
CS 216
Lecture 1

January 17th, 2014

CS 216

Introduction to

Software

Engineering

Logistics

david.b.brown

@uky.edu

35% - Programming

30% - Weekly Assignments

25% - Tests

10% - Midterm

15% - Final

10% - Attendance

Typical week:
Practicum assignment due

Thursday at midnight.

Homework due Friday at

midnight.

Programming

assignments due on

Sunday nights, with

extra office hours

that week.

Clicker quizzes

for attendance

can happen any

lecture

Homework!

Combined with

the first lab next

week; due 1/24.

multilab

nethack

source control

CS 216 has three

basic foci:

C++ programming

in more depth

(and object oriented

design, too)

Software

engineering

techniques

Unix/Linux

environment

Why?

Why?

The first skill of

an engineer is

asking questions.

Active

participants

So,

programming.

Programming

languages are

notations.

We express ideas

with them

𝑓 𝑥 = 𝑥2

What ends up being

critical is the clarity

of expression of

those ideas!

Stop wasting

everyone’s time

and use more

parentheses.

“Buffalo buffalo,

Buffalo buffalo

buffalo Buffalo

buffalo.”

What is

engineering?

Constraint

Imperfection

Design

I don’t really like

to say engineering

is largely about

failure…

But engineering

is largely about

failure.

Failure is a common

consequence of the

interaction between

constraint and

imperfection.

This is magnified

by scale!

Edward Aloysius

Murphy, Jr

“Anything that

can go wrong,

will.”

“If there is any way to

do it wrong, he will.”

“If it can be done

wrong, then somebody

is going to do it wrong.”

Let’s apply this

to software

Concurrency &

Networking

Our most

important

imperfection is

ourselves.

We want

software that

contains no

mistakes.

However – we

understand that

not making

mistakes is not a

viable option.

“Writing it perfect

the first time” is

just not feasible

from a cost

perspective.

So what do we

do?

Anticipate

mistakes

Detect mistakes

Fix mistakes

This is software

engineering

Incorrect Correct

Well-engineered

Poorly engineered

“Bad”

“Good”

Why is this so

important if it

works?

Code is like

diamond.

CHAOS Report

Successful: Finished on

time and on budget.

Challenged: Completed,

but over budget, late,

etc.

But what does

“success” really

mean?

Software

projects are

never really

“done”

There’s a transition

from active

development to

maintenance

And maintenance

can be over 90% of

the time spent on

the project!

So how did we

get here?

Zuse Z4 - 1945

IBM 704 - 1954

1956

1968
Go To Statement

Considered

Harmful

1969

PDP11 - 1970

1972

IBM PC - 1981

1982

I think C++ is a

great teaching

language.

This doesn’t

mean it’s perfect.

a = b;

a == b;

C++ – by design

– is basically a

superset of C.

FORTRAN: 1956

C: 1972

1972-1956 = 16

Çatalhöyük – c. 7500 BCE

Commercial generation of electricity

Mid to late 19th century

Our field is new.

Software didn’t really

exist until 1945, and

software engineering

started in the 60s.

Edsger Dijkstra

1930-2002

