
CS 221 Lecture 9

Tuesday, 1 November 2011

Some slides in this lecture are from the publisher’s
slides for Engineering Computation: An Introduction

Using MATLAB and Excel
©2009 McGraw-Hill

Today’s Agenda

1. Announcements

2. Passing functions as parameters to other
functions

3. Solving equations

4. Numerical Root-finding methods (Text: Ch. 6)

a. Bisection

b. Newton’s Method

c. MATLAB’s built-in methods: fzero() and roots()

5. Lab Quiz – What to expect

1. Announcements

• Problem Set 3 is out

– Due Monday 7 November

• Lab Quiz 2 this Thursday

– All-MATLAB

– Example problems later & posted on Web page

2. Functions As Parameters

• Sometimes it’s useful to pass a function as a
parameter to another function

– You want to use a function without knowing exactly
what it is

– This is useful for:

• Plotting – see fplot()

• Numerical (not symbolic) manipulations

– Integration: finding the area under the curve of f(x)

– Finding roots of equations f(x) = 0

Two Ways to Pass Functions
As Parameters

1. Pass the name of the function as a string (in
quotes)

Examples:

 fplot(’cos’, [-pi, pi])

 g(‘f’,1,2)

2. Pass the name of the function preceded by @
– Syntax: @funcname

– Semantics: @cos is a function handle – a pointer to the
cosine function

Examples

 fplot(@cos, [-pi, pi])

 g(@f,1,2)

Function Handles have many uses.

• You can assign a function handle to a variable

 func = @cos;

Now func(x) returns the same thing as cos(x)

• Pass a parameter to a user-defined function

Example: bisect() – coming soon

– Use of function handles is required

• “function handle” is a real type in MATLAB

– like “double” or “char”

3. Solving Equations

• We consider algebraic equations of the form:
f(x) = 0

Single unknown: x

• Linear: multiply and add constants:
 f(x) = 3x + 4.0321;

• Polynomials:
Sums of (non-negative) integer powers of x, multiplied by
real constants

 f(x) = 3x5 + 2.5x3 + x2 + 100x – 10.5

• General Nonlinear
Non-integer powers of x, transcendentals, logs, etc:

 f(x) = x3/2 + log x + x sin x

•

–

•

•

Solution Approaches

• Analytical (algebra)

– What you’ve been doing since high school

– Fine for linear and some polynomial equations

– Often impractical in “real world” situations

• Graphical

– Plot the function see where it crosses the x-axis

• Numerical

4. Numerical Root-Finding
Methods

Finding Roots

• Problem: given f(x), find the roots of f
– I.e., value(s) of x for which f(x) = 0

• Approaches:
– Solve analytically

• Quadratic equations, some polynomials, ...

– Solve graphically
• Low precision

– Solve numerically
• When the other methods aren’t adequate

• All you need is the function itself

That is: you give it x, it gives back f(x)

Graphical Method

• Graph the function in the region of interest

• See where it crosses the y-axis

Finding Roots Numerically:
General Approach

<Given function f plus starting_info>

<initialize>

estimate = <set based on starting_info>

while estimated_error > error_spec

 old_estimate = estimate;

 estimate = <refine estimate, using f>;

 estimated_error = % update the error estimate

 (old_estimate – estimate)/estimate;

end

The Bisection Method

• Principle:

If the signs of f(m) and f(n) differ, there exists an odd

number of roots (at least 1) between m and n
...or there is a discontinuity between m and n

• Method:

– Find m and n such that f(m) x f(n) < 0

– Compute r = (m+n)/2 and f(r)

– If f(r) has the same sign as f(m), replace m by r

 else [f(r) has same sign as f(n)] replace n by r

Bisection Method: Error estimation

• We know there is a root between m and n
• Estimate = (f(m) + f(n))/2
• Root must be within (f(m) – f(n))/2 of this estimate!
• The interval [m,n] shrinks with every iteration!

Bisection Method: Error estimation

• We know there is a root between m and n
• Estimate = (f(m) + f(n))/2
• Root must be within |m – n|/2 of this estimate!
• The interval [m,n] shrinks with every iteration

Bisection Method: Error estimation

• We know there is a root between m and n
• Estimate = (f(m) + f(n))/2
• Root must be within |m – n|/2 of this estimate!
• The interval [m,n] shrinks with every iteration

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Bisection Method Example - Polynomial

•

•

Bisection Method Example - Polynomial

•

Bisection Method Example - Polynomial

•

Bisection Method Example - Polynomial

•

•

Bisection Method Example - Polynomial

•

•

Bisection Method Example - Polynomial

•

Bisection Method – Summary

• A “bracketing” method

• Guaranteed to converge

• May take a long time to converge if root is near

one of the bounds

• Provides guaranteed upper bound on the

absolute (not relative!) error

“Open” Root-finding Methods

• Bisection method requires two input x-values for
which the sign of f(x) differs

– They thus bracket the root

– These are called “closed” methods

• “Open” methods do not require knowledge of
where the root lies

– Some only need one initial guess

– BUT they may not converge

•

•

•

•

•

•

•

• For x = 10:

• This is the new value of x

•

•

•

•

•

•

•

•

Newton-Raphson Method

• Advantages:
– Fast convergence

– Error on i+1st iteration proportional to square of error on ith
iteration
• Number of correct decimal places roughly doubles each iteration

(assuming convergence!)

• Disadvantages:
– Derivative must be known

– No general convergence criterion

• Implementation suggestions:
– Include a limit on number of iterations

– Check for f’(x) = 0 during computation

MATLAB’s Built-in Root-finding Tools

fzero()

• root = fzero(@func,[low,high]);

• root = fzero(@func,guess);

• Uses a combination of methods
(See the help under “finding roots”)

roots()

– Solves for all roots of a polynomial

•

•

•

>> A = [3, -15, -20, 50];

>> roots(A)

ans =

 5.6577

 -2.0764

 1.4187

•

>> B = [3, -5, -20, 50];

>> roots(B)

ans =

 -2.8120

 2.2393 + 0.9553i

 2.2393 - 0.9553i

5. Lab Quiz – What to Expect

• One problem will involve correcting a script

– it will likely involve fprintf(), logic, iteration

• One problem will involve writing a function from
scratch

– it will involve computing with arrays

– it will involve iteration (while- and/or for-loops)

Example

Here’s a function that is supposed to return a
vector whose elements are the differences
between adjacent elements in the input vector.
Correct it:

 function x = vecdiff(invec)

 len = size(invec);

 for i=1:len

 x(i) = invec(i) – invec(i+1);

 end

 end

Example, cont.

• For input: [0, 3, -20, 8, 10, 7]

• Correct return value is: [3, -23, 28, 2, -3]

 function x = vecdiff(invec)

 len = size(invec);

 for i=1:len

 x(i) = invec(i) – invec(i+1);

 end

 end

Example

• Write a function that takes a 2-dimensional
matrix and returns the maximum difference
between any two elements

