
CS 221

Tuesday 15 November 2011

Agenda

1. Announcements

2. Solving systems of linear equations

3. Measuring time with tic/toc in MATLAB

4. Quiz Coverage

5. Homework Q & A

1. Announcements

• Homework 4 due tomorrow night (Wed 16
November)

• Next in-Class Quiz (#3): Next Week

Tuesday, 22 November

• Lab Quiz 2 performance: lousy

2. Solving Systems of Equations

• We’ve seen ways to solve equations of the form:

f(x) = 0

– Iterative solutions: bisection, fixed-point, Newton’s

• Next we consider problems involving multiple
variables: we want to find a set of values x1,
x2, ..., xn, satisfying:

f1(x1,x2,...,xn) = 0

f2(x1,x2,...,xn) = 0

...

fn(x1,x2,...,xn) = 0

Solving Systems of Equations

• Such systems can be either linear or nonlinear

– linear: no higher powers of any xi

– General form: n linear equations, n unknowns
a11 x1 + a12 x2 + ... + a1n xn = b1

a21 x1 + a22 x2 + ... + a2n xn = b2

...

 an1 x1 + an2 x2 + ... + ann xn = bn

Solving Linear Systems

• You learned how to solve small sets of linear
equations in school
– Generally: manipulate equations to find one of the

unknowns, then plug in to find the other.

– Example:

 2x – 3y = 5

 3x – 4y = 12
subtract top from bottom, get x = y+7, plug in first

equation, get 2(y+7) – 3y =5, so y = 9, so x = 16.

• Unfortunately, such techniques become very
difficult for larger systems in general

Tools are Great for Solving Linear
Systems!

• MATLAB excels at solving “large” systems of
linear equations

– E.g., 800 equations in 800 unknowns

Example: Forces on a Truss

• Force: tension or compression on the members
of the truss (F1, F2, F3)

• External reaction: how the truss interacts with
its supporting framework

Balancing Forces

Balancing Forces

Hor. and Vert. Forces Sum to Zero!

• Node 1:

 FH = 0 = -F1 cos 30° + F3 cos 60° + F1,h

 FV = 0 = -F1 sin 30° - F3 sin 60° + F1,v

• Node 2:

 FH = 0 = F2 + F1 cos 30° + H2 + F2,h

 FV = 0 = F1 sin 30° + F2,v + V2

• Node 3:

 FH = 0 = -F2 – F3 cos 60° + F3,h

 FV = 0 = F3 sin 60° + F3,v + V3

Equations

cos 30 F1 + 0 F2 – cos 60 F3 + 0 H2 + 0 V2 + 0 V3 = F1,h

sin 30 F1 + 0 F2 + sin 60 F3 + 0 H2 + 0 V2 + 0 V3 = -F1,v

-cos 30 F1 + -1 F2 + 0 F3 + -1 H2 + 0 V2 + 0 V3 = F2,h

sin 30 F1 + 0 F2 + 0 F3 + 0 H2 + 1 V2 + 0 V3 = -F2,v

0 F1 + 1 F2 + cos 60 F3 + 0 H2 + 0 V2 + 0 V3 = F3,h

0 F1 + 0 F2 – sin 60 F3 + 0 H2 + 0 V2 –1 V3 = F3,v

Note: every variable should have a nonzero coefficient in
some equation!

Matrix Representation of the
System of Equations

0.866 0 -0.5 0 0 0 F1 F1,h

 0.5 0 0.866 0 0 0 F2 -1000

-0.866 -1 0 -1 0 0 F3 = F2,h

-0.5 0 0 0 -1 0 H2 F2,v

 0 1 0.5 0 0 0 V2 F3,h

 0 0 -0.866 0 0 -1 V3 F3,v

System of Equations

0.866 0 -0.5 0 0 0 F1 0

 0.5 0 0.866 0 0 0 F2 -1000

-0.866 -1 0 -1 0 0 F3 = 0

-0.5 0 0 0 -1 0 H2 0

 0 1 0.5 0 0 0 V2 0

 0 0 -0.866 0 0 -1 V3 0

Solving with MATLAB®

• Create the Coefficient and Constant (Parameter)
Matrices

– A = [cosd(30), 0, -0.5, 0, 0, 0; 0.5, ...];

– B = [0; -1000; 0; 0; 0; 0;];

• Note well: B is (must be) a column vector.

• Solve for x in one of two ways:

– Using “left-division” (matrix operator)

x = A\B;

– By computing A-1 and multiplying B by it:

x = inv(A)*B;

Which MATLAB Method to Use?

• If you are only going to solve the equation once,
use “left division”

• If you are going to re-solve with a different B
matrix, compute and save A-1

– In this example: vary the external forces on the truss.

– Ainv = inv(A); x1 = Ainv*B1; x2 = Ainv*B2;

• Why?
– Matrix operations are expensive; inverting a large matrix is

really expensive (read: slow).

– Left division is faster.

