
CS 216
Lecture 4

February 7th, 2013

Administrivia

PA1 Part 2

posted today,

more info in

class next week.

PA1 Part 2

Questions

Every class with

scalar member

variables must

have a constructor

(e.g., every class

in the hierarchy)

The (non-

constructor)

methods don’t need

to do anything, just

exist.

You don’t need a

main function

(or a makefile)

g++ -c *.cpp

Review

Virtual methods:

Call the method in the

object pointed

to/referenced.

Non-virtual methods:

Call the method in the

class of the calling

expression

Virtual: what matters is

the type of the object

Non-virtual: what

matters is the type of

the calling expression

It is a reasonable

decision to make

everything virtual.

Compiling

individual files:

g++ -c Item.cpp

This gives us an object

file – the compiled

code, but it is not

linked (and therefore

can’t be run)

Function

pointers

But first…

Everything is an

expression.

Everything is an

expression.

Expressions have

types and values.

Variables, too,

have types and

values.

C++ lets us

have variables of

many, many

types.

Functions can

be stored in…

perfectly normal

variables.

So, what exactly

is a program?

Just bytes which can

be loaded in the

computer’s memory

and executed.

When you load those

bytes into memory,

they then have

memory addresses.

And, therefore, we

can get a pointer to

code in memory (a

function), and execute

it.

Yes, the C-style

syntax for function

pointers is terrible.

Really, really,

really terrible.

Really, really,
really

terrible.

Declare a variable:

return_type (*name)(arguments)

The type itself:

return_type (*)(arguments)

But once you have a

variable, you can

then call it as if it

were a function…

So this is the C-style

way, what about the

C++ style?

It’s actually a part

of the C++11 (as in

2011) spec…

XML

“eXtensible

Markup

Language”

XML 1.0 – 1998

XML 1.1 – 2004

(1.1 is not widely

used)

Two things in an

XML document

XML Header

Root Element

Element:

Start tag, end tag, and

anything between.

Start tag:

<tag_name>

End tag:

</tag_name>

Empty element tag:

<tag_name />

Start tags must

be paired with

end tags.

A start/end tag pair

and everything it

contains is an

element.

Anything between

the start and end

tag is called content.

(An empty element tag

just creates an element

with no content)

Note that

elements cannot

overlap!

Elements may

contain other

elements.

