CS 221

Tuesday 8 November 2011

Agenda

- 1. Announcements
- 2. Review: Solving Equations (Text 6.1-6.3)
- 3. Root-finding with Excel ("Goal Seek", Text 6.5)
- 4. Example Root-finding Problems
- 5. The Fixed-point root-finding method
- 6. Error estimation in numerical methods
- 7. Review: Matrix Mathematics (Text Ch. 7)
- 8. Matrix Operations in MATLAB & Excel (Ch. 7)

1. Announcements

- Problem Set 4 out tonight, due Wed 16 Nov

 Root-finding problems
- Next Quiz: in Class, two weeks from today: Tuesday, 22 November

2. Review: Solving Equations

- Step one: get the equation into the form: f(x) = 0
- Step two: determine what is the form of *f(x)*
- Step three: solve accordingly
 - Linear: use algebra
 - Nonlinear polynomial
 - MATLAB: use roots() preferred: gives all roots
 - Excel: use "Goal Seek"
 - Nonlinear general
 - MATLAB: use fzero()
 - Excel: use "Goal Seek"

Determine the Form of *f*(*x*)

- Does f(x) contain powers of x higher than 1, or transcendental functions like cos, sin, exp, log, etc.?
 - no: linear
 - yes: see below
- Does *f(x)* contain noninteger powers of *x*, or transcendentals?
 - no: nonlinear/polynomial
 - yes: nonlinear/general

3 Root-Finding with Excel (Text Section 6.5)

- Simple tool: "Goal Seek" capability
- Tells Excel to vary the value of a cell containing the independent variable until value of the cell containing the function (dependent variable) is equal to a given value
- Steps:
 - 1. Identify one cell to hold the value of the independent variable (call it x)
 - 2. Fill in another cell with the formula for f(x)
 - 3. Put an initial estimate of the root in the first cell
 - 4. Select the "goal seek" function and set the target value to 0.

Goal Seek Example

 $y = 3x^3 - 15x^2 - 20x + 50$

	А	В	
1	Х	10.0000	
2			
3	У	1350.0	

Data Review	N	View										
Connections	₽↓	AZA	Y	K Clear	*****				1		•	
🖙 Edit Links	Z↓	Sort	Filter	Advanced	Text to Columns	Remove Duplicates	Data Validation •	Consolidate	What Analys	-If is ▼	Group	Ungroup S
Connections	nnections Sort & Filter			Data Tools			Scenario Manager					
					Goal Seek							
										Data	Tables.	
						\sim			_			

Engineering Computation: An Introduction Using MATLAB and Excel

Goal Seek Example

	Α	В	С	D
1	x	10.0000	Goal Seek	? ×
2			S <u>e</u> t cell: To <u>v</u> alue:	\$8\$3 📧 0
3	У	1350.0	By changing cell:	\$B\$1
4				

	А	В	С	D	
1	x	5.6577	Goal Seek Status	8 x	
2			Goal Seeking with Cell B3 found a solution. Target value: 0	Step Pause	
3	У	0.0	Current value: 0.0	Cancel	
4					

Engineering Computation: An Introduction Using MATLAB and Excel

Use the MATLAB "roots()" function to solve polynomials.

- Because f(x) is a polynomial in this example, is easily solved in this way
- Create a vector for the coefficients of the polynomial: c = [3, -15, -20, 50];
- Pass it to roots(): roots(c)
- Result is a column vector containing <u>all</u> roots of the polynomial – real and complex

4. Example Problems

Thermistors are resistors (electrical components) whose resistance varies with temperature, according to the Steinhart-Hart equation:

 $1/(T + 273.15) = C_1 + C_2 ln(R) + C_3 ln^3(R)$

What resistance (in ohms) corresponds to a temperature of 15° C, if $C_1 = 1.1E-3$, $C_2 = 2.3E-4$, and $C_3=8.2E-8$?

Get the Equation into the Right Form

We are solving for R, so we want f(R) = 0:

 $1/(T + 273.15) = 1.1E-3 + 2.3E-4*\log(R) + 8.2E-8*\log(R)^3$

 $1.1E-3 + 2.3E-4*\log(R) + 8.2E-8*\log(R)^3 - (1/(T+273.15)) = 0$

Use plotting tools (fplot) to determine the neighborhood of the root.

Example

 You are designing a water tank for a village in Africa. The tank is spherical, with a radius R meters. The volume of water it holds if filled to height h is given by:

 $V = \pi h^2(3R-h)/3$

To what height must the tank be filled to hold 30 m³ of water?

Another Example Problem

 Consider a steam pipe of length L=25m and diameter d=0.1m. The pipe loses heat to the ambient air and surrounding surfaces by convection and radiation.

