CS 221

Tuesday 15 November 2011

Agenda

1. Announcements
2. Solving systems of linear equations
3. Measuring time with tic/toc in MATLAB
4. Quiz Coverage
5. Homework Q \& A

1. Announcements

- Homework 4 due tomorrow night (Wed 16 November)
- Next in-Class Quiz (\#3): Next Week

Tuesday, 22 November

- Lab Quiz 2 performance: lousy

2. Solving Systems of Equations

- We've seen ways to solve equations of the form:

$$
f(x)=0
$$

- Iterative solutions: bisection, fixed-point, Newton's
- Next we consider problems involving multiple variables: we want to find a set of values x_{1}, x_{2}, \ldots, x_{n}, satisfying:

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0 \\
& \mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0 \\
& \ldots \\
& \mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

Solving Systems of Equations

- Such systems can be either linear or nonlinear
- linear: no higher powers of any x_{i}
- General form: n linear equations, n unknowns

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

Solving Linear Systems

- You learned how to solve small sets of linear equations in school
- Generally: manipulate equations to find one of the unknowns, then plug in to find the other.
- Example:

$$
\begin{aligned}
& 2 x-3 y=5 \\
& 3 x-4 y=12
\end{aligned}
$$

subtract top from bottom, get $x=y+7$, plug in first equation, get $2(y+7)-3 y=5$, so $y=9$, so $x=16$.

- Unfortunately, such techniques become very difficult for larger systems in general

Tools are Great for Solving Linear Systems!

- MATLAB excels at solving "large" systems of linear equations
- E.g., 800 equations in 800 unknowns

Example: Forces on a Truss

- Force: tension or compression on the members of the truss (F_{1}, F_{2}, F_{3})
- External reaction: how the truss interacts with its supporting framework

Balancing Forces

Balancing Forces

Hor. and Vert. Forces Sum to Zero!

- Node 1:

$$
\begin{aligned}
& \Sigma F_{H}=0=-F_{1} \cos 30^{\circ}+F_{3} \cos 60^{\circ}+F_{1, \mathrm{~h}} \\
& \Sigma F_{V}=0=-F_{1} \sin 30^{\circ}-F_{3} \sin 60^{\circ}+F_{1, \mathrm{~V}}
\end{aligned}
$$

- Node 2:

$$
\begin{aligned}
& \sum F_{H}=0=F_{2}+F_{1} \cos 30^{\circ}+H_{2}+F_{2, h} \\
& \sum F_{V}=0=F_{1} \sin 30^{\circ}+F_{2, V}+V_{2}
\end{aligned}
$$

- Node 3:

$$
\begin{array}{ll}
\Sigma F_{H}=0=-F_{2}-F_{3} \cos 60^{\circ}+F_{3, h} & F_{1, v}=-1000 \\
\text { all other } F_{i, V, V, h]}=0
\end{array}
$$

Equations

$$
\begin{aligned}
& \cos 30 F_{1}+0 F_{2}-\cos 60 F_{3}+0 H_{2}+0 V_{2}+0 V_{3}=F_{1, \mathrm{~h}} \\
& \sin 30 F_{1}+0 F_{2}+\sin 60 F_{3}+0 H_{2}+0 V_{2}+0 V_{3}=-F_{1, \mathrm{v}} \\
& -\cos 30 F_{1}+-1 F_{2}+0 F_{3}+-1 H_{2}+0 V_{2}+0 V_{3}=F_{2, \mathrm{~h}} \\
& \sin 30 F_{1}+0 F_{2}+0 F_{3}+0 H_{2}+1 V_{2}+0 V_{3}=-F_{2, v} \\
& 0 F_{1}+1 F_{2}+\cos 60 F_{3}+0 H_{2}+0 V_{2}+0 V_{3}=F_{3, \mathrm{~h}} \\
& 0 F_{1}+0 F_{2}-\sin 60 F_{3}+0 H_{2}+0 V_{2}-1 V_{3}=F_{3, v}
\end{aligned}
$$

Note: every variable should have a nonzero coefficient in some equation!

Matrix Representation of the System of Equations

$\left[\begin{array}{cccccc}0.866 & 0 & -0.5 & 0 & 0 & 0 \\ 0.5 & 0 & 0.866 & 0 & 0 & 0 \\ -0.866 & -1 & 0 & -1 & 0 & 0 \\ -0.5 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & -0.866 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{r}F_{1} \\ F_{2} \\ F_{3} \\ H_{2} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{r}F_{1, \mathrm{~h}} \\ -1000 \\ F_{2, \mathrm{~h}} \\ F_{2, v} \\ F_{3, \mathrm{~h}} \\ F_{3, v}\end{array}\right]$

System of Equations

Solving with MATLAB ${ }^{\circledR}$

- Create the Coefficient and Constant (Parameter) Matrices
$-A=[\operatorname{cosd}(30), 0,-0.5,0,0,0 ; 0.5, \ldots] ;$
- B = [0; -1000; 0; 0; 0; 0;];
- Note well: B is (must be) a column vector.
- Solve for x in one of two ways:
- Using "left-division" (matrix operator) $\mathrm{x}=\mathrm{A} \backslash \mathrm{B}$;
- By computing A^{-1} and multiplying B by it:
$x=\operatorname{inv}(A) * B ;$

Which MATLAB Method to Use?

