Optimization Problems and Wrap-Up

CS 221 Lecture 14
Tue 6 December 2011

Agenda

1. Announcements
2. Solving Optimization Problems in Excel and MATLAB (Text Chapter 10)
3. Other nifty functions in (standard) MATLAB

- Image processing
- Audio processing

4. Summary: What we've learned
5. Course Evaluation Survey

1. Announcements

- Thursday is catch-up and get help day in Lab
- Final Exam is Thursday 15 Dec 10:30-12:30
- Location: here
- Homework 5 is due; solutions will be posted this weekend
- Extra Credit problems are available
- Due Sunday 11 December
- Two problems, worth a total of 5\% of your grade!

2. Solving Optimization Problems (Text Chapter 10)


```
500
```

- Engineer must specify a pipe, 10^{\prime} long, to hold a $500-\mathrm{lb}$ weight with at most $1^{\prime \prime}$ deflection
- Two design variables:
- inside diameter d
- outside diameter D

How to Solve It?

- Deflection δ is given by: $\delta=65 \mathrm{~W} \int^{3} / 3 \pi \mathrm{E}\left(D^{4}-d^{4}\right)$
- W = weight (500 lb)
$-l=$ length (10 feet $=120$ inches)
$-\mathrm{E}=$ modulus of elasticity (for steel: $3 \times 10^{7} \mathrm{lb} / \mathrm{sq} . \mathrm{in}$)
- Require: $\delta \leq 1^{\prime \prime}$

How to Solve It?

Straightforward: just pick a value for one of the design variables, set $\delta=1$, solve for the other

- Setting $D=4^{\prime \prime}$ gives $d=2.79^{\prime \prime}$ (Thickness: $1.2^{\prime \prime}$)
- Setting d = 1" gives D = 3.74" (Thickness: 2.74")

But...

As Engineers, we want to get the best solution.

- By picking one of the values, we might miss something

In this case: we probably want to minimize cost of the pipe. Cost is probably proportional to the volume of steel in the pipe, which is given by:

$$
\mathrm{V}=l \pi\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right) / 4
$$

So: we want to pick D and d so as to minimize

$$
\mathrm{V}=l \pi\left(D^{2}-d^{2}\right) / 4
$$

while also satisfying
$65 \mathrm{~W} l^{3} / 3 \pi \mathrm{E}\left(D^{4}-d^{4}\right) \leq 1$

Other constraints:

- D and d can't be negative
- The pipe probably needs to have some minimum wall thickness to be manufacturable (say $0.125^{\prime \prime}$)

The Final Problem

Choose D and d to
Minimize $V=l \pi\left(D^{2}-d^{2}\right) / 4 〕$ Objective
Subject to:
Function

- $65 \mathrm{~W} l^{3} / 3 \pi \mathrm{E}\left(D^{4}-d^{4}\right) \leq 1$
- $D \geq 0$
- $d \geq 0$
- $(D-d) / 2 \geq 0.125$

This is a nonlinear, constrained, multivariable optimization problem

Standard Form for Optimization Problems

- Minimize/Maximize $f\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{k}\right)$ Objective
- Subject to:
$-g_{1}\left(x_{1}, \ldots, x_{k}\right)=C_{1}$
Design Variables
$-g_{2}\left(x_{1}, \ldots, x_{k}\right) \geq C_{2}$
$-\mathrm{g}_{\mathrm{N}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \leq \mathrm{C}_{\mathrm{N}}$

Constraints - may be equations or inequalities

Classes of Optimization Problems

- Single-/Multi-variable
- One design variable: simply find maximum/minimum of the objective function
- Warning: Global maximum/minimum may not exist
- Linear/Nonlinear
- Depends on the form of the objective function
- Constrained/Unconstrained
- Constraints may make the problem harder or easier
- Constraining design variables' values to be integers makes the problem (computationally harder)

Solving Optimization Problems in MATLAB

- fminbnd(): [quasi] constrained, nonlinear, singlevariable
- fminbnd(@objfun,!ower,upper)
- Finds x such that
objfun(x) is (local) minimum
lower $\leq x \leq$ upper
- Warning: local vs. global minima
- Limits on number of iterations
- fminsearch(): unconstrained, nonlinear, multi-variable
- fminsearch(@objfun, guess)
- objfun() takes a vector of arguments
- guess is an "starting point" vector

Solving Optimization Problems in Excel

- Unconstrained, nonlinear, single-variable:
- Use Goal-Seek
- Everything else:
- Use Solver
- Note: Solver does not come installed by default!
- Download/install free from Frontline Systems:
www.solver.com

Summary: Tools for Optimization Problems

- MATLAB:
- fminsearch() for unconstrained nonlinear multivariable
- fminbnd() for constrained nonlinear single variable
- Other tools are in the "Optimization Toolbox" (extra \$)
- Excel
- Goal Seek for unconstrained nonlinear single variable
- "Solver" for constrained nonlinear multivariable

3. Other MATLAB Capabilities

Image Processing:

- Images are represented as 2-D arrays of pixel values
- pixel = "picture element"
- Number of pixels in the array varies
- E.g., with camera resolution
- Example image: 2592 x 3888 (= 10077696)
- C = imread('myphoto.jpg')
- Reads in a JPEG file, returns three-dimensional array C
- RGB ("Red-Green-Blue" intensity) format
- Dimensions: image rows, image columns, colors
- So Red = C(:,:,1); Green = C(:,:,2); Blue = C(:,:,3)
- image(C) displays the photo

Image Processing:

- You can manipulate the array values to play with the image
- Warning: imread() will return color array elements as unsigned 8-bit values (uint8)
- Maximum value of any element in array: 255
- Be careful of overflow when doing arithmetic on values
- Example: averaging pixels in a region (for blurring)
- Add values to be added in a uint32, then divide.

Audio Files

- load "handel.mat"
- Reads in variables y (sound wave), Fs (sampling rate) from demo file
- p = audioplayer(y,Fs);
- Creates an "audioplayer" object that can be used various ways
- play(p);
- Plays the file
- You can plot, manipulate the waveform (y)...

4. Summary of Things We've Learned

- How to use Excel and MATLAB to perform calculations and solve problems
- Excel Fundamentals: formatting, built-in functions, formulas
- Conditionals (IF)
- Formula updating
- MATLAB Fundamentals: variables, scripts, built-in functions, vectors and arrays
- input() - read from keyboard
- Boolean logic: AND, OR, NOT (Truth Tables)
- MATLAB Programming
- Assignment statements
- Conditional ("logical") statements: if, if-else, if-elseif-else
- Iteration statements: while and for
- User-defined functions: passing parameters, return values

4. Summary of What We've Learned

- MATLAB Programming:
- Formatting output with fprintf()
- Nested loops
- Plotting/Graphing with Excel and MATLAB
- Applications:
- Finding Roots:
- MATLAB fzero and roots, Excel Goal-Seek
- Algorithms: bisection,
- Matrix Operations: product, inversion
- Solving Systems of Simultaneous Equations
- Curve-Fitting: fitting models to data (not in text!)
- Numerical Integration
- Optimization Problems

Thank you for your participation!

