
CS 221 Lecture

Tuesday, 11 October 2011
"Computers in the future may weigh no more than 1.5 tons."

 - Popular Mechanics, forecasting the relentless march of
science, 1949.

Today’s Topics

1. Announcements

2. if statements (“logical statements” in the
textbook) select among alternatives.

3. while repeats statements until a condition
becomes false.

4. Formatted output is easier with fprintf().

5. Loops are useful for processing arrays

element-by-element

6. for-loops: a shorthand for “bounded” loops

1. Announcements

• Remaining Quiz Dates:

– In class: 25 October, 22 November

– In lab: 3 November, 1 December

• Bring your text to lab!

2. if selects among alternatives.

if score >= 60

% score is at least 60

 grade = ’P’; % this is alternative 1

else

% ~ (score >= 60)

% therefore: score < 60

 grade = ’F’; % this is alternative 2

end

Exactly one alternative will be selected!

Quiz Problem – Correct Solution

if quality < 10

 disp(’Reject’)

elseif quality < 30

 % 10 quality < 30

 disp(’Maybe’)

else

 % quality 30 – no need to test!

 disp(’Accept’)

end

Quiz Problem – Common Mistakes

if quality < 10

 disp(’Reject’)

ifelse quality >= 10 && quality < 30

 disp(’Maybe’)

else quality >= 30

 disp(’Accept’)

end

3. while Repeats Statements Until a
Condition Becomes False

x = 10;
while x < 20

 x = x + 2
end

If the condition is initially false, the statement is never
executed!

x = 30;
while x < 20
 x = x + 2 % this is not executed
end

Example: Euclid’s Algorithm for the
Greatest Common Divisor (GCD)

The Greatest Common Divisor (GCD) of two
positive integers is the largest integer that divides
both numbers.

– The GCD of two numbers is always 1

– Let’s write GCD as a function:
GCD(m,n) takes two positive integers and returns the largest
integer that divides both m and n.

– The GCD function has the following properties:

• GCD(x,x) == x

• GCD(x,y) == GCD(x,x – y)

Euclid’s Algorithm Computes the GCD

Euclid’s algorithm*:

• Given two positive integers m and n:

1. If m and n are equal, stop: m is the GCD (so is n).

2. Otherwise (they are unequal):

 Replace the larger number with their difference

3. Go back to the first step.

*Definition of algorithm: An effective procedure given as a
sequence of steps for carrying out a specific computation.

Natural Language Description
Corresponds to this MATLAB Code:

while <m and n are not equal>

 <Replace the larger of m and n with the

 difference between them>;

end

GCD Function in MATLAB

function x = gcd(m,n)
% gcd: compute greatest common divisor
while m ~= n

 if m > n
 m = m – n;
 else % n > m (Note: this is a COMMENT!)
 n = n – m;

 end
end
% at this point we know m==n
x = m;
end

4. Producing Formatted Output
(Text Section 4.5)

• disp(): basic output capabilities

• Show a variable or array in default format
– fixed number of decimal places

• What if you want to embed a number in a string?
– E.g., to get “The number <v> is even.” where <v> is the

value of variable v, you have to create an array of strings
and convert v to a string with num2str():

– disp([’The number ’, num2str(v), ’ is even’])

• What if you want to print only two decimal places?

• What if you don’t want a newlineline printed after
the output?

fprintf() gives greater control over
output formatting.

• fprintf(<format string>, var1, var2, ...)
– <format string> is a string containing conversion

indicators (starting with %) that show where to put the
values of var1, var2, ... and how to format them

– Example:
fprintf(’The value of x is %d\n’, x) prints:

 The value of x is 100
 when x is 100.

– Conversion indications consist of: % 12.5 d
• %: indicates the beginning of the field
• 12: minimum field width in characters
• 5: precision (number of decimal places)
• d: conversion to apply (d = decimal integer, i does the same

thing)

fprintf Examples

5. Loops are useful for processing
arrays element-by-element

You are given an array of numbers between 0 and
100. You want to print only the values in the array
that are at least 70 and less than 90; all others
should left blank.

For example:

V = [10 89 9 88 65 90 34 75 70]

should produce output:

V = [89 88 75 70]

Outlining a Solution

• Look at each element of the array:
– If it is in the desired range, print it

• Need each element to be the same width -> use fprintf()

– Otherwise, print the appropriate number of blanks

• How to code this?
– Need to process elements V(1), V(2), ... one at a time

– Use a variable to hold the index into the array
• Call the variable “i”

• Start with i = 1 (smallest array index)

• After processing each element, increase i by 1

• Stop after processing the last element

How to find the max index of a vector?

length(V) returns the number of elements in V.
– For arbitrary array A: the largest dimension of A

Now we have:

 i = 1;

 while i <= length(V)

 <process element at index i>

 <increase i by 1>

 end

Refining the Script

i = 1;

while i <= length(V)

 if <the ith element is in range>

 <print it with a space on either side>

 else

 <print 4 spaces>

 end

 <increase i by 1>

end

Refining the Script

• “ith element is in range”

 70 <= V(i) && V(i) < 90

• Print number V(i) with a space on either side:

 fprintf(’ %2d ’, V(i))

• Print four spaces:

 fprintf(’ ’)

Final Script?

i = 1;

while i <= length(V)

 if 70 <= V(i) && V(i) < 90

 fprintf(’ %2d ’, V(i))

 else

 fprintf(’ ’)

 end

 i = i + 1;

end

fprintf(’\n’);

Final Script

i = 1;

while i <= length(V)

 if 70 <= V(i) && V(i) < 90

 fprintf(’%6d’, V(i))

 else

 fprintf(’ ’)

 end

 i = i + 1;

end

fprintf(’\n’);

Learn This Pattern!