Another Example Problem

 The relationship between the surface temperature of the pipe, T_s, and the total flow of heat per unit time, Q, is:

$$Q = \pi dL[h(T_S - T_{air}) + \varepsilon \sigma_{SB}(T_S^4 - T_{sur}^4)]$$

Another Example Problem

- Where:
 - $h = 10 \text{ W/m}^2/\text{K}$
 - $-\epsilon = 0.8$
 - $\sigma_{SB} = 5.67 \times 10^{-8} = Stefan-Bolzmann Constant$

$$-T_{air} = T_{sur} = 298K$$

• If Q = 18405 W, what is the surface temperature (T_S) of the pipe? $\pi dL[h(T_S - T_{air}) + \epsilon \sigma_{SB}(T_S^4 - T_{air}^4)] - Q = 0$

5. The Fixed-Point Method of Finding Roots (note: not in your text)

- A value x is a <u>fixed-point</u> of function g(x) iff
 g(x) = x
- Two basic concepts:
 - Rewriting an equation f(x) = 0 into fixed-point form: g(x) = x
 - 2. Iterative method of finding a fixed point:

while
$$x_i \neq x_{i+1}$$

 $x_{i+1} = g(x_i)$ Actually, we will use $|x_i - x_{i+1}| > \epsilon$
end

Rewriting Equations

- We need to rewrite so that f(x) = 0 if g(x) = x
- If f(x) contains an x term, rearrange to get it on one side:

Example: $x^2 - 2x - 3 = 0$ becomes $(x^2 - 3)/2 = x$

 Or, you can always just add x to both sides:
 f(x) = 0 if f(x) + x = x, so take g(x) = f(x) + x
 Example: x² - 2x - 3 = 0 x² - 2x - 3 + x = x

$$x^2 - x - 3 = x$$

Rewriting Equations

Do I hear you saying "Wait a minute..." In that example, $f(x) = x^2 - 2x - 3 = 0$, the two methods yield two <u>different</u> g(x)'s! $g(x) = (x^2 - 3)/2$ and $g(x) = x^2 - x - 3$ What gives??!!

Answer: Both g(x)'s work

Rewriting Equations

- Goal: find x such that f(x) = 0.
- We are transforming this into the problem of finding x such that x = g(x)

- In such a way that f(x) = 0 for any such x

- There may be more than one g(x) for which this relationship holds!
- Graphically: we are looking for the intersection between the curves y = x and y = g(x)

The Iterative Method is Simple!

• Main loop:

set x_0 = an estimate of the root While error estimate is too big: set $x_{i+1} = g(x_i)$; update error estimate; end

• Approximate relative error estimate:

 $\varepsilon_{a} = |(x_{i+1} - x_{i})/x_{i+1}|$

• Graphical depiction of the fixed-point method

 The fixed-point method is <u>not guaranteed to</u> converge g(x₁) **//**+ y = g(x) $g(x_0)$

X₁

 X_2

 X_0

 The fixed-point method is <u>not guaranteed to</u> <u>converge</u>

 The fixed-point method is <u>not guaranteed to</u> <u>converge</u>

Convergence of Fixed-Point Iteration

• Convergence is determined by the magnitude of the slope:

$$\frac{g(x_{i+1}) - g(x_i)}{x_{i+1} - x_i}$$

If |slope| < 1 then g(x_{i+1}) will be closer to the fixed
 point than g(x_i) (the error decreases)
Else g(x_{i+1}) does not approach the fixed point
 (error increases or stays the same)

6. Error Estimation in Numerical Methods

- Numerical methods yield <u>approximate results</u>
- As engineers, we need to understand the sources of error in our results
 - Round-off or truncation errors
 - E.g., using 3.14 for pi
 - Computational methods
 - Order of operations can make a difference
 - Rewrite formulas to avoid operations whose operands have very different magnitudes
 - Inputs (e.g., measurements)
 - Approximations of functions (Mont Blanc tunnel)

Definitions

• True value = approximation + error

or:

- $E_t = true value approximation ("true error")$
 - Note: requires knowledge of true value!
- $\varepsilon_{t} = E_{t}/true value ("true relative error", usually given as a percentage)$

Example:

- measure a city block: 9999 cm
 - True value: 10000 cm
- measure a pencil: 9 cm
 - True value: 10 cm
- Error is 1 cm in both cases!
- Relative errors are very different: 0.01% vs 10%

Error Estimation

- When we use numerical methods, we usually don't know the "true" value!
 - We are computing an approximation, and would like to know how close we are to the real value
 - Typically we have to estimate the error as well!
- Best-effort approach:
 - ε_{a} = approximate error/approximate value
 - ("approximate relative error")
- For iterative methods:

 ε_{a} = (current estimate – previous estimate)/current estimate

- A bound $\varepsilon_{\rm s}$ on the error may be specified as part of the problem

Iterate until $|\varepsilon_a| < \varepsilon_s$

7. Review: Matrix Mathematics