
CS 216
Lecture 6

February 21st, 2014

Administrivia

Toolchain

In Windows,

people usually

use an IDE

In the Linux world,

IDEs are available,

but command line

toolchain use is

common.

In all cases the

same steps are

followed!

The only

difference is

how much is

automated.

And as it turns

out, we

automate a lot in

Linux, too.

But first, let’s talk

about how we

actually get from

code to executatble.

C/C++ Source code

Assembly code

Object code

Executable (or library)

Compiler

Assembler

Linker

Preprocessor

Translation Unit

Text editor

(nano, vi, emacs)

Compiler

GCC

g++
(preprocessor is

included here!)

Preprocessor

#include

(plus include

guards)

This prepares the

source code file for

compilation

The prepared file is

called a

“translation unit”

The #includes let the

compiler know what

functions and classes

exist in files that will be

linked later.

This is why include guards are

important! C++ only lets you

define something once – so

there can only be one

definition in a translation unit!

Assembler

as

Linker

ld

C/C++ Source code

Assembly code

Object code

Executable (or library)

Compiler

Assembler

Linker

Preprocessor

Translation Unit

Debugger

gdb

make

PA1.2 stuff

auto keyword

Used to declare a

variable. It declares the

variable to be the type

of the expression

assigned to the variable.

Everything is an

expression.

Expressions have

both type and value.

But this is still

clunkier than

we’d like

But there’s

another C++11

feature – range

based for

