Curve-Fitting

CS 221 Lecture 13

Tue 29 November 2011

Agenda

- 1. Announcements
- 2. Quiz Results
- 3. Least-squares regression (Curve-fitting) MATLAB polyval() and polyfit()
- 4. Examples
- 5. Application: Quantifying goodness-of-fit
- 6. Applying Linear Regression to nonlinear relationships
- 7. A Quick word on file I/O in MATLAB

1. Announcements

- Lab Quiz this Thursday. Coverage:
 - Solving systems of linear equations
 - Plotting data
- The End Game:
 - Prob Set 5 is out; due Sunday (but no late penalty)
 - Extra credit Prob Set on the way; due Thursday of Dead week.
 - Next week: last lecture.
 - A few odds and ends; review of what we've learned
 - Need a volunteer to administer the Teacher-Course Evaluation Survey.
- Final Exam Thursday 15 December, 10:30-12:30 HERE.

2. Class Quiz 3 Statistics

Score Distribution

Mean = 69.1, Median = 70, Min = 23, Max = 98 N = 136

3. LEAST-SQUARES REGRESSION

The Problem

- You are given a bunch of data points (x-y pairs)
 - Measured or observed (think: experiment)
- Your job is to find (or characterize) the general relationship between x and y
 - More generally, between $x_1, x_2, ..., x_n$ and y
- Why do this?
 - To understand the relationship
 - To interpolate values between measured values
 - To extrapolate from measured values

The Problem

Examples:

- Expansion vs. temperature of a material
- Population growth models: rate of growth of population is proportial to population size – up to a point!
- Tensile strength of a plastic material is proportional to the time it is heated
- Metabolism rate as a function of body mass
- Flow rate through a pipe as a function of diameter and slope

Things to Remember

- Given a set of measurements, there are many ways to characterize their relationship.
 - Mean, variance, other statistics
 - "Trend line" (more anon)
 - A polynomial curve that passes through the points
- Which one is best depends on
 - What you know, and
 - What you are trying to do

Example

- 8 measurements of the deflection of a wooden rod under different weights
 - weights: 1, 2, ..., 8 pounds
 - deflection in inches
- Using MATLAB's polyfit() function, we can find polynomials (including straight lines) that best "fit" a given set of (x,y) pairs.
 - p = polyfit(x,y,n): returns a degree-n polynomial that "best fits" the given set of pairs
 - p is a vector of size n+1, containing the coefficients

Defining "Best Fit"

- Suppose we want to fit a line to our data.
- Assume measured values (pairs) are all equal to function + some error:

$$y = a_0 + a_1 x + e$$

Note: can generalize this to degree-n polynomial:

$$y = a_0 + a_1x + a_2x^2 + ... + a_nx^n + e$$

What do we mean by "best fit"?

Definitions

 Residual: given a model (linear or polynomial) for the data, the difference between the value predicted by the model for a given x, and the measured value:

model:
$$y = a_0 + a_1x + e$$

 $e_i = y_i - a_0 - a_1x_i$ Predicted value for given x_i

Inadequate Definition 1

 Best fit = the one that minimize the <u>sum of the</u> <u>residuals</u>:

$$\sum e_i = \sum (y_i - a_0 - a_1 x_i)$$

- Problem: not unique (+/- errors cancel)
 - Given two points, the best fit should be the line through those two points
 - This quantity is minimized by any line passing through the point halfway between the two points (except a vertical line)

Inadequate Definition 2

Minimize the sum of the absolute value of the residuals:

$$\sum |e_i| = \sum |y_i - a_0 - a_1 x_i|$$

- Problem: not unique
 - Given 4 points, any line between the two lines connecting different pairs will minimize this

Inadequate Definition 3

- Minimax: minimize the maximum distance between any point and the line
- Problem: outliers
 - This strategy gives each point equal weight
 - Outliers have too much influence on the line

Least-Squares Regression

• Idea:

