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Some slides in this lecture are from the publisher’s 
slides for Engineering Computation: An Introduction 

Using MATLAB and Excel 
©2009 McGraw-Hill 



Today’s Agenda 

1. Announcements 

2. Passing functions as parameters to other 
functions 

3. Solving equations 

4. Numerical Root-finding methods (Text: Ch. 6) 

a. Bisection 

b. Newton’s Method 

c. MATLAB’s built-in methods: fzero() and roots() 

5. Lab Quiz – What to expect 



1. Announcements 

• Problem Set 3 is out 

– Due Monday 7 November 

• Lab Quiz 2 this Thursday 

– All-MATLAB 

– Example problems later & posted on Web page 



2. Functions As Parameters 

• Sometimes it’s useful to pass a function as a 
parameter to another function 

– You want to use a function without knowing exactly 
what it is 

– This is useful for: 

• Plotting – see fplot() 

• Numerical (not symbolic) manipulations 

– Integration: finding the area under the curve of f(x) 

– Finding roots of equations f(x) = 0 

 



Two Ways to Pass Functions 
As Parameters 

1. Pass the name of the function as a string (in 
quotes) 

Examples: 

  fplot(’cos’, [-pi, pi]) 

  g(‘f’,1,2) 

2. Pass the name of the function preceded by @ 
– Syntax: @funcname 

– Semantics: @cos is a function handle – a pointer to the 
cosine function 

Examples 

 fplot(@cos, [-pi, pi]) 

 g(@f,1,2) 



Function Handles have many uses. 

• You can assign a function handle to a variable 

 func = @cos; 

Now func(x) returns the same thing as cos(x) 

• Pass a parameter to a user-defined function 

Example:  bisect() – coming soon 

– Use of function handles is required 

• “function handle” is a real type in MATLAB 

– like “double” or “char” 



3. Solving Equations 

• We consider algebraic equations of the form: 
f(x) = 0 

Single unknown: x 

• Linear: multiply and add constants: 
 f(x) = 3x + 4.0321; 

• Polynomials: 
Sums of (non-negative) integer powers of x, multiplied by 
real constants 

 f(x) = 3x5 + 2.5x3 + x2 + 100x – 10.5 

• General Nonlinear 
Non-integer powers of x, transcendentals, logs, etc: 

 f(x) = x3/2 + log x + x sin x 
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Solution Approaches 

• Analytical (algebra) 

– What you’ve been doing since high school 

– Fine for linear and some polynomial equations 

– Often impractical in “real world” situations 

• Graphical 

– Plot the function see where it crosses the x-axis 

• Numerical 



4. Numerical Root-Finding 
Methods 



Finding Roots 

• Problem: given f(x), find the roots of f 
– I.e., value(s) of x for which f(x) = 0 

• Approaches: 
– Solve analytically 

• Quadratic equations, some polynomials, ... 

– Solve graphically 
• Low precision 

– Solve numerically 
• When the other methods aren’t adequate 

• All you need is the function itself 

That is: you give it x, it gives back f(x) 



Graphical Method 

• Graph the function in the region of interest 

• See where it crosses the y-axis 

 



Finding Roots Numerically: 
General Approach 

<Given function f plus starting_info> 

<initialize> 

estimate = <set based on starting_info> 

while estimated_error > error_spec 

 old_estimate = estimate; 

    estimate = <refine estimate, using f>; 

 estimated_error =       % update the error estimate 

   (old_estimate – estimate)/estimate; 

end 



The Bisection Method 

• Principle: 

If the signs of f(m) and f(n) differ, there exists an odd 

number of roots (at least 1) between m and n 
...or there is a discontinuity between m and n 

• Method: 

– Find m and n such that   f(m) x f(n) < 0 

– Compute r = (m+n)/2 and f(r) 

– If f(r) has the same sign as f(m), replace m by r 

 else [f(r) has same sign as f(n)] replace n by r 



Bisection Method: Error estimation 

• We know there is a root between m and n 
• Estimate = (f(m) + f(n))/2 
• Root must be within (f(m) – f(n))/2 of this estimate! 
• The interval [m,n] shrinks with every iteration! 
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Bisection Method Example - Polynomial 
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Bisection Method Example - Polynomial 
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Bisection Method – Summary  

• A “bracketing” method 

• Guaranteed to converge 

• May take a long time to converge if root is near 

one of the bounds 

• Provides guaranteed upper bound on the 

absolute (not relative!) error 



“Open” Root-finding Methods 

• Bisection method requires two input x-values for 
which the sign of f(x) differs 

– They thus bracket the root 

– These are called “closed” methods 

• “Open” methods do not require knowledge of 
where the root lies 

– Some only need one initial guess 

– BUT they may not converge 
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• For x = 10: 

• This is the new value of x 





•





•



•



•



•

•

•

•



Newton-Raphson Method 

• Advantages: 
– Fast convergence 

– Error on i+1st iteration proportional to square of error on ith 
iteration 
• Number of correct decimal places roughly doubles each iteration 

(assuming convergence!) 

• Disadvantages: 
– Derivative must be known 

– No general convergence criterion 

• Implementation suggestions: 
– Include a limit on number of iterations 

– Check for f’(x) = 0 during computation 



MATLAB’s Built-in Root-finding Tools 

fzero() 

• root = fzero(@func,[low,high]); 

• root = fzero(@func,guess); 

• Uses a combination of methods 
(See the help under “finding roots”) 

roots() 

– Solves for all roots of a polynomial 
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>> A = [3, -15, -20, 50]; 

>> roots(A) 

ans = 

    5.6577 

   -2.0764 

    1.4187 



•

>> B = [3, -5, -20, 50]; 

>> roots(B) 

ans = 

  -2.8120           

   2.2393 + 0.9553i 

   2.2393 - 0.9553i 



5. Lab Quiz – What to Expect 

• One problem will involve correcting a script 

– it will likely involve fprintf(), logic, iteration 

• One problem will involve writing a function from 
scratch 

– it will involve computing with arrays 

– it will involve iteration (while- and/or for-loops) 



Example 

Here’s a function that is supposed to return a 
vector whose elements are the differences 
between adjacent elements in the input vector.  
Correct it: 

 function x = vecdiff(invec) 

  len = size(invec); 

  for i=1:len 

   x(i) = invec(i) – invec(i+1); 

  end 

 end 



Example, cont. 

• For input:  [ 0, 3, -20, 8, 10, 7 ] 

• Correct return value is:  [ 3, -23, 28, 2, -3 ] 

 function x = vecdiff(invec) 

  len = size(invec); 

  for i=1:len 

   x(i) = invec(i) – invec(i+1); 

  end 

 end 

 



Example 

• Write a function that takes a 2-dimensional 
matrix and returns the maximum difference 
between any two elements 


