CS 216

Lecture 1
January 17%, 2014

CS 216

Introduction to
Software
HEngineering

Logistics

david.b.brown
(@uky.edu

35% - Programming
30% - Weekly Assignments
25% - Tests
10% - Midterm
15% - Final
10% - Attendance

Typical week:

Practicum assignment due

Thursday at midnight.

Homework due Friday at
midnight.

Programming
assignments due on
Sunday nights, with

extra office houts
that week.

Clicker quizzes
for attendance
can happen any
lecture

R)
Center for Robotics|
and Manufacturing:
Systems

Homework!
Combined with
the first lab next

week; due 1/24.

multilab
nethack
source control

CS 216 has three

basic foci:

C++ programming
in more depth
(and object ortented
design, too)

Sotftware
engineering
techniques

Unix/Linux

environment

Why?

The first skill of

an engineet 1s
asking questions.

Active
participants

SO,

programming.,

Programming
languages are
notations.

We express 1deas
with them

(defun f (x)
(* x x))

Declare:
F(Domain) : Range

Satistying:
I x [Domain] : F(x) = (x * Xx).

double f(double x)
{

h

return x * Xx;

template<class T>
T £(T x)
{

h

return x * Xx;

What ends up being
critical 1s the clarity
ot expression of
those 1deas!

Stop wasting
everyone’s time
and use more
parentheses.

“Buttalo buftalo,
Buftalo buftalo
buffalo Buffalo

buffalo.”

What 1s

engineeringr

en-gi-neer-ing

finition of ENGINEERING K Like
1 : the activities or function of an engineer

2 a : the application of science and mathematics by which the
properties of matter and the sources of energy in nature are
made useful to people

b : the design and manufacture of complex products
<software engineering=

: calculated manipulation or direction (as of behawvior) <social
engineering> — COMpare GENETIC ENGINEERING

& See engineenng defined for English-language leamers =
See engineenng defined for kids =»

NGINEERING
vith ENGINEERING

ctioneering, mountaineenng, power steering

Design
Constraint

Impertection

Upper Deviation

Lower Dewviation

Fundamental Dewviation

International
Tolerance Grade

Lower Deviation

Upper Deviation

\

International
Toalerance Grade

Max. Size

AIHHIiiiy

Min. Size

Basic Size

B
j—
_-—

Fundamental Dewviation

Min. Size

Max. Size

4-Band Color Code | B] 25k E5y
et . e e e o i ' i M AP B

5-Band Color Code | | ";:' S 460k E1%

e - T o o o i B Tt o]

&-Band Color Code . | .. d " 2760 Igu
= e 3t e s : : ;

Multiplier
1stDigit 2nd Digit 3rd Digit 0.01 s,
] uer

- =y L
ﬂ'.i‘ Gald - Temperature
Coefficient
100ppm

50ppm

q 4 q

25ppm

Tek_ston

it 200mY Feoops . = o Gk ISR

Tek £ 3“’1"39" o R 130300?&@3

v T

Fef1 181mY © 200ps

DR S U R NN SR MR N S SR S—— R S S ——_— " V- S S_—_— N R S—-— N SN S S S—

I don’t really like
to say engineering
ts largely about
tatlure...

But engineering
ts largely about
failure.

Failure 1s 2 common

consequence of the

interaction between
constraint and
impertection.

This 1s magnified
by scale!

Edward Aloysius

Murphy, Jr

“Anything that
can go wrong,
will.”’

“It there 1s any way to
do it wrong, he will.”

“It 1t can be done
wrong, then somebody
1s going to do it wrong,”

Let’s apply this
to software

Concurrency &

Networking

Our most
important
imperfection 1s
ourselves.

We want
software that
contains no
mistakes.

However — we
understand that
not making
mistakes 1s not a
viable option.

“Writing 1t pertect
the first ttme’ 1s
just not teasible

from a cost
perspective.

So what do we
do?

Anticipate
mistakes

Detect mistakes

Fix mistakes

This 1s software
engineering

Well-engineered
“Good”

Incorrect Correct

CCBad?)

Poorly engineered

Why 1s this so
important if it
works?

Code 1s like

diamond.

CHAOS Report

Successful: Finished on
time and on budget.

Challenged: Completed,
but over budget, late,
ctC.

Standish project benchmarks over the years
Year Successful (%) Challenged (%) Failed (%)
1994 16 31
1996 27 40

1998 26 28
2000 28 23
2004 18
2006 19

20089 24
i | S ———

But what does
“success’ really
meanr

Software
projects are
never really

“done”

There’s a transition
from active
development to
maintenance

And maintenance
can be over 90% of
the time spent on
the project!

So how did we
oet herer?

1963

(Go To Statement

Considered
Harmful

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR ﬂSE OWE LITTLE
‘Gﬁm‘k INSTEAD.

FH, SCREW GOOD PRACTICE.
HOW BAD CAN 1T BEY

\ goto main_sub3;

rﬂ

COMPILE

UNIX"®

Celebrating 40 years uptime

1969

PROGRAMMING
LANGUAGE

™
Ce
PROGRANIMIN ANGUAGHE

BJARNE

STROUSTRUP 1 9 8 2

I think C++ 15 a

oreat teaching
language.

This doesn’t

mean it’s pertect.

C++ — by design
— 1S basically a
superset of C.

FORTRAN: 1956
C:1972

1972-1956 = 16

SN I

(A
¥

.

Photographed at the site

{of the “National Christmas Tres;”
° Washington, 0.C. \

d
=

INDEX BEGINS ON PAGE 273 SR eeeieteiiiiianaaiiiateiieiiieaaas
CK AND GO MIDWEST-EDITION e IT'S SO EASY TO SHOP BY PHONE
JCK A 5 ST E
ICAGO, IL 60607 COLUMBUS, OH 43225 FROM ANY SEARS CAT;\}BEIG
X P c
Satistaction Guara
Save This Catalog . . Crder any toy, book or phono on pages 438 through 214
from now until August 13,1978

Some items in Slim sizes, too

featuring the latest fashions
Overalls, Big Tops and Pants

\\

\

s

atalhoyuk — ¢, 75

Commercial generation ot electricity
Mid to late 19% century

Our field 1s new.

Software didn’t really

exist until 1945, and

software engineering
started in the 60s.