Minimize the sum of the squares of the residuals:

$$S_r = \sum e_i^2 = \sum (y_i - a_0 - a_1 x_i)^2$$

- This gives a unique solution.
- It can also be generalized to any polynomial:

$$S_r = \sum e_i^2 = \sum (y_i - a_0 - a_1 x_i - a_2 x_i^2 - ... a_n x_i^n)^2$$

Solving for Least-Squares Parameters

- For a line: two unknowns: a₀ and a₁
- Take partial derivatives w.r.t. a₀ and a₁

$$\delta S_r / \delta a_0 = -2 \sum (y_i - a_0 - a_1 x_i)$$

 $\delta S_r / \delta a_1 = -2 \sum [(y_i - a_0 - a_1 x_i) x_i]$

 Set RHS's to zero, rearrange, and get the normal equations:

$$na_0 + (\sum x_i)a_1 = \sum y_i$$

$$(\sum x_i)a_0 + (\sum x_i^2)a_1 = \sum x_iy_i$$

Formula for degree-1 (linear) Least-Squares Coefficients

•
$$a_1 = (n \sum x_i y_i - \sum x_i \sum y_i) / (n \sum x_i^2 - (\sum x_i)^2)$$

•
$$a_0 = (\sum y_i / n) - a_1 (\sum x_i / n)$$

Mean of sample y's

Mean of sample x's

Using polyval()

 Returns the result of evaluating a polynomial (represented by a vector of coefficients) at a given x value or vector of x values, i.e.:

```
c(1)*x.^degree + c(2)*x.^(degree-1) + ... + c(degree)*x + c(degree+1)
```

Usage: y = polyval(c,x)

c = vector of coefficients

e.g., returned from polyfit()

x = vector of values at which polynomial is to be evaluated

y = vector of results

Using polyfit()

- Determines a polynomial of given degree that best fits (i.e., minimizes sum of squares of residuals) a given set of x-y points
- Usage:

```
c = polyfit(x,y,degree)
x = vector of values of the independent variable
y = vector of (measured) values of the dependent variable
degree = highest power of x in the desired fitted polynomial
c = vector of coefficients of the polynomial
length(c) = degree + 1
The best-fitting polynomial is:
c(1) x<sup>degree</sup> + c(2) x<sup>(degree-1)</sup> + ... + c(degree) x + c(degree+1)
i.e., coefficients are ordered from highest power of x to lowest
```

Curve-fitting with polyfit()

To fit a line to the data:

```
c = polyfit(x,y,1);
```

c will be a 2-element vector, defining the equation:

$$y = c(1)*x + c(2)$$

4. Examples

Measured Data:

X	у
1	2.315
2	0.406
3	-2.373
4	-3.587
5	-5.868

To get a line:

polyfit(x,y,1)

ans = [-2.0359 4.2863]

So the line that produces minimal squares of residuals is y = -2.0359*x + 4.2863

Example, cont .

- Always plot the curve/line with the data points as a sanity check!
- plot(x, y, '*', x, polyval(c,x))

Example: Hypothesis Testing

- Velocity of a skydiver vs. time (after jumping)
 - Parameters:

```
g = 9.8 \text{ m/s}^2

m = \text{mass of skydiver, } 68.1 \text{ kg}

c = \text{drag coefficient, } 12.5 \text{ kg/s}

- \text{Model 1:} \quad v(t) = (\text{gm/c})(1 - \text{e}^{(-\text{ct/m})})

- \text{Model 2:} \quad v(t) = (\text{gm/c})(t/(t+3.5))
```

Skydiver: Measured data and models

5. Application: Quantifying Fit

- We can use linear regression to compare models!
- Idea: plot the measured y values vs. the values predicted by the model
 - If the model is perfect, the points should all be on the line y = x, i.e. the line with slope 1 and intercept 0
 - So: determine the slope and intercept of the line and compare them to 1 and 0, respectively!

Model 1 fit

- y1 = vector of model-1-predicted values for x = 1:15
 y1 = model1(x)
- c = polyfit(y,y1,1); result: c = [1.0316 -0.8587] plot(y,y1,'*',polyval(c,y))

Model 2 fit

- y2 = model-2-predicted values for x = 1:15
 y2 = model2(x)
- c = polyfit(y,y2,1); result: c = [0.7472 6.6968]plot(y,y1,'*',polyval(c,y))

Looking at the coefficients shows that Model 1 is clearly better.

But... be careful!

