
CS 216
Lecture 10

March 14th, 2014

Administrivia

Midterm exam:

12.5% curve

Midterm grades:

Posting today

Please register

your clickers on

the source control

web site.

PA2 deadline

extended until

3/21

PA3 will be

posted today

Solutions to PA1

and PA2 will be

made available

after spring break.

And now,

content!

Exception

handling

Normally we

have return

types

And often those

return types are used

to indicate error

But sometimes

we want a bit

more…

Enter exception

handling.

try block

one or more

catch blocks

throw keyword

What gets

thrown is called

an exception

Exceptions can be any

type, but often have

specific exception

classes

If an exception is

thrown, it gets caught

by the most

immediate catch block

And execution

jumps to the

catch block.

Which can be

confusing, but…

You can have

nested try/catch

structures

And it works

through

function calls.

Gotcha:

Exceptions do not

have implicit type

conversion.

Why?

More robust

error handling.

It means our return

type (or parameters)

do not need to encode

all possible errors.

Because in general,

we’re more interested

in those values when

the call works.

It gives the

programmer more

choice where the

error is handled.

And really most

importantly:

It creates less code

to maintain, since

you aren’t checking

every single call for

an error return.

Why not?

Overuse can be

confusing.

Historically, they have

been slow, but with

modern compilers this

is no longer

particularly true.

Concrete

example:

Database queries

Even more

concrete:

Disk files

We can handle file

problems in one

place instead of at

every file operation.

Why

Universality

Exception

handling

Inheritance