– 1000x1000 Matrix: Left-division: 0.14 s; invert: 0.31 s

– 10000x10000: 51.9 s vs. 155.3 s

Example: Spring Systems

Spring Forces

• Springs exert force proportional to the amount
they are “stretched”

 Fspring i = ki xi

For this problem: assume all ki’s = k

• In steady-state, all masses are at rest, and all
forces are balanced

– Spring force up = gravity + spring force down

Example: Spring Systems

Free-Body Diagrams

Equations

 Mass 1: kx1 = 2k(x2 – x1) + m1g

 Mass 2: 2k(x2 – x1) = m2g + k(x3 – x2)

 Mass 3: k(x3 – x2) = m3g

Rewrite to get:

 3k x1 – 2k x2 + 0 x3 = m1g

 –2k x1 + 3k x2 – k x3 = m2g

 0 x1 – k x2 + k x3 = m3g

Matrix Equation

• [K] [X] = [W]

– [K] is called the stiffness matrix

 3k –2k 0 x1 = m1g

 –2k 3k –k x2 = m2g

 0 –k k x3 = m3g

Matrix Equation

• [K] [X] = [W]

– [K] is called the stiffness matrix

 3(10) –2(10) 0 x1 = (2)(9.8)

 –2(10) 3(10) –(10) x2 = (3)(9.8)

 0 –(10) (10) x3 = (2.5)(9.8)

Matrix Equation

• [K] [X] = [W]

– [K] is called the stiffness matrix

 30 –20 0 x1 = 19.6

 –20 30 –10 x2 = 29.4

 0 –10 10 x3 = 24.5

The Solution

inv(K) = 0.10 0.10 0.10

 0.10 0.15 0.15

 0.10 0.15 0.25

inv(K)*W = 7.35

 10.045

 12.495

Solving with Excel

• Set up coefficient and parameter matrices (K
and W) in the spreadsheet

• Compute inverse of K (using the MINVERSE
function), call it Kinv

• Multiply Kinv times W (using the MMULT
function) to get the solution

Changing the Parameters

• What if m2 is now 1 kg?

– Simply change W and re-compute inv(K)*W!

W = 19.6

 9.8

 24.5

 inv(K) * W = 5.4

 7.1

 9.6

Example:
Great Lakes Chloride Concentration

Flow Balance Problems

• Basic principle: conservation of mass

• Flow in = flow out (assuming no chemical
changes)

Flow Balance Equations

• QSHcS = FS

• QMHcM = FM

• QSHcS + QMHcM– QHEcH = -FH

• QHEcH – QEOcE = -FE

• QEOcE – QOOcO = -FO

Matrix Equations

 QSH 0 0 0 0 cS FS

 0 QMH 0 0 0 cM FM

 QSH QMH -QHE 0 0 cH = -FH

 0 0 QHE -QEO 0 cE -FE

 0 0 0 QEO -QOO cO -FO

Matrix Equations

 67 0 0 0 0 cS 180

 0 36 0 0 0 cM 710

 67 36 -161 0 0 cH = -740

 0 0 161 -182 0 cE -3850

 0 0 0 182 -212 cO -4720

Solution

cS = 2.69

cM = 19.7

cH = 10.1

cE = 30.1

cO = 48.1

(Note significant digits.)

Summary on Linear Equations

• The “geometry” of the problem dictates the
coefficient matrix through a balance principle
– Conservation of mass

– Forces balanced at equilibrium

• The “inputs” (RHS vector – external forces, e.g.) can
be changed (to get a new solution) without
changing the coefficient matrix

• The MATLAB “left division” operator is faster than
inv() if you don’t need to use it more than once
– Computing the inverse is computationally more expensive

than just getting the answer (Gauss elimination)

3. Timing Operations with “tic” and
“toc”

• MATLAB has built-in functions to time
operations.

• Use like this:
tic; <operation to be timed>; toc

• Prints elapsed time in seconds.
– To save elapsed time, do: var = toc;

• More elaborate timing structures (e.g., nested
calls) are possible.

• How long does it take to invert a 2000-by-2000
matrix?

4. Quiz Coverage

• Plotting
– plot() and fplot() in MATLAB, plot types in Excel

– E.g., “when would you use fplot() instead of plot()?”
(when you want to plot the curve of a function, not data)

– What different kinds of plots/graphs are for

• Equation classification: linear, nonlinear
polynomial, nonlinear general

• Finding roots:
– fzero() and roots() in MATLAB

– Goal-Seeking in Excel

Quiz Coverage

• Matrix mathematics
– Operators in MATLAB (including .^ and .*)

– Functions in Excel

• Function Handles
– What they are, what they are for

• Everything about loops and conditionals
– Know how to interpret and simulate execution of

code!

• Note: Curve-fitting and solving systems of linear
equations will be on the final

Example Problem

• What is the value of v after this sequence of
statements is executed?

 v = 13;

 while v > 0

 v = v/2;

 v = v + 3;

 end

Example Problem

• What’s wrong with this?

 A = [1, 2, 3; 4, 5, 6];

 B = [-1, -2, -3; -4, -5, -6];

 C = A*B;

Example Problem

• Consider the function f(x) = 5x3 – 3x2 – 4x + 3

• Suppose you a bisection root-finding function

with @f, a lower bound of -1, and an upper
bound of -0.8. How many iterations will it take
until the error bound is less than 10-5?

– Simulate the bisection method!

5. Homework Q & A

