)’:
quick.cpp:172:34: error: ‘chrono’ has not been declared
quick.cpp:172:89: error: ‘srand’ was not declared in this scope
quick.cpp:184:19: error: ‘rand’ was not declared in this scope
quick.cpp:195:12: error: ‘it’ does not name a type
quick.cpp:195:32: error: expected ‘;’ before ‘it’
quick.cpp:195:32: error: ‘it’ was not declared in this scope
quick.cpp:208:15: error: ‘it’ does not name a type
quick.cpp:208:35: error: expected ‘;’ before ‘it’
quick.cpp:208:35: error: ‘it’ was not declared in this scope
bloodroot:~/main_copy/CS216/216sec001/la3>

Oops.

Well, close enough to working – if you open up the file, and go to the line it complains about – line

100 – you’ll see that there’s a use of the auto keyword. As auto is a relatively new addition to

C++, g++ (or, at least, the version on the multilab) does not, by default, support it. So we’ll have to

modify the command line a bit, and use the --std=c++0x option to enable some of the advanced

features:

 g++ --std=c++0x quick.cpp

Executing that, and then running the resulting executable, you should get something like this (noting

that each run of the program randomizes the starting vector!):

bloodroot:~/main_copy/CS216/216sec001/la3> g++ --std=c++0x quick.cpp
bloodroot:~/main_copy/CS216/216sec001/la3> ./a.out
String vector before:
 ubpwk
 ceczq
 mhlon
 urbpa
 fjnir
 rxpqy
 plaeh
 mgnoh
 farqq
 gljha
 lnlzx
 eqwtj

String vector after:
 ceczq
 eqwtj
 farqq
 fjnir
 gljha
 lnlzx
 mgnoh
 mhlon
 plaeh
 rxpqy
 ubpwk
 urbpa
bloodroot:~/main_copy/CS216/216sec001/la3>

Now, as long as we’re talking about new g++ command line options, let’s add the -o (for output)

option. Calling this specifies what the output of the program should be called. So let’s modify the

command to:

 g++ --std=c++0x quick.cpp -o quick

Which will instead of an executable named a.out, will give us an executable named quick:

bloodroot:~/main_copy/CS216/216sec001/la3> g++ --std=c++0x quick.cpp -o
quick
bloodroot:~/main_copy/CS216/216sec001/la3> ./quick
String vector before:
 gzsha
 vnrmy
 zwttk
 bcelp
 lfwml
 oaapp
 pvohf
 oesir
 qjplc
 bogfz
 wsgsf
 rihuy

String vector after:
 bcelp
 bogfz
 gzsha
 lfwml
 oaapp
 oesir
 pvohf
 qjplc
 rihuy
 vnrmy
 wsgsf
 zwttk
bloodroot:~/main_copy/CS216/216sec001/la3>

Ok, now for the actual programming part!

So, we’ve got a block of code that performs a quick sort on a vector of strings, and sorts based on

their relative position in alphabetical order.

Now, let’s make it a bit more useful – let’s generalize it to sort based on a condition we pass it – a

function pointer!

What we’re going to do is modify both the quickSort and quickSortInternal functions to

take another parameter – a function pointer. That function pointer will point to a function with a

bool return type and two strings as parameters – the function should return true if the first string

passed should occur earlier in the sorted vector than the second string.

Then, you should implement three functions (all of these will be very short) to handle the

comparisons – one should use the default behavior already implemented in quick.cpp (i.e., sorted

in alphabetical order), the second should sort the vector in reverse alphabetical order (which should

have one character difference in the body of the function from the first…). The third should sort

the vector alphabetically by the last character in the string1

After adding these functions, update the main function to output the initial random vector after

sorted all three ways.

Once you’re done with that, one more step – there’s a neat feature in the command line that lets us

redirect the output of a program to a file. If you execute a command on the command line, and

follow it up with a > and then a file name, Linux will create the file and put the output of the

program in it.

So, after you finish the program (and assuming you compile it to a file named quick), do:

 ./quick > output.txt

Which should generate a file in the folder named output.txt.

Requirements

 An updated quick.cpp with the changes detailed above

 An output.txt generated from running the compiled program

 Remember to call svn add on your output file and svn commit once you’re done with

everything!

 The answer to the following questions, saved in a file called reflection.txt

Reflection Questions

Take a look at the quick sort presented in the practicum as well as the merge sort we covered in class

on Monday (and posted on the class web site).

Given that quick sort has the same average case performance but worse worst case performance, why

might someone prefer quick sort to merge sort? What does the merge sort implementation do that

the quick sort implementation not do?

Note: For this exercise, “it takes less lines of code to implement” is not a good answer.

1 You are welcome to do it in alphabetical order based on a reversed string, but given time constraints in lab,
just sorting by the last character is fine.

Notes

 Check the class web site for code with examples of function pointer syntax. As I’ve said

before, the C-syntax for function pointers is horrible. I mean, so bad bold and italics

aren’t enough, I feel the need to use Comic Sans to properly express the badness of their

syntax. Instead, I suggest using the C++11 syntax…

 For reference, declaring a function pointer named pFunc:

o C-style: bool (*pFunc)(string, string);

o C++11-style: function<bool(string,string)> pFunc;

o (note that the C++11 version requires #include <functional>)

 The syntax for declaring function pointer parameters is just like for declaring function

pointer variables.

 You can use either C style or C++ style function pointers.

 Don’t overthink this assignment. Each of the three functions you have to write should only

take one line, and there’s only one place where you have to actually call the function pointer

– but remember to make sure you pass the function pointer from function to function.

 vectors have a method back, which returns the element on the end of the vector.

strings, as they are similar to a vector of chars, share this method.

Example output

bloodroot:~/main_copy/CS216/216sec001/la3> g++ --std=c++0x quick.cpp -o
quick
bloodroot:~/main_copy/CS216/216sec001/la3> ./quick
String vector before:
 dgeeo
 lztgs
 qbeor
 ykbzs
 xstpu
 rsbbw
 rhcyl
 qjmls
 fbtlq
 kjcoj
 uldoc
 xfuzg

String vector after:
 dgeeo
 fbtlq
 kjcoj
 lztgs
 qbeor
 qjmls
 rhcyl
 rsbbw
 uldoc
 xfuzg
 xstpu
 ykbzs

String vector after reverse sort:
 ykbzs
 xstpu
 xfuzg
 uldoc
 rsbbw
 rhcyl
 qjmls
 qbeor
 lztgs
 kjcoj
 fbtlq
 dgeeo

String vector after last char sort:
 uldoc
 xfuzg

 kjcoj
 rhcyl
 dgeeo
 fbtlq
 qbeor
 ykbzs
 lztgs
 qjmls
 xstpu
 rsbbw
bloodroot:~/main_copy/CS216/216sec001/la3>