- If you are only going to solve the equation once, use "left division"
- If you are going to re-solve with a different B matrix, compute and save A^{-1}
- In this example: vary the external forces on the truss.
$-\operatorname{Ainv}=\operatorname{inv}(A) ; \quad x 1=A i n v * B 1 ; x 2=A i n v * B 2 ;$
- Why?
- Matrix operations are expensive; inverting a large matrix is really expensive (read: slow).
- Left division is faster.
- 1000x1000 Matrix: Left-division: 0.14 s ; invert: 0.31 s
- 10000x10000: 51.9 s vs. 155.3 s

Example: Spring Systems

Spring Forces

- Springs exert force proportional to the amount they are "stretched"

$$
\mathrm{F}_{\text {spring } i}=\mathrm{k}_{i} \mathrm{x}_{i}
$$

For this problem: assume all $\mathrm{k}_{i}^{\prime} \mathrm{s}=\mathrm{k}$

- In steady-state, all masses are at rest, and all forces are balanced
- Spring force up = gravity + spring force down

Example: Spring Systems

Free-Body Diagrams

Equations

Mass 1: $\mathrm{kx}_{1}=2 \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{m}_{1} \mathrm{~g}$
Mass 2: $2 k\left(x_{2}-x_{1}\right)=m_{2} g+k\left(x_{3}-x_{2}\right)$
Mass 3: $k\left(x_{3}-x_{2}\right)=m_{3} g$

Rewrite to get:

$$
\begin{gathered}
3 k x_{1}-2 k x_{2}+0 x_{3}=m_{1} g \\
-2 k x_{1}+3 k x_{2}-k x_{3}=m_{2} g \\
0 x_{1}-k x_{2}+k x_{3}=m_{3} g
\end{gathered}
$$

Matrix Equation

- [K][X] = [W]
$-[K]$ is called the stiffness matrix

$$
\left[\begin{array}{rrr}
3 k & -2 k & 0 \\
-2 k & 3 k & -k \\
0 & -k & k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
m_{1} g \\
m_{2} g \\
m_{3} g
\end{array}\right]
$$

Matrix Equation

- [K][X] = [W]
$-[K]$ is called the stiffness matrix

$$
\left[\begin{array}{ccc}
3(10) & -2(10) & 0 \\
-2(10) & 3(10) & -(10) \\
0 & -(10) & (10)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
= \\
(2)(9.8) \\
(3)(9.8) \\
(2.5)(9.8)
\end{array}\right]
$$

Matrix Equation

- [K][X]=[W]
$-[K]$ is called the stiffness matrix

$$
\left[\begin{array}{rrr}
30 & -20 & 0 \\
-20 & 30 & -10 \\
0 & -10 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
19.6 \\
29.4 \\
24.5
\end{array}\right]
$$

The Solution

$$
\operatorname{inv}(K)=\left[\begin{array}{ccc}
0.10 & 0.10 & 0.10 \\
0.10 & 0.15 & 0.15 \\
0.10 & 0.15 & 0.25
\end{array}\right]
$$

$$
\operatorname{inv}(\mathrm{K}) * \mathrm{~W}=\left[\begin{array}{l}
7.35 \\
10.045 \\
12.495
\end{array}\right]
$$

Solving with Excel

- Set up coefficient and parameter matrices (K and W) in the spreadsheet
- Compute inverse of K (using the MINVERSE function), call it Kinv
- Multiply Kinv times W (using the MMULT function) to get the solution

Changing the Parameters

- What if m_{2} is now 1 kg ?
- Simply change W and re-compute inv(K)*W!

$$
\begin{aligned}
& \mathrm{W}=\left[\begin{array}{c}
19.6 \\
9.8 \\
24.5
\end{array}\right] \\
& \operatorname{inv}(\mathrm{K}) * \mathrm{~W}=\left[\begin{array}{c}
5.4 \\
7.1 \\
9.6
\end{array}\right]
\end{aligned}
$$

Example: Great Lakes Chloride Concentration

Flow Balance Problems

- Basic principle: conservation of mass
- Flow in = flow out (assuming no chemical changes)

Flow Balance Equations

- $\mathrm{Q}_{\mathrm{SH}} \mathrm{C}_{\mathrm{S}}=\mathrm{F}_{\mathrm{S}}$
- $Q_{M H} C_{M}=F_{M}$
- $\mathrm{Q}_{S H} \mathrm{C}_{\mathrm{S}}+\mathrm{Q}_{\mathrm{MH}} \mathrm{C}_{\mathrm{M}}-\mathrm{Q}_{\mathrm{HE}} \mathrm{C}_{\mathrm{H}}=-\mathrm{F}_{\mathrm{H}}$
- $\mathrm{Q}_{\mathrm{HE}} \mathrm{C}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{EO}} \mathrm{C}_{\mathrm{E}}=-\mathrm{F}_{\mathrm{E}}$
- $\mathrm{Q}_{\mathrm{EO}} \mathrm{C}_{\mathrm{E}}-\mathrm{Q}_{\mathrm{OO}} \mathrm{C}_{\mathrm{O}}=-\mathrm{F}_{\mathrm{O}}$

