CS 221

Tuesday 8 November 2011

Agenda

1. Announcements
2. Review: Solving Equations (Text 6.1-6.3)
3. Root-finding with Excel ("Goal Seek", Text 6.5)
4. Example Root-finding Problems
5. The Fixed-point root-finding method
6. Error estimation in numerical methods
7. Review: Matrix Mathematics (Text Ch. 7)
8. Matrix Operations in MATLAB \& Excel (Ch. 7)

1. Announcements

- Problem Set 4 out tonight, due Wed 16 Nov
- Root-finding problems
- Next Quiz: in Class, two weeks from today: Tuesday, 22 November

2. Review: Solving Equations

- Step one: get the equation into the form:

$$
f(x)=0
$$

- Step two: determine what is the form of $f(x)$
- Step three: solve accordingly
- Linear: use algebra
- Nonlinear - polynomial
- MATLAB: use roots() - preferred: gives all roots
- Excel: use "Goal Seek"
- Nonlinear - general
- MATLAB: use fzero()
- Excel: use "Goal Seek"

Determine the Form of $f(x)$

- Does $f(x)$ contain powers of x higher than 1 , or transcendental functions like cos, sin, exp, log, etc.?
- no: linear
- yes: see below
- Does $f(x)$ contain noninteger powers of x, or transcendentals?
- no: nonlinear/polynomial
- yes: nonlinear/general

3 Root-Finding with Excel (Text Section 6.5)

- Simple tool: "Goal Seek" capability
- Tells Excel to vary the value of a cell containing the independent variable until value of the cell containing the function (dependent variable) is equal to a given value
- Steps:

1. Identify one cell to hold the value of the independent variable (call it x)
2. Fill in another cell with the formula for $f(x)$
3. Put an initial estimate of the root in the first cell
4. Select the "goal seek" function and set the target value to 0 .

Goal Seek Example

$$
y=3 x^{3}-15 x^{2}-20 x+50
$$

	A	B
1	x	10.0000
2		
3	y	1350.0

Engineering Computation: An Introduction
Using MATLAB and Excel

Goal Seek Example

Using MATLAB and Excel

Use the MATLAB "roots()" function to solve polynomials.

- Because $f(x)$ is a polynomial in this example, is easily solved in this way
- Create a vector for the coefficients of the polynomial: c = [3,-15, -20, 50];
- Pass it to roots(): roots(c)
- Result is a column vector containing all roots of the polynomial - real and complex

4. Example Problems

Thermistors are resistors (electrical components) whose resistance varies with temperature, according to the Steinhart-Hart equation:

$$
1 /(T+273.15)=C_{1}+C_{2} \ln (R)+C_{3} \ln ^{3}(R)
$$

What resistance (in ohms) corresponds to a temperature of $15^{\circ} \mathrm{C}$, if $\mathrm{C}_{1}=1.1 \mathrm{E}-3, \mathrm{C}_{2}=2.3 \mathrm{E}-4$, and $\mathrm{C}_{3}=8.2 \mathrm{E}-8$?

Get the Equation into the Right Form

We are solving for R, so we want $f(R)=0$:

$$
\begin{aligned}
& 1 /(\mathrm{T}+273.15)=1.1 \mathrm{E}-3+2.3 \mathrm{E}-4 * \log (\mathrm{R})+8.2 \mathrm{E}-8^{*} \log (\mathrm{R})^{\wedge} 3 \\
& 1.1 \mathrm{E}-3+2.3 \mathrm{E}-4 * \log (\mathrm{R})+8.2 \mathrm{E}-8^{*} \log (\mathrm{R})^{\wedge} 3-(1 /(\mathrm{T}+273.15))=0
\end{aligned}
$$

Use plotting tools (fplot) to determine the neighborhood of the root.

Example

- You are designing a water tank for a village in Africa. The tank is spherical, with a radius R meters. The volume of water it holds if filled to height h is given by:

$$
V=\pi h^{2}(3 R-h) / 3
$$

- To what height must the tank be filled to hold 30 m^{3} of water?

Another Example Problem

- Consider a steam pipe of length $L=25 m$ and diameter $\mathrm{d}=0.1 \mathrm{~m}$. The pipe loses heat to the ambient air and surrounding surfaces by convection and radiation.

