
CS 221 

Tuesday 15 November 2011 



Agenda 

1. Announcements 

2. Solving systems of linear equations 

3. Measuring time with tic/toc in MATLAB 

4. Quiz Coverage 

5. Homework Q & A 



1. Announcements 

• Homework 4 due tomorrow night (Wed 16 
November) 

• Next in-Class Quiz (#3): Next Week 

Tuesday, 22 November 

• Lab Quiz 2 performance:  lousy 



2. Solving Systems of Equations 

• We’ve seen ways to solve equations of the form: 

f(x) = 0 

– Iterative solutions:  bisection, fixed-point, Newton’s 

• Next we consider problems involving multiple 
variables: we want to find a set of values x1, 
x2, ..., xn, satisfying: 

f1(x1,x2,...,xn) = 0 

f2(x1,x2,...,xn) = 0 

... 

fn(x1,x2,...,xn) = 0 



Solving Systems of Equations 

• Such systems can be either linear or nonlinear 

– linear: no higher powers of any xi  

– General form:  n linear equations, n unknowns 
a11 x1 + a12 x2 + ... + a1n xn  = b1 

a21 x1 + a22 x2 + ... + a2n xn  = b2 

... 

 an1 x1 + an2 x2 + ... + ann xn  = bn 

 



Solving Linear Systems 

• You learned how to solve small sets of linear 
equations in school 
– Generally: manipulate equations to find one of the 

unknowns, then plug in to find the other. 

– Example: 

      2x – 3y = 5 

      3x – 4y = 12 
subtract top from bottom, get x = y+7, plug in first 

equation, get 2(y+7) – 3y =5, so y = 9, so x = 16. 

• Unfortunately, such techniques become very 
difficult for larger systems in general 



Tools are Great for Solving Linear 
Systems! 

• MATLAB excels at solving “large” systems of 
linear equations 

– E.g., 800 equations in 800 unknowns 



Example: Forces on a Truss 

• Force: tension or compression on the members 
of the truss (F1, F2, F3) 

• External reaction: how the truss interacts with 
its supporting framework 



Balancing Forces 



Balancing Forces 



Hor. and Vert. Forces Sum to Zero! 

• Node 1: 

 FH = 0 = -F1 cos 30° + F3 cos 60° + F1,h 

 FV = 0 = -F1 sin 30° -  F3 sin 60° + F1,v 

• Node 2: 

 FH = 0 = F2 + F1 cos 30° + H2 + F2,h 

 FV = 0 = F1 sin 30° + F2,v + V2 

• Node 3: 

 FH = 0 = -F2 – F3 cos 60° + F3,h 

 FV = 0 = F3 sin 60° + F3,v + V3 

 



Equations 

cos 30 F1 + 0 F2 – cos 60 F3 + 0 H2 + 0 V2 + 0 V3 = F1,h 

sin 30 F1 + 0 F2 + sin 60 F3 + 0 H2 + 0 V2 + 0 V3 = -F1,v 

-cos 30 F1 + -1 F2 + 0 F3 + -1 H2 + 0 V2 + 0 V3  = F2,h 

sin 30 F1 + 0 F2 + 0 F3 + 0 H2 + 1 V2 + 0 V3 = -F2,v 

0 F1 + 1 F2 + cos 60 F3 + 0 H2 + 0 V2 + 0 V3 = F3,h 

0 F1 + 0 F2 – sin 60 F3 +  0 H2 + 0 V2 –1 V3 = F3,v 

 

Note: every variable should have a nonzero coefficient in 
some equation! 

 

 



Matrix Representation of the 
System of Equations 

 

 

0.866    0      -0.5     0    0    0            F1                    F1,h 

  0.5      0     0.866   0    0    0            F2                -1000 

-0.866  -1       0       -1    0    0            F3     =      F2,h  

-0.5       0       0        0   -1   0            H2             F2,v  

  0         1      0.5      0    0    0           V2             F3,h 

  0         0    -0.866   0    0   -1           V3              F3,v 



System of Equations 

 

 

0.866    0      -0.5     0    0    0            F1                    0 

  0.5      0     0.866   0    0    0            F2                -1000 

-0.866  -1       0       -1    0    0           F3     =      0  

-0.5       0       0        0   -1   0            H2             0  

  0         1      0.5      0    0    0           V2              0 

  0         0    -0.866   0    0   -1           V3              0 



Solving with MATLAB® 

• Create the Coefficient and Constant (Parameter) 
Matrices 

– A = [  cosd(30), 0, -0.5, 0, 0, 0; 0.5, ... ]; 

– B = [ 0; -1000; 0; 0; 0; 0; ]; 

• Note well: B is (must be) a column vector. 

• Solve for x in one of two ways: 

– Using “left-division” (matrix operator) 

x = A\B; 

– By computing A-1 and multiplying B by it: 

x = inv(A)*B; 

 



Which MATLAB Method to Use? 

• If you are only going to solve the equation once, 
use “left division” 

• If you are going to re-solve with a different B 
matrix, compute and save A-1 

– In this example: vary the external forces on the truss. 

– Ainv = inv(A);   x1 = Ainv*B1;  x2 = Ainv*B2; 

• Why? 
– Matrix operations are expensive; inverting a large matrix is 

really expensive (read: slow). 

– Left division is faster. 