• Iterating over the elements of a vector V using a
while-loop:

 i = 1; % initialize index variable i

 while i <= length(V)

 <do something with V(i)>

 i = i + 1; % increment index!

 end

Flowchart Pattern:
Iteration over array with while

Iterating Over Some Elements

• Skip the first few elements:
 i = 3;
 while i <= length(V)
 ...
 i = i + 1;
 end

• Skip the last few elements:
 i = 1;
 while i <= length(V) – 3
 ...
 i = i + 1;
 end

Iterating Over Some Elements

• Every other element (odd indices only):
 i = 1;
 while i <= length(V)
 ...
 i = i + 2;
 end

• Every other element (even indices only):
 i = 2;
 while i <= length(V)
 ...
 i = i + 2;
 end

5. for-loops provide a shorthand for
“bounded” loops

• MATLAB, like many programming languages, has a
shorthand for this kind of loop:
 for i=1:length(V)

 <statement>
 end

• Read this as:
 “for each (integer) value from 1 to length(V),
 execute <statement> with i having that value”

• This is equivalent to the while-pattern just shown
– MATLAB automatically initializes i to 1, tests for exceeding

the maximum before, and increments i after <statement>

• Usually <statement> uses i as an index into V
– But it is not required to do so

for-loops provide a shorthand for
certain while-loops

 for i=1:length(V)

 <statement>

 end

• This is equivalent to the while-pattern seen
earlier
– MATLAB automatically initializes i to 1, tests for

exceeding the maximum before, and increments i
after <statement>

– <statement> will be executed length(V) times

• Usually <statement> uses i as an index into V
– But it is not required to do so

Example Script Revisited

% i = 1 not needed!

for i = 1:length(V)

 if 70 <= V(i) && V(i) < 90

 fprintf(’%6d’, V(i))

 else

 fprintf(’ ’)

 end

 % i = i + 1 not needed!

end

fprintf(’\n’);

The General Form of a for-loop

for <variable> = <vector expression>

 <statement>

end

<variable> can be any MATLAB variable name.

<vector expression> follows the pattern:

 <start value> [: <increment>] : <end value>
The effect is to begin with <start value> and increase by
<increment> until the value exceeds <end value>

If the <increment> is not included it is set to 1

for-loop examples

 for index = 23:44

 ...

 end

 The loop is executed 22 times, with index having
the values 23, 24, 25, ... , 43, 44

 for k = 3:4:19

 ...

 end

 Here k takes on the values: 3, 7, 11, 15, 19

Problem: Counting elements in a vector

• Write a function “inrange()” that takes three
arguments:

– a vector (of any size)

– a lower bound

– an upper bound

... and returns the number of elements in the vector

that are between the bounds, i.e., that are at least the
lower bound and less than the upper bound

• Use a for-loop to iterate over the elements

Counting Elements with Some Property

function count = inrange(V, lower, upper)

% inrange: count elements of vector between bounds

 count = 0;

 for j=1:length(V)

 if V(j) >= lower && V(j) < upper

 count = count + 1;

 end

 end

end

Iterating Over 2-Dimensional Arrays
Requires Nested Loops

• How can we process each element of a two-
dimensional array?

– Elements are accessed via two indices: A(row,col)

• Example: A is a 3 x 5 matrix

– We need all 15 combinations of row and column #s:

 (1,1) (1,2) (1,3) (1,4) (1,5)

 (2,1) (2,2) (2,3) (2,4) (2,5)

 (3,1) (3,2) (3,3) (3,4) (3,5)

Example: Summing positive elements in
a 3x5 array

sum = 0; % to hold the sum

% first row

for col=1:5

 if A(1,col) > 0

 sum = sum + A(1,col);

 end

end

% second row

for col=1:5

 if A(2,col) > 0

 sum = sum + A(2,col);

 end

end

% third row

for col=1:5

 if A(3,col) > 0

 sum = sum + A(3,col);

 end

end

Example: Summing positive elements in
a 3x5 array

sum = 0; % to hold the sum

row = 1; % first row

for col=1:5

 if A(row,col) > 0

 sum = sum + A(row,col);

 end

end

row = 2; % second row

for col=1:5

 if A(row,col) > 0

 sum = sum + A(row,col);

 end

end

row = 3; % third row

for col=1:5

 if A(row,col) > 0

 sum = sum + A(row,col);

 end

end