Fitting a parabola

Fit a parabola (degree-2 polynomial) to the data: c = polyfit(x,y,2); plot(x,y,'*', x, polyval(c,x))

The Moral of the Story

- Do not blindly rely on any quantitative metric.
- Always use your understanding of the application – in this case, that the velocity should not decrease (until the skydiver hits the ground) – to sanity-check what the numbers are telling you.

6. Using Linear Regression to Solve Nonlinear Relationships

General Procedure:

- Transform the nonlinear relationship into a linear one
- Transform the measured data as needed
- Solve for coefficients using polyfit()
- Transform coefficients back to fit original formula

Nonlinear Example 1

```
• y = \alpha e^{\beta x}
   take natural log of both sides: \ln y = \ln \alpha + \beta x
   This is linear – so take log of measured y's, use
      polyfit() to get \beta and \ln \alpha, compute \alpha = \exp(\ln \alpha)
    1. \log y = \log(y)
   2. c = polyfit(x, logy, 1)
   3. beta = c(1);
   4. alpha = exp(c(2));
   5. plot(x,y, '*', x, alpha*exp(beta*x)) % compare!
```

Nonlinear Example 2

- $y = \alpha x^{\beta}$
 - Note: not polynomial − β unknown, not necessarily integer
- Again, take log of both sides:

$$\log y = \log \alpha + \beta^* \log x$$

This time have to take log of both x's and measured y's:

- 1. $\log y = \log(y)$
- 2. logx = log(x)
- 3. c = polyfit(logx, logy, 1)
- 4. beta = c(1);
- 5. alpha = exp(c(2));
- 6. plot(x,y, '*', x, alpha*(x.^beta)) % compare!

Nonlinear Example 3

- $y = \alpha x/(x+\beta)$
- Take reciprocal of both sides:

$$1/y = (x+\beta)/(\alpha x) = 1/\alpha + (\beta/\alpha)^*(1/x)$$

Take reciprocal of x's and measured y's, solve for $1/\alpha$ and β/α

- 1. ry = 1/y
- 2. rx = 1/x
- 3. c = polyfit(rx,ry,1)
- 4. alpha = 1/c(2);
- 5. beta = c(1)*alpha;
- 6. plot(x,y, '*', x, (alpha*x)./(x + beta)) % compare!

Note ./ form!

Multiple Linear Regression

• When y is a function of multiple x's:

$$y = a_0 + a_1 x_1 + a_2 x_2 + ... + a_n x_n$$

- As before:
 - Residual = difference between predicted and observed/ measured values
 - Want to minimize sum of squares of residuals:

$$S_r = \sum e_i^2 = \sum (y_i - a_0 - a_1 x_{1i} - ... - a_n x_{ni})^2$$

"Predicted" value

for x_i

 As with polynomial regression, take partial derivatives with respect to each a_i (e.g., for two x's):

$$\delta S_{r}/\delta a_{0} = -2 \sum (y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})$$

$$\delta S_{r}/\delta a_{1} = -2 \sum x_{1i} [(y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})]$$

$$\delta S_{r}/\delta a_{1} = -2 \sum x_{2i} [(y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})]$$

Multiple Linear Regression

 Set partial derivatives equal to 0, rearrange to get normal (matrix) equation:

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^{2} & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^{2} \end{bmatrix} \begin{bmatrix} a0 \\ a1 \\ a2 \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{1i}y_{i} \\ \sum x_{2i}y_{i} \end{bmatrix}$$

(all Σ 's are over i) (note symmetry in x_{1i} and x_{2i})

Solve this to get a_i's!

6. A Quick Word on File I/O

- You can send output to files via fprintf().
- Basic model (output):
 - "Open" the file with fopen()
 - Give it the filename as argument (note: path)
 - fopen() returns a "handle" (integer)
 - Write to the file with fprintf()
 - Give it the handle as first argument

Sending Output to a File

```
fhandle = fopen('myOutput.txt','w');

fprintf(fhandle,'This output goes into the file!\n');

x = .... % calculations

y = .... % more calculations

fprintf(fhandle,'x = %10.2f, y = %10.4f.\n',x,y);
```

Reading Input from a File

- You can read input from a file
- fhandle = fopen(<filename>,'r'); % r = read
- A = fscanf(fhandle,<formatstring>)
- Returns elements in A in column order Example:

A = fscanf(fhandle,'%d\n') % reads one integer/line