CS 221 Lecture

Tuesday, 27 September 2011

"A computer is like an Old Testament god, with a lot of rules and no mercy." -- Joseph Campbell

Today's Agenda

1. Administrivia
2. Assigned Reading
3. Lab Quiz Prep
4. In-Class Quiz Prep
5. Flowcharts
6. Arrays

1. Administrivia

- Lab Quiz Thursday
- Open-book, closed-neighbor
- Covers everything you have done in Lab so far
- See the Practice Quiz
- In-Class Quiz Next Tuesday
- Closed-everything
- Covers everything in Lecture up to now
- NOT arrays, flowcharts (today)

2. Reading the Textbook is Helpful.

- Chapter 1
- 1.1 Projectile example, Analytic vs. "algorithmic" (Numerical) solutions
- 1.3 Variables, precision, accuracy, significant digits
- Chapter 2 "Excel Fundamentals"
- 2.1 Basic Excel user interface
- 2.2 Entering, formatting data
- 2.3 Formulas, operators, order of operations
- 2.4 Built-in functions (SIN(), $\operatorname{COS}(), \operatorname{SUM}()$, etc.)
- 2.5 Conditional expressions using the IF() function

Reading the Textbook is Helpful.

- Chapter 3 "MATLAB Fundamentals"
- 3.1 MATLAB interface: windows, command line
- 3.2 Computing with the command-line interface
- 3.3 M-files (scripts), using input() to interact with user
- Chapter 4 "MATLAB Programming"
- 4.1 Flowcharts (also in today's lecture)
- 4.3 conditional ("branching") statements: if, if-else, if-elseif-else
Each section contains useful examples.

3. Lab Quiz is this Thursday.

- You will have 50 minutes (only).
- Two problems: one Excel, one MATLAB.
- Suggestion: Do the Practice Quiz!

4. In-Class Quiz is Next Tuesday.

- Last 30 minutes of lecture
- Pencil and paper (no calculators)
- Fair game:
- Lecture material
- Textbook material
...through last week's lecture (no flowcharts or arrays)

In-Class Quiz Topics

- Binary representation of numbers
- Convert binary to decimal and decimal to binary
- Precision, accuracy and significant digits
- Know the distinction between accuracy and precision
- Know how to determine number of significant digits
- Boolean expressions and operators: and, or, not
- Conditional expressions
- IF() function in Excel
- if/if-else/if-elseif-else commands in MATLAB
- Predicting MATLAB and Excel behavior
- How expressions are evaluated (order of operations)
- Variable names in MATLAB
- Recognizing errors in commands

Example Problem

In Matlab, suppose the following commands are typed into the command window:

$$
\begin{aligned}
& \mathrm{a}=25 ; \\
& \mathrm{b}=32 ; \\
& \mathrm{c}=40 ; \\
& \mathrm{c}=\mathrm{c}-\mathrm{b} ; \\
& \mathrm{d}=\text { 'triangle' } ; \\
& \mathrm{e}=\text { 'circle'' } \\
& \mathrm{f}=\text { 'triangle'; }
\end{aligned}
$$

What does MATLAB print if you type:
>> if a $<\mathrm{b} \& \& \mathrm{c}<12$

$$
x=a+2 * b
$$

else

$$
x=2 * b-a
$$

end
?

Example Problem

In Matlab, suppose the following commands are typed into the command window:

$$
\begin{aligned}
& \mathrm{a}=25 ; \\
& \mathrm{b}=32 ; \\
& \mathrm{c}=40 ; \\
& \mathrm{c}=\mathrm{c}-\mathrm{b} ; \\
& \mathrm{d}=\text { = 'triangle' } ; \\
& \mathrm{e}=\text { 'circle'' } \\
& \mathrm{f}=\text { 'triangle'; }
\end{aligned}
$$

What does MATLAB print if you type:
>> if $\operatorname{strcmp}(\mathrm{d}, \mathrm{e})$ || strcmp(d,f)

$$
x=b * 2+c
$$

else

$$
x=\operatorname{sqrt}(a+b-1)
$$

end

Example Problems

- Convert 11,999 to binary
- Write down the decimal representation of 10110101101
- What is wrong with the following code?
whichshape $=$ input(which shape?, s);
if strcmp(whichshape, hexagon) disp(Oh, goody)
else
disp(you are a square)

More Examples

Which of the following is closest to the smallest positive double-precision floating point number that can result from a calculation in MATLAB?
a. $-1.79769 \mathrm{e}+308$
b. -2.22507e-308
c. 0.0000000001
d. $2.22507 \mathrm{e}-308$
e. $1.79769 \mathrm{e}+308$

More Examples

In Excel, some cells have the following values:

$$
A 1=25, A 2=35, A 3=20, A 4=-10
$$

What will be shown in cell $B 1$ if it contains the following formula(s):

$$
\begin{aligned}
& =A 1 * \$ A \$ 3-\$ A 4 \\
& =\operatorname{IF}(A 1>A 2, A 3, A 4) \\
& =\operatorname{IF}(A N D(A 1>A 2, A 3>A 4), A 1 * A 2, A \$ 4)
\end{aligned}
$$

5. Flowcharts

- Flowcharts are diagrams that illustrate the paths followed in a sequence of computations
- Flowcharts are a great tool for planning complex algorithms
- Flowcharts are also very useful for documenting and explaining an algorithm, even relatively simple ones
- For many of the simple programs we will write, drawing a flowchart may seem to be unnecessary, but learning to create and read flow charts is a valuable skill

Flowcharts

- Flowcharts are often used to illustrate process sequences in manufacturing operations and decisionmaking sequences in management
- Consider the flowchart of a company' s product design process:

There is a Flowchart "Vocabulary".

