Optimization Problems and Wrap-Up

CS 221 Lecture 14 Tue 6 December 2011

Agenda

- 1. Announcements
- 2. Solving Optimization Problems in Excel and MATLAB (Text Chapter 10)
- 3. Other nifty functions in (standard) MATLAB
 - Image processing
 - Audio processing
- 4. Summary: What we've learned
- 5. Course Evaluation Survey

1. Announcements

- Thursday is catch-up and get help day in Lab
- Final Exam is Thursday 15 Dec 10:30-12:30
 - Location: here
- Homework 5 is due; solutions will be posted this weekend
- Extra Credit problems are available
 - Due Sunday 11 December
 - Two problems, worth a total of 5% of your grade!

2. Solving Optimization Problems (Text Chapter 10)

- Engineer must specify a pipe, 10' long, to hold a 500-lb weight with at most 1" deflection
- Two design variables:
 - inside diameter d
 - outside diameter D

How to Solve It?

- Deflection δ is given by: $\delta = 65W \ell^3 / 3\pi E(D^4 d^4)$
 - -W = weight (500 lb)
 - l = length (10 feet = 120 inches)
 - E = modulus of elasticity (for steel: 3×10^7 lb/sq.in)
- Require: $\delta \leq 1''$

Straightforward: just pick a value for one of the design variables, set $\delta = 1$, solve for the other

- Setting D = 4'' gives d = 2.79'' (Thickness: 1.2'')
- Setting d = 1'' gives D = 3.74'' (Thickness: 2.74'')

But...

As Engineers, we want to get the <u>best</u> solution.

– By picking one of the values, we might miss something In this case: we probably want to minimize cost of the pipe. Cost is probably proportional to the volume of steel in the pipe, which is given by:

$$V = \mathcal{U}\pi(D^2 - d^2)/4$$

So: we want to pick *D* and *d* so as to minimize

$$V = \mathcal{U}\pi(D^2 - d^2)/4$$

while also satisfying

 $65W l^3 / 3\pi E(D^4 - d^4) \le 1$

Finding the <u>Best</u> Solution

Other constraints:

- D and d can't be negative
- The pipe probably needs to have some minimum wall thickness to be manufacturable (say 0.125")

The Final Problem

Choose *D* and *d* to Minimize $V = \mathcal{V}\pi(D^2 - d^2)/4$ Objective Subject to: Function • $65W\mathcal{V}^3 / 3\pi E(D^{4} - d^{4}) \le 1$ • $D \ge 0$ • $d \ge 0$ • $(D - d)/2 \ge 0.125$

This is a nonlinear, constrained, multivariable optimization problem

Standard Form for Optimization Problems

Constraints – may be equations or inequalities

Classes of Optimization Problems

- Single-/Multi-variable
 - One design variable: simply find maximum/minimum of the objective function
 - Warning: Global maximum/minimum may not exist
- Linear/Nonlinear
 - Depends on the form of the objective function
- Constrained/Unconstrained
 - Constraints may make the problem harder or easier
 - Constraining design variables' values to be integers makes the problem (computationally harder)

Solving Optimization Problems in MATLAB

- fminbnd(): [quasi] constrained, nonlinear, singlevariable
 - fminbnd(@objfun, lower, upper)
 - Finds x such that objfun(x) is (local) minimum lower ≤ x ≤ upper
 - Warning: local vs. global minima
 - Limits on number of iterations

function handle

- fminsearch(): unconstrained, nonlinear, multi-variable
 - fminsearch(@objfun,guess)
 - objfun() takes a <u>vector</u> of arguments
 - guess is an "starting point" vector

Solving Optimization Problems in Excel

- Unconstrained, nonlinear, single-variable:
 - Use <u>Goal-Seek</u>
- Everything else:
 - Use <u>Solver</u>
- Note: Solver does not come installed by default!
 - Download/install free from Frontline Systems: www.solver.com

Summary: Tools for Optimization Problems

- MATLAB:
 - fminsearch() for unconstrained nonlinear multivariable
 - fminbnd() for constrained nonlinear single variable
 - Other tools are in the "Optimization Toolbox" (extra \$)
- Excel
 - Goal Seek for unconstrained nonlinear single variable
 - "Solver" for constrained nonlinear multivariable

3. Other MATLAB Capabilities

Image Processing:

- Images are represented as 2-D arrays of pixel values
 - pixel = "picture element"
 - Number of pixels in the array varies
 - E.g., with camera resolution
 - Example image: 2592 x 3888 (= 10077696)
- C = imread('myphoto.jpg')
 - Reads in a JPEG file, returns three-dimensional array C
 - RGB ("Red-Green-Blue" intensity) format
 - Dimensions: image rows, image columns, colors
 - So Red = C(:,:,1); Green = C(:,:,2); Blue = C(:,:,3)
- image(C) displays the photo

Image Processing:

- You can manipulate the array values to play with the image
- Warning: imread() will return color array elements as unsigned 8-bit values (uint8)
 - Maximum value of any element in array: 255
 - Be careful of overflow when doing arithmetic on values
 - Example: averaging pixels in a region (for blurring)
 - Add values to be added in a uint32, then divide.

Audio Files

- load "handel.mat"
 - Reads in variables y (sound wave), Fs (sampling rate) from demo file
- p = audioplayer(y,Fs);
 - Creates an "audioplayer" object that can be used various ways
- play(p);
 - Plays the file
- You can plot, manipulate the waveform (y)...

4. Summary of Things We've Learned

- How to use Excel and MATLAB to perform calculations and solve problems
 - Excel Fundamentals: formatting, built-in functions, formulas
 - Conditionals (IF)
 - Formula updating
 - MATLAB Fundamentals: variables, scripts, built-in functions, vectors and arrays
 - input() read from keyboard
- Boolean logic: AND, OR, NOT (Truth Tables)
- MATLAB Programming
 - Assignment statements
 - Conditional ("logical") statements: if, if-else, if-elseif-else
 - Iteration statements: while and for
 - User-defined functions: passing parameters, return values

4. Summary of What We've Learned

- MATLAB Programming:
 - Formatting output with fprintf()
 - Nested loops
- Plotting/Graphing with Excel and MATLAB
- Applications:
 - Finding Roots:
 - MATLAB fzero and roots, Excel Goal-Seek
 - Algorithms: bisection,
 - Matrix Operations: product, inversion
 - Solving Systems of Simultaneous Equations
 - Curve-Fitting: fitting models to data (not in text!)
 - Numerical Integration
 - Optimization Problems

Thank you for your participation!