CS 221 Lecture

Tuesday, 4 October 2011

"There are 10 kinds of people in this world: those who know how to count in binary, and those who don't."

Today's Agenda

1. Announcements
2. You Can Define New Functions
3. Arrays Let You Name a Group of Related Values
4. Repetition (Iteration) Adds Power
5. Quiz

1. Announcements

- Remaining Quiz Dates:
- In class: 25 October, 22 November
- In lab: 3 November, 1 December
- Final Examination:

10:30-12:30 Thursday, 15 December

- Midterm grades available nlt 21 October

2. You Can Define New Functions. (Text Section 3.4)

- We've seen scripts (m-files)
- Save and name a computation so it can be repeated
- Problem:
- If you want to vary the values used in the computation, you have to read them from the keyboard (or elsewhere)
- What we want:
- Define a computation that is a function of some input variables
Note: "input variables" = "parameters" = "arguments"
- and get the result out (without printing it)
- Like sqrt(), sin(), input(), etc.

You Can Define New Functions.

- Function m-files allow you to do this!
- First line has the form:
function <output vars> = <name>(<input vars>)
- Example:
- In our quadratic equation solving script:
compute $b^{2}-4 a c$ to check whether real roots exist
- Turn this into a function: discrim(a, b, c)
- Put the commands to do the computation in a file discrim.m
- Make sure MATLAB can find the file

Example: Defining discrim()

keyword - tells MATLAB this is a function. This must be the first line of the file.

$\%$ discrim \mathcal{f} compute the value of $b^{\wedge} 2-4 a c$,
\% to see 1 f roots are real
result $=\mathrm{b}^{\wedge} 2-\left(4^{*} \mathrm{a}^{*} \mathrm{c}\right)$;

Name of the function - tells MATLAB how you will invoke the function in an expression. Must begin with a letter.

Output variable - the result of the computation is placed here (but replaces the name of the function when invoked).
"Body" of the function - where the computation is carried out. The output variable (here: result) must appear on the LHS of an assignment somewhere in the body.

Invoke a Function by Writing Its Name

>> $\mathrm{a}=3 ;$
>> b = -4;
$\gg \mathrm{C}=-2$
>> if discrim $(\mathrm{a}, \mathrm{b}, \mathrm{c})>=0$
$\gg \quad r 1=(-b+\operatorname{sqrt}(\operatorname{discrim}(a, b, c))) /\left(2^{*} a\right)$
>> else
>> disp('Sorry, no real roots');
>> end

Current Directory

- At the top of the screen is the name of the current directory, where by default your new m-files will be stored.
- A list of MATLAB files in the current directory can be displayed by clicking the "Current Directory" tab (this window can be toggled between the Workspace and Current Directory)

Current Directory

- You may want to store your MATLAB files for each class or project in a specific folder
- If so, create the directory in Windows and then browse to it from the MATLAB interface to set it as the current directory

Path

- Files that you create in the new folder will run as long as that folder is set as the current directory in MATLAB
- However, if another folder is set as the current directory, files from the folder that you just created will not run unless its address is added to the MATLAB path
- The path is a list of locations that MATLAB searches to find files

Path

- When you enter a command at the prompt, MATLAB looks for a file matching the command name, beginning with the first location in the path.
- To add you new folder to the Path, select File: Set Path...

Path

- Select Add Folder...

- Browse to your desired folder and click OK...

Path

- Click Save and Close. Note that your new folder is now the first location searched by MATLAB

Engineering Computation: An Introduction
Using MATLAB and Excel

3. Arrays Let You Name A Group of Related Values

(Text Sections 3.5, 3.6)

- Consider a civil engineer, taking soil measurements along a 1-km boundary line
- One sample every 10 m
- A set of 101 samples
- How can you compute with these values in MATLAB?
- E.g., you want to find max, min, average, ...
- Don't want to have to come up with 101 different variable names!
- sample1, sample2, sample3, ...
(Note: in Excel you don't have to name them at all!)

Arrays Can Be Two-Dimensional

- Suppose our civil engineer took measurements on a $100 \mathrm{~m} \times 100 \mathrm{~m}$ grid (with 10 m spacing)
$-11 \times 11=121$ samples in all
- Could store in a 121-element array as before
- Problem: figuring out which element goes where in the grid
- Solution: store the values in a 2-Dimensional array!
- Location in array (row, column) corresponds to location in measurement grid

Reference Elements of TwoDimensional Arrays with Two Indices

- Let "gridsamples" be an array with
- 11 rows and 11 columns
- "m x n array" always means m rows, n columns
- Remember: row first, then column
- To access an individual element, give its row and column indices:
- sample(3,4): element in third row, fourth column
- Example: to round off the "middle" element:
sample $(6,6)=$ round $($ sample $(6,6))$

MATLAB Views Everything as a 2-D Array

- Scalars (individual values): 1×1 arrays
- 1-D arrays are called vectors
- row vector: $1 \times \mathrm{N}$ array
- column vector: N x 1 array

You Can Create Arrays in Many Ways

- Direct entry
>> depths = [$\left.\begin{array}{llll}60.1 & 70.2 & 88.1 ; & 55.2 \\ 33 & 44\end{array}\right] ;$
- semicolons separate rows; spaces separate columns
- Built-in functions
rand (m, n) creates an $m \times n$ array of random numbers between 0 and 1
- rand (n) creates an $\mathrm{n} \times \mathrm{n}$ array
ones (m, n) creates an $m \times n$ array of 1 's
zeros (m, n) creates an $m \times n$ array of 0 s
- load command/function
"load foo.txt" creates an array "foo" with contents
See the help function...

4. Repetition (Iteration) Adds Power

(Text Section 4.2.2)

- So far, we have seen programs (scripts) that do each step once (or possibly not at all).
- To do interesting things, we need to be able to repeat steps of a computation over and over - in other words, to iterate
- All interesting programming tools have a way to do this
- Iteration statements make the language as powerful as it can be (in a theoretical sense)

Recall Flowcharts

- Show the "flow" of a sequence of steps
- Boxes indicate basic steps; diamonds indicate "branch points"

Flowcharts Show a Sequence of Steps

Flowcharts

Flowcharts

while Statement in Flowcharts

if-statement

The while-statement's syntax resembles the if-statement's

while <boolean expression>
<statement>
end

As long as <boolean expression> evaluates to TRUE (=nonzero), keep executing <statement>

While statements are useful when getting input from the User.

- Instead of quitting (ending the script) when the user makes an error on input, let them keep trying until they get it right!

Summary of What You Learned

- You can define new functions
- stored in m-files like scripts
- pass in values via arguments/parameters/input vars
- return values via output variables
- Arrays provide a way to refer to a group of values together
- refer to individual values through indexing
- While-statements allow a computation to be repeated arbitrarily many times
- precisely: until a condition becomes false