– 1000x1000 Matrix:   Left-division:  0.14 s;  invert: 0.31 s 

– 10000x10000:      51.9 s  vs.  155.3 s 



Example: Spring Systems 



Spring Forces 

• Springs exert force proportional to the amount 
they are “stretched” 

   Fspring i = ki xi 

For this problem: assume all ki’s = k 

• In steady-state, all masses are at rest, and all 
forces are balanced 

– Spring force up = gravity + spring force down 



Example: Spring Systems 



Free-Body Diagrams 



Equations 

 Mass 1:  kx1 = 2k(x2 – x1) + m1g 

 Mass 2:  2k(x2 – x1) = m2g + k(x3 – x2) 

 Mass 3:  k(x3 – x2)   = m3g 

 

Rewrite to get: 

    3k x1 – 2k x2 +  0 x3 =  m1g 

      –2k x1 + 3k x2 –  k x3  =  m2g 

    0   x1 –  k x2  +   k x3    =  m3g 



Matrix Equation 

• [ K ] [ X ] = [ W ] 

– [ K ] is called the stiffness matrix 

 

       3k    –2k      0        x1     =      m1g                

     –2k      3k     –k       x2      =      m2g  

        0      –k       k       x3      =      m3g 

  



Matrix Equation 

• [ K ] [ X ] = [ W ] 

– [ K ] is called the stiffness matrix 

 

       3(10)  –2(10)    0         x1      =      (2)(9.8)         

     –2(10)   3(10)   –(10)     x2      =      (3)(9.8)  

         0       –(10)    (10)     x3       =     (2.5)(9.8) 

  



Matrix Equation 

• [ K ] [ X ] = [ W ] 

– [ K ] is called the stiffness matrix 

 

       30    –20      0         x1       =      19.6                

     –20      30    –10       x2       =       29.4  

        0     –10     10        x3       =      24.5 

  



The Solution 

inv(K) =    0.10     0.10    0.10 

                 0.10    0.15    0.15 

                 0.10    0.15    0.25 

 

inv(K)*W =       7.35 

                       10.045 

                       12.495 



Solving with Excel 

• Set up coefficient and parameter matrices (K 
and W) in the spreadsheet 

• Compute inverse of K (using the MINVERSE 
function), call it Kinv 

• Multiply Kinv times W (using the MMULT 
function) to get the solution 



Changing the Parameters 

• What if m2 is now 1 kg? 

– Simply change W and re-compute inv(K)*W! 

  

W  =     19.6 

              9.8 

             24.5       

 

 inv(K) * W =    5.4 

         7.1 

        9.6 



Example: 
Great Lakes Chloride Concentration 



Flow Balance Problems 

• Basic principle: conservation of mass 

• Flow in = flow out (assuming no chemical 
changes) 



Flow Balance Equations 

• QSHcS   =   FS 

• QMHcM  =   FM 

• QSHcS + QMHcM– QHEcH   =   -FH 

• QHEcH –  QEOcE   =   -FE 

• QEOcE  –  QOOcO  =  -FO 



Matrix Equations 

 

  QSH    0       0        0        0            cS              FS 

   0     QMH    0        0        0            cM             FM 

     QSH  QMH   -QHE     0        0            cH      =    -FH 

   0      0       QHE    -QEO    0            cE             -FE 

     0      0       0        QEO   -QOO         cO             -FO 



Matrix Equations 

 

  67    0       0        0       0               cS           180 

   0     36     0        0       0               cM           710 

     67   36  -161      0        0               cH    =    -740 

   0      0    161    -182    0                cE          -3850 

      0      0      0     182   -212             cO          -4720 



Solution 

cS  = 2.69 

cM = 19.7 

cH  =  10.1 

cE  =   30.1 

cO  =  48.1 

 

(Note significant digits.) 



Summary on Linear Equations 

• The “geometry” of the problem dictates the 
coefficient matrix through a balance principle 
– Conservation of mass 

– Forces balanced at equilibrium 

• The “inputs” (RHS vector – external forces, e.g.) can 
be changed (to get a new solution) without 
changing the coefficient matrix 

• The MATLAB “left division” operator is faster than 
inv() if you don’t need to use it more than once 
– Computing the inverse is computationally more expensive 

than just getting the answer (Gauss elimination) 



3. Timing Operations with “tic” and 
“toc” 

• MATLAB has built-in functions to time 
operations. 

• Use like this: 
tic; <operation to be timed>; toc 

• Prints elapsed time in seconds. 
– To save elapsed time, do:  var = toc; 

• More elaborate timing structures (e.g., nested 
calls) are possible. 

• How long does it take to invert a 2000-by-2000 
matrix? 



4. Quiz Coverage 

• Plotting 
– plot() and fplot() in MATLAB, plot types in Excel 

– E.g., “when would you use fplot() instead of plot()?” 
(when you want to plot the curve of a function, not data) 

– What different kinds of plots/graphs are for 

• Equation classification: linear, nonlinear 
polynomial, nonlinear general 

• Finding roots: 
– fzero() and roots() in MATLAB 

– Goal-Seeking in Excel 



Quiz Coverage 

• Matrix mathematics 
– Operators in MATLAB (including .^ and .*) 

– Functions in Excel 

• Function Handles 
– What they are, what they are for 

• Everything about loops and conditionals 
– Know how to interpret and simulate execution of 

code! 

• Note:  Curve-fitting and solving systems of linear 
equations will be on the final 



Example Problem 

• What is the value of v after this sequence of 
statements is executed? 

 v = 13; 

 while v > 0 

  v = v/2; 

  v = v + 3; 

 end 

 



Example Problem 

• What’s wrong with this? 

  A = [ 1, 2, 3; 4, 5, 6]; 

  B = [  -1, -2, -3; -4, -5, -6]; 

  C = A*B; 



Example Problem 

• Consider the function f(x) = 5x3 – 3x2 – 4x + 3 

• Suppose you a bisection root-finding function 

with @f, a lower bound of -1, and an upper 
bound of -0.8.  How many iterations will it take 
until the error bound is less than 10-5? 

– Simulate the bisection method! 



5. Homework Q & A 