Matrix Equations

$$
\left[\begin{array}{ccccc}
\mathrm{Q}_{S H} & 0 & 0 & 0 & 0 \\
0 & \mathrm{Q}_{\mathrm{MH}} & 0 & 0 & 0 \\
\mathrm{Q}_{\mathrm{SH}} & \mathrm{Q}_{\mathrm{MH}} & -\mathrm{Q}_{\mathrm{HE}} & 0 & 0 \\
0 & 0 & \mathrm{Q}_{\mathrm{HE}} & -\mathrm{Q}_{\mathrm{EO}} & 0 \\
0 & 0 & 0 & \mathrm{Q}_{\mathrm{EO}} & -\mathrm{Q}_{\mathrm{OO}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{c}_{\mathrm{S}} \\
\mathrm{c}_{\mathrm{M}} \\
\mathrm{c}_{\mathrm{H}} \\
\mathrm{c}_{\mathrm{E}} \\
\mathrm{c}_{\mathrm{O}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{F}_{\mathrm{S}} \\
\mathrm{~F}_{\mathrm{M}} \\
-\mathrm{F}_{\mathrm{H}} \\
-\mathrm{F}_{\mathrm{E}} \\
-\mathrm{F}_{\mathrm{O}}
\end{array}\right]
$$

Matrix Equations

$$
\left[\begin{array}{ccccc}
67 & 0 & 0 & 0 & 0 \\
0 & 36 & 0 & 0 & 0 \\
67 & 36 & -161 & 0 & 0 \\
0 & 0 & 161 & -182 & 0 \\
0 & 0 & 0 & 182 & -212
\end{array}\right] \quad\left[\begin{array}{c}
c_{S} \\
c_{M} \\
c_{H} \\
c_{\mathrm{E}} \\
\mathrm{c}_{\mathrm{O}}
\end{array}\right]=\left[\begin{array}{c}
180 \\
710 \\
-740 \\
-3850 \\
-4720
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{S}}=2.69 \\
& \mathrm{c}_{\mathrm{M}}=19.7 \\
& \mathrm{c}_{\mathrm{H}}=10.1 \\
& \mathrm{C}_{\mathrm{E}}=30.1 \\
& \mathrm{c}_{\mathrm{O}}=48.1
\end{aligned}
$$

(Note significant digits.)

Summary on Linear Equations

- The "geometry" of the problem dictates the coefficient matrix through a balance principle
- Conservation of mass
- Forces balanced at equilibrium
- The "inputs" (RHS vector - external forces, e.g.) can be changed (to get a new solution) without changing the coefficient matrix
- The MATLAB "left division" operator is faster than $\operatorname{inv}()$ if you don't need to use it more than once
- Computing the inverse is computationally more expensive than just getting the answer (Gauss elimination)

3. Timing Operations with "tic" and "toc"

- MATLAB has built-in functions to time operations.
- Use like this: tic; <operation to be timed>; toc
- Prints elapsed time in seconds.
- To save elapsed time, do: var = toc;
- More elaborate timing structures (e.g., nested calls) are possible.
- How long does it take to invert a 2000-by-2000 matrix?

4. Quiz Coverage

- Plotting
- plot() and fplot() in MATLAB, plot types in Excel
- E.g., "when would you use fplot() instead of plot()?" (when you want to plot the curve of a function, not data)
- What different kinds of plots/graphs are for
- Equation classification: linear, nonlinear polynomial, nonlinear general
- Finding roots:
- fzero() and roots() in MATLAB
- Goal-Seeking in Excel

Quiz Coverage

- Matrix mathematics
- Operators in MATLAB (including .^ and .*)
- Functions in Excel
- Function Handles
- What they are, what they are for
- Everything about loops and conditionals
- Know how to interpret and simulate execution of code!
- Note: Curve-fitting and solving systems of linear equations will be on the final

Example Problem

- What is the value of v after this sequence of statements is executed?
v = 13;
while $\mathrm{v}>0$

$$
\begin{aligned}
& v=v / 2 \\
& v=v+3 ;
\end{aligned}
$$

end

Example Problem

- What's wrong with this?

$$
\begin{aligned}
& A=[1,2,3 ; 4,5,6] ; \\
& B=[-1,-2,-3 ;-4,-5,-6] ; \\
& C=A * B ;
\end{aligned}
$$

Example Problem

- Consider the function $f(x)=5 x^{3}-3 x^{2}-4 x+3$
- Suppose you a bisection root-finding function with @f, a lower bound of -1 , and an upper bound of -0.8. How many iterations will it take until the error bound is less than 10^{-5} ?
- Simulate the bisection method!

5. Homework Q \& A