Some symbols may vary, but the diamond-shaped Decision Point is pretty much a universal standard.

Flowcharts Show a Sequence of Steps

Flowcharts

Flowcharts

6. Arrays in MATLAB
 (Text, Sections 3.5, 3.6)

- In a spreadsheet, we do not need to name every variable: the cell address (row/column) defines the storage location

	A		B
C			
1	Initial displacement y_{0}	3	inches
2	Natural frequency ω	6.28319	$\mathrm{rad} / \mathrm{sec}$
3	Damping coefficient ξ	0.1	
4			
5	Damped frequency ω_{D}	6.25169	$\mathrm{rad} / \mathrm{sec}$
6			
7	Time t, seconds	y , inches	
8	0	3	
9	0.1	2.45016	
10	0.2	1.08578	
11	0.3	-0.5072	
12	0.4	-1.73	
13	0.5	-2.1875	
14	0.6	-1.8057	
15	0.7	-0.8209	
16	0.8	0.3423	
17	0.9	1.24526	
18	1	1.59461	
19	1.1	1.33032	

Arrays Identify Multiple Values

- In MATLAB and other programming languages, the variables must be named and storage of results must be planned
- An array is a variable that contains multiple values
- This allows you to refer to many values all at once
- To refer to individual values, the array's name is followed by an index (or indices, for multi-dimensional arrays) in parentheses

Indexing Refers to Elements of Arrays

- Think of the index value as an "address"
- Important: Indices must be positive integers, and must start with one
- Example: To store these results, we would define

Time t, seconds	y, inches	
0	3	
0.1	2.45016	
0.2	1.08578	
0.3	-0.5072	
0.4	-1.73	
0.5	-2.1875	
0.6	-1.8057	
0.7	-0.8209	

$t(1)=0, t(2)=0.1, t(3)=0.2 \ldots$
$y(1)=3, y(2)=2.45016 \ldots$

Common Mistakes Using Indices with MATLAB

- Using an index of zero:

```
>> t(0) = 0
??? Subscript indices must either be real positive integers or
logicals.
```

- Using an index not an integer: setting $t(0.1)$ equal to a value results in the same error as above

Common Mistakes Using Indices with MATLAB

- Progressing indices by values other than 1. For example, if we take a temperature reading every 10 seconds, and set the first value as $T(10)$, then MATLAB automatically fills in zeros (the default value) for the first nine values of T :
(No error is reported, but this result is probably not what is desired)
- All of these errors result from confusion between independent variables and indices. Thinking of indices as addresses helps avoid these errors.

Multi-Dimensional Arrays

- A variable may have more than one index. A twodimensional array is similar to the data storage of a spreadsheet. Instead of a row number and a column letter, a two-dimensional array has two index numbers
- Examples: $t(1,5) \quad R(3,3) \quad$ temp $(1,20)$
- Efficient way to store data: if both indices range from 1-10, then the number of values stored is $10 \mathrm{X} 10=100$

Matrices

- One- and two-dimensional arrays are also called matrices
- Many mathematical operations can be performed with matrices - the name MATLAB comes from "Matrix Laboratory"
- The size of a matrix is defined by the numbers of rows and columns. Example; a 3 X 2 matrix:

Vectors

- One-dimensional matrices are referred to in MATLAB as vectors
- Vectors can be classified as column vectors (all values arranged in a single column) or row vectors (all values arranged in a single row)
- Caution: in mechanics classes, the term "vector" has a different definition: a vector is defined as a physical quantity which is defined by magnitude and direction

Entering Arrays in MATLAB

- Consider the matrix:

$$
A=\left[\begin{array}{ccc}
3 & 5 & 1.6 \\
-2 & 0 & 4
\end{array}\right]
$$

- To enter this matrix in MATLAB:

$$
\gg A=[3,5,1.6 ;-2,0,4]
$$

or

$$
\gg A=\left[\begin{array}{llllll}
3 & 5 & 1.6 ;-2 & 0 & 4
\end{array}\right]
$$

Commas or spaces separate elements within a row, semicolons separate rows

Arrays

- We will work with matrix math later, with applications such as solving simultaneous equations
- We will create and manipulate large arrays of results using programming loops. Loops control the execution of repetitive calculations, and the results are often stored in arrays