Another Example Problem

- The relationship between the surface temperature of the pipe, T_{S}, and the total flow of heat per unit time, Q , is:

$$
\mathrm{Q}=\pi \mathrm{dL}\left[\mathrm{~h}\left(\mathrm{~T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{air}}\right)+\varepsilon \sigma_{\mathrm{SB}}\left(\mathrm{~T}_{\mathrm{S}}^{4}-\mathrm{T}_{\mathrm{sur}}^{4}\right)\right]
$$

Another Example Problem

- Where:
$-\mathrm{h}=10 \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}$
$-\varepsilon=0.8$
$-\sigma_{S B}=5.67 \times 10^{-8}=$ Stefan-Bolzmann Constant
$-\mathrm{T}_{\text {air }}=\mathrm{T}_{\text {sur }}=298 \mathrm{~K}$
- If $\mathrm{Q}=18405 \mathrm{~W}$, what is the surface temperature $\left(T_{S}\right)$ of the pipe?

$$
\pi d L\left[h\left(T_{S}-T_{\text {air }}\right)+\varepsilon \sigma_{S B}\left(T_{S}^{4}-T_{\text {sur }}^{4}\right)\right]-Q=0
$$

5. The Fixed-Point Method of Finding Roots (note: not in your text)

- A value x is a fixed-point of function $g(x)$ iff

$$
g(x)=x
$$

- Two basic concepts:

1. Rewriting an equation $f(x)=0$ into fixed-point form:

$$
g(x)=x
$$

2. Iterative method of finding a fixed point:

Rewriting Equations

- We need to rewrite so that $f(x)=0$ if $g(x)=x$
- If $f(x)$ contains an x term, rearrange to get it on one side:

Example: $x^{2}-2 x-3=0$
becomes $\left(x^{2}-3\right) / 2=x$

- Or, you can always just add x to both sides:

$$
f(x)=0 \text { if } f(x)+x=x \text {, so take } g(x)=f(x)+x
$$

- Example: $x^{2}-2 x-3=0$

$$
\begin{aligned}
& x^{2}-2 x-3+x=x \\
& x^{2}-x-3=x
\end{aligned}
$$

Rewriting Equations

Do I hear you saying "Wait a minute..."
In that example, $f(x)=x^{2}-2 x-3=0$, the two methods yield two different $g(x)$'s!

$$
\begin{array}{ll}
& g(x)=\left(x^{2}-3\right) / 2 \\
\text { and } \quad & g(x)=x^{2}-x-3
\end{array}
$$

What gives??!!

Answer: Both $g(x)$'s work

Rewriting Equations

- Goal: find x such that $f(x)=0$.
- We are transforming this into the problem of finding x such that $x=g(x)$
- In such a way that $f(x)=0$ for any such x
- There may be more than one $g(x)$ for which this relationship holds!
- Graphically: we are looking for the intersection between the curves $y=x$ and $y=g(x)$

The Iterative Method is Simple!

- Main loop:
set $x_{0}=$ an estimate of the root
While error estimate is too big:
set $x_{i+1}=g\left(x_{i}\right)$;
update error estimate;
end
- Approximate relative error estimate:

$$
\varepsilon_{a}=\left|\left(x_{i+1}-x_{i}\right) / x_{i+1}\right|
$$

Convergence and Divergence

- Graphical depiction of the fixed-point method

$g\left(x_{2}\right)$
 Convergence and Divergence

- The fixed-point method is not guaranteed to converge

Convergence and Divergence

- The fixed-point method is not guaranteed to converge

Convergence and Divergence

- The fixed-point method is not guaranteed to converge

Convergence of Fixed-Point Iteration

- Convergence is determined by the magnitude of the slope:

$$
\left|\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{x_{i+1}-x_{i}}\right|
$$

If |slope| < 1 then $g\left(x_{i+1}\right)$ will be closer to the fixed point than $g\left(\mathrm{x}_{\mathrm{i}}\right)$ (the error decreases)
Else $g\left(x_{i+1}\right)$ does not approach the fixed point (error increases or stays the same)

6. Error Estimation in Numerical Methods

- Numerical methods yield approximate results
- As engineers, we need to understand the sources of error in our results
- Round-off or truncation errors
- E.g., using 3.14 for pi
- Computational methods
- Order of operations can make a difference
- Rewrite formulas to avoid operations whose operands have very different magnitudes
- Inputs (e.g., measurements)
- Approximations of functions (Mont Blanc tunnel)

Definitions

- True value $=$ approximation + error or:
$\mathrm{E}_{\mathrm{t}}=$ true value - approximation ("true error")
Note: requires knowledge of true value!
$\varepsilon_{t}=E_{t} /$ true value ("true relative error", usually given as a percentage)
Example:
- measure a city block: 9999 cm
- True value: 10000 cm
- measure a pencil: 9 cm
- True value: 10 cm
- Error is 1 cm in both cases!
- Relative errors are very different: 0.01% vs 10%

Error Estimation

- When we use numerical methods, we usually don't know the "true" value!
- We are computing an approximation, and would like to know how close we are to the real value
- Typically we have to estimate the error as well!
- Best-effort approach:
$\varepsilon_{\mathrm{a}}=$ approximate error/approximate value ("approximate relative error")
- For iterative methods:
$\varepsilon_{\mathrm{a}}=$ (current estimate - previous estimate)/current estimate
- A bound ε_{s} on the error may be specified as part of the problem

Iterate until $\left|\varepsilon_{\mathrm{a}}\right|<\varepsilon_{\mathrm{s}}$

7. Review: Matrix Mathematics

